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Properties of unitarily invariant convex functions, defined on subsets of positive linear
forms of type I and type III W *-algebras have been investigated. We especially characterize
those pairs of positive linear forms f, g for which ¥(f) < ¥(g) holds for every unitarily
tnvariant convex function ¥ and in which case we call f “more chaotic” than g.

In [9]-[11] there has been introduced a partially ordering of finite-dimensional density
matrices, respectively states, over finite type I factors. In this simple case of finite-dimen-
sional density matrices we have called the density matrix ¢ “more mixed” or “more chaotic”
than o, if o turns out to be a convex linear combination (a mixture in the sense of Gibbs
and von Neumann) of density matrices ¢; which are unitarily equivalent to ¢. Then and
only then the eigenvalues of ¢ are the transforms of those of ¢ by a bistochastic trans-
formation.

Besides applications to matrix inequalities, to the definition of “general equilibrium
states” as maximal mixed states of a given compact convex set of states, to Kossakowski’s
strictly irreversible quantum processes [4] and to more general “evolution processes”
[5], we mention explicitly three facts:

a) Given Gibbs states
o(T) = exp(—fH)/Spexp(—fH),
we have
oT,) > o(Ty) if To,2Ty20 or 0=2T,=>T,.
b) If a density matrix ¢ can be written as

0= Zexp{A b+ ... +Anbn}

* On leave of absence from Section of Physics, Karl Marx University, Leipzig, GDR.
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with the help of certain Hermitian matrices b;, then for every density matrix o satisfy-
ing

Speb; = Spob;, j=1,2,....m

it follows from ¢ < ¢ that necessarily o = o.

c) For every set a,, ..., a, of positive semidefinite matrices, the sum of which is equal
to the identity matrix, we have

o < > Sp(a;0)- (Spa)~* - 4.

In these examples < stands for the relation “more chaotic” (“more mixed”) with respect
to the group of all unitary transformations (see Definition 3).

Wehrl [12] and Alberti (unpublished) have generalized the results of [10], [11] to
infinite-dimensional density matrices. Alberti [1], [2] succeeded in considering the order-
ing relation in question for positive linear forms of a type I von Neumann algebra with
finite centre in a separable Hilbert space.

In this paper we generalize these theorems to the positive linear forms of countably
decomposable W*-algebras of type I and IIL

For some basic definitions and results we refer to the books of Neumark [7], Dixmier
[3] and Sakai [8]. It is a pleasure to thank P. M. Alberti and G. Lassner for stimulating
discussions.

Let us consider a C*-algebra 4. We denote by
A*t the group of *-automorphisms of 4,

A* the group of unitary automorphisms of 4,
A* the space of continuous linear forms over A,
A* the cone of positive linear forms over 4.

We adopt the following conventions: with € A**t the 7-transform of the element
a e A is written @ and the transform of a linear form fe A* is given by ( M(a) = f(a").
The automorphism 7 is called a unitary one iff there is a unitary element u € A with a”
— wau~'. In this case we also denote @® and f by a* and f*. Let G be a subgroup of A"
In the remaining part of this section we express in slightly different ways the fact that
a linear form f'is the weak limit of convex linear combinations of the linear forms g%, 7 € G
with a certain other linear form g. To this end we need some definitions.

DEFINITION 1. A subset X of A4 is called a G-set, if and only if 1) X is weakly closed,
2) X is a convex set (with respect of the real linear structure of 4*), 3) X is G-invariant,
i.e. if feX and 7 € G it follows that f* e X.

We remark that the intersection of an arbitrary number of G-sets is again a G-set.
Every continuous linear form is contained in at least one G-set.



UNITARILY INVARIANT CONVEX FUNCTIONS 451

DEFINITION 2. Let X be a G-set. A G-function ¥ on X is a real-valued function
F=¥(), —oo<P(f)< 4w

defined on X, satisfying the following conditions:
1) ¥ is weakly upper-continuous, i.e. for every-real A

{feX| ¥(f)< 1}

is a weakly closed set.
2) ¥ is a convex function on X, i.e. for 0 < p < 1

¥ (pf+(1-p)g) < pP()+(1—p)¥(g).
3) ¥ is G-invariant:
() =¥, reG.

If X > Y denote G-sets, the restriction on Y of every G-function on X is a G-function
on Y. Let us now consider a special family of G-functions on A.

