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0._Introduction

To-day practically every physicist is acquainted with
the elements of the theory of sgroups and their anplications
in physics as an essential tool to handle symmetries.

Now, since several years another mathematical structure,
the % galpebra ("star-algebra"), enters the scenery of
nhysics. I would not dare to bother you with these somewhat
abstract things, if I were not convinced that they will
become of comparstive importance as groups.

In this very short introduction to that, what might be
celled "alrebraic approach" to some problems of theoretical
nhyvsics, we have grouned the material around few concents
about *La]gebras, their representations and states and have
tried to explain some starting points for their apnlicsetions.
Further, we have only presented such tacts, which are not
restricted to the algebras of bounded operators. One or
another fect may be new also to peopnle, exnerienced in this
field. Proofs, however, asre omitted.

We have not even touched the lerge field of questions

concerning the time development of physical svstems.
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We intend to introduce the concent of an algebra, or-.more
literally, of an "associative algebra over the complex
numbers". We define an slgebra ‘.A— to be a complex linear
snace torether with a composition rule, called product, that
associates uniquely with every ordered pair a, b of elements
of A  enother element ab
(1.1) abed — ab ¢ A

Furthermore, the product has to fulfill the conditions

(a+b)c = ac + be

(1.2)
c(o +b) = ca +cb

j.e., the distributive law, and

(ab)ec = af(be)
(1.3)

A(ab) = alAb) = (Aa)b, X\ : complex number
i.e., the mssociative law for every tripnlet a, b.c of
elements of ud— . According to this definition we cen
freely add end multiply the elements of an algebra and we
cen also multinly them by complex numbers. In genersl, the
multi'nlication is non-commutative.

If ‘_A denotes en algebra, a subset .)4, is called
subalpebra, if it is a complex linear subspace of \/4 and
if it is multinlicatively closed, i.e., from a.foe\)do it
follows ab € \Ao . If we have some subalgebras, then their
intersection is a subalgebra again. This simple proverty
is often used as follows: If N s any subset of 94 , then
we cell the intersection of all such subalpebras of gA

which contain the subset N , the subslgebra generated by N
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The aleebra generated by N consists of all those elements,

which can be obtasined from the elements of N by reneated

addition, multinlication and multiplication by complex numbers.
Let us now consider two algebras v4 and B « A map T

from \A. into B is called & homomorphism, if it

"conserves" the algebreic composition rules, i.e., if and

only if

r(Aa+pb) = A T(