LEMMA 1. For every a€ A the function
O(f,a, G) = supRef(a’) 1
G

is a G-function on A*.

To carry out the proof we only have to note that the supremum of a set of continuous
functionals is upper-continuous and convex. The G-invariance is a trivial consequence
of (1) as well. The function (1) is bounded by ||f]| - ||a|| and convex in the argument a € 4,
too. These functions are therefore norm-continuous both on 4 and on A*.

THEOREM 1. The following three conditions for two elements g,f€ A* are mutually
equivalent.

() If X is a G-set and g € X, then fe X too.
(i) If X is a G-set containing f and g, then every G-function ¥ on X Sulfils the inequality

Y(f) < (9.
(iii) For every ae A the inequality

(f,a,0) < D(g,a, G)

is valid.

Let us first remark that the theorem is rather at the surface. Indeed, it really does
not depend on the C*-character of A (see [5]), and what more, it does not even depend
on the multiplicative structure of 4. To prove Theorem 1 we note that the step (i) — (iii)
is covered by Lemma 1. Now, let (i) be valid and denote by ¥ a G-function on X. The set
{ feX| Y f) = ¥(g)} is a G-set containing g and hence f. This proves (ii) from (1). Let
us now assume proposition (iii) to be valid. Then g € X and f¢ X for a G-set X will give
a contradiction: There exists a weakly continuous real linear functional @ on A* satis-



452 A. UHLMANN

fying @(h) < 1+¢(f) for all h € X (Mazur). Further, ¥ (4) = supe(#*) is a G-function
G

on A* with ¥Y(g) < 1+¥(f), thus contradicting the inequality (ii). Now ¢, (k) = @(h)—
—ip(ih) is a complex linear form on A4 with Reg, = ¢. Because ¢, is weakly continuous,
there is an element a € 4 with ¢, (k) = h(a), and therefore, ¥ is of the form (1).

DEFINITION 3. Let g, f be two continuous linear forms over 4. We say that fis “more
G-chaotic” (“more G-mixed”) than g and write

g < frelG

if and only if they satisfy the three equivalent conditions of Theorem 1.

This is a transitive relation, g <f, f < h implies g < h. If g <faswellas f<g
we write g ~ frelG. The relation “~ relG” provides us with equivalence classes {f}¢
and the relation “< rel G” provides us with a semi-ordering of these equivalence classes.

The set

{flg <SrelG} @

is the smallest G-set containing g, it is the G-set “generated by g”. Because the norm is
not changed by *-automorphisms and the norm is at most decreasing by performing
convex linear combination and weak limits, the norm of every element of (2) is less than
the norm of g. If, therefore, 4 contains an identity, the G-set generated by g is weakly
compact. In this case, by standard techniques, we see that every G-set X contains a minimal
G-set Y, i.e. a G-set with no proper G-subset. A linear functional fis said to be “maximally
G-chaotic”, if there is a minimal G-set Y with f € Y. Obviously, in this case Y is the G-set
generated by f. If a functional fis a G-invariant one, then fis maximally G-chaotic. (The
converse statement is wrong, in general.)

THEOREM 2. Let ¥ be a G-function on the weakly compact G-set X. Denote by S the
set of all pairs (a, A), ae€ A, A being a real number such that

Y(f) = D(f,a,G)+1 for adll feX. (3)
Then

() = Sl;p[d’(f, a,G)+4]. 4)

The proof is based on a theorem of Mokobodski (see [6]), according to which ¥ is
the supremum of the set of those affine functionals ¢ on X with ¥ > ¢ on X, which can
be extended to affine continuous functionals on the whole 4. There exists a € 4 and a real
A with Ref(@)+ A = @(a) on X (see the proof of Theorem 1). Now P(f) > A+Ref"(a)
for all T € G and f e X, and we only have to take the supremum with respect of the ele-
ments of G. Next we remark that from g = g*, g < f follows f = f*. Further, if S is
a G-set of Hermitian functionals, we may restrict ourselves to the Hermitian elements
a € A in the proofs of Theorems 1 and 2:
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COROLLARY. . Let g = g*. Then Theorem 1 remains true if we restrict ourselves in
(i) 70 all Hermitian a € A. If the G-set X consists of Hermitian functions only, then Theorem 2
remains true if we take instead of S its subset (a, ) with Hermitian a c A.

3.

Let us now consider a W*-algebra M and its group G = M* of unitary automorphisms
(following usual customs, we write M* for A in the case of W*-algebras). As usual, we write
p ~ q resp. p < q for two projectors of M* iff there is an element v € M with p = vo*
and g = v*v resp. ¢ > v*v. Thus the relations “~, <” are defined as usual for projectors

_of M, while we use these symbols for elements f, g € M* as indicated by our Definition 3.

We now assume p, < p; and p; ~ p, for two projectors of M. If v*v = p> and
v0* = p;, we define p,,, = (v*)"0" (n > 1). Repeating the arguments of Proposition
2.2.4 of [11], we see that the p; form a decreasing sequence of projections and

pi=r+2q with ¢ =p—py.,
and the weak limit r of the p;. Hence we have

Zf (g) <
for every positive linear functional f. p; = Z q: gives us p; ~ p,. However, g; ~ (p, —p,)
i%i

and p;j+q; = p,. Therefore, there exist unitary elements u; commuting with p; and r
and transforming p, into p; and ¢, into g;. Taking into account that every continuous
linear functional is a linear combination of positive ones, we obtain:

LEMMA 2. If g < p and q ~ p for two projections of a M*-algebra, we can find unitary
elements u; of M which commute with p and satisfy

2 p)~fig) < o,  for all feM*. )

We denote by Z the centre of M. If zy, ..., z,, is a set of mutually orthogonal central
projections with sum z, we have

O(f, az, M) = Y D(f, az;, M"), (6)
which is to be seen from the fact that

U= zu+(e—z),
with unitary u;, is unitary again.

Further, if @ = a* € M has a spectrum consisting of a finite number of points only,
we may choose the above-mentioned central projectors z; in such a way that the follow-
ing assertion is true for every z;a for the given element a € M: If 2 # 0 is an eigenvalue
of the element z;a and p the associated projector, the central support of p equals z;. Using
equation (6), recalling that every Hermitian element is the norm limit of elements with
finite discrete spectrum and because the functions @ are norm-continuous, we arrive
to the following conclusion:
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LEMMA 3. We have g < frelM* for two Hermitian continuous functionals of M if
and only if

Q(f’ a’ Mu) < ¢(g’ a, M)
or all Hermitian elements a € M satisfying the conditions:
(i) a has finite discrete spectrum, i.e. a spectral decomposition

a = 21p1+ +;1-um, }.J?éo (7)
(ii) The projections py, ..., pm of (1) have the same central carrier ¢ = c(p;).
We now rewrite (7) in the following manner: Define the projectors and numbers

qs = P1+p2+ +ps,

Hs = As_ls+la lm+1 = 0. (8)
Then

a=u g+ ... +pfmYm- ®)

THEOREM 3. Let M be a countably decomposable W*-algebra of type 111 and M*
its cone of positive linear forms. Every fe M* is maximally M*-chaotic and g < f rel M"
is equivalent to g(z) = f(z) for all z € Z, Z being the centre of M.

The first assertion of this theorem is a consequence of the second, so we prove the
latter. Let @ € M be an element satisfying the Propositions (i) and (ii) of Lemma 3. Since
M is of type III and countably decomposable, every projection p; of (7) is equivalent
to its central carrier ¢. The same is true for the projectors g;, defined by (8). From 4,
> 1, = ... it follows that u; > 0, and therefore,

D(f, a, M*) > 2w f(g5).
If we choose a sequence of unitary elements u; fulfilling the conditions of Lemma 2 for
the pair of projectors g, and a, then for every j the sequence f(q%/), i = 1, 2, ... converges
to f(c). Now A, = py+us+ ...+, thus

¢(f,aa Mu) = Al¢(f9 ¢, Mu) =f(C)

However, the right-hand side of this inequality cannot be smaller than the left-hand side,
trivially. Hence the equality holds and the theorem is proved. By the arguments of Lemma 3
we easily see that, according to this result, for every a = a* € M there is a unique central
element z = z(a) with f(z) = ®@(a). Combining this with Theorem 2, we thus conclude

THEOREM 4. Let M be countably decomposable of type 1lI. For every a = a* e M
there is a z = z(a) in the centre Z of M with

D(f, a, M*) = f(2). (10)

If X is a M*set of M* and X the restrictions on Z of its elements, then every upper-

continuous and convex function F on Xz can be uniquely extended to a M*-function
on X by the prescription

Y(f) = F(f). (11)
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Here f denotes the restriction on Z of the linear form f € X = M*. We now turn to a count-
ably decomposable type 7, (1 < n < o) W*-algebra M. If R, is a factor of type I, and
if Z is the centre of M, one knows [8] that M is *-isomorphic to Z®1I,, which may be
identified with M in an obvious way. The elements of the form

a=>z®aq, finite sum (12)
with mutually orthogonal central projections z; and elements a; € I, having spectra con-
sisting of finitely many points only, provide us with a norm-dense subset of the set of

Hermitian elements of M. Hence g < frel M* for two elements of M* iff condition (iii)
of Theorem 1 is true for all elements of the form (12). With unitary u; € I, the element

u=,z;@u+(e— > z)®I,
is unitary in M and gives, applied to (12),

at = Zz,-@a?f.
On the other hand, every unitary automorphism of M may be represented in this way
for a given element of the form (12). Therefore, with the notation above and fe M+,
we have

D(f, a, M*) = 2 P(fy, ay, 1),
fi(a) = f(z;®a), acel,. (13)
There are finitely many projections g;; with ¢; < ¢4, and @; = Z,ujsqjs as indicated
by (7), (8) and (9). We may assume (possibly, after adding a multiple of the identity)

that @ > 0 and 4;; > 4;; > ... > 0. Since u; > 0, we are allowed to apply a result of
Alberti [1] showing that

D(f5, aj 1) = 2 is Py, s, 1), (14)
D(f;, gji> In) = D(f, ;® qji, M*). (15)
In the case g;; ~ e in [, one can show [8] (see also Lemma 2) that (15) equals &( fi>e, It

= f(2). Using the fact [8] that every type I W*-algebra is the direct sum of W*-algebras
Jf type I, we can summarize the arguments above as follows:

THEOREM 5. Let M be a countably decomposable W*-algebra of type 1. The linear
JSunctional f is more M*"-chaotic than the positive linear form g if and only if (1) f(z) = g(2)
Jor all central elements of M. (2) D(f,p, M") < D(g, p, M) for all projection operators p e M,
which may be represented as a finite sum of mutually orthogonal Abelian projectors.

We see further by (13) to (15), that for every a > 0 of the form (12), D(f, a, M¥)
is a positive linear combination of functions of the form @(f, p, M¥), p being a projector.
If p is an infinite sum of mutually orthogonal Abelian projectors having the same central
support z, then @(f, p, M*) = f(z). Combining this with Theorem 2, we get

THEOREM 6. Let M be a countably decomposable type 1 W*-algebra. Every M"-func-
tion on a compact M*"-subset of M* is the supremum of functions of the form

= 2D, pi, MY +£(2),
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where z is a central element, u > 0 and every p; is a finite sum of mutually orthogonal Abelian
projectors.

We may rewrite Theorem 5 in another interesting form. Let us denote by K the
norm-closed ideal of M generated by its Abelian projectors. If fx and f; denote the
restrictions of f onto K and Z, one sees from Theorem 5 that g < frelM* if and only if

Jfz = gz, (16)
Jx > grrel K.
It is to be seen that the second condition refers to the normal parts and thus the first
condition is essentially a condition for the singular parts of the functionals.
In the special case M = I, we can express, following Alberti and Wehrl, the second
condition of (16) in a simple way: There are operators ¢, ¢ of the trace class with

gk(a) = Sp(ao),  fx(a) = Sp(ap).

Then the mentioned equivalent condition is

m

A< Y m, m=1,2,3,..,
1

i=1

M=

I

i
where A, > A, > ... resp. u; = u, > ... denote the eigenvalues of ¢ resp. o. Namely,
by a theorem of Ky Fan

AM+A+ ... + Ay = supf(p*), dimp = m.

It is an open question whether similar theorems for algebras of type II hold. It seems
natural to suggest that the following conjectures are true for general W*-algebras: Con-
jecture 1: For positive f the function @(f, p, M*) depends only on the equivalence class
of the projector p. Conjecture 2: g is more M*-chaotic than f for two positive linear forms
of M if and only if for all projections p

®(f’p7Mu)>®(g’p,Mu)'
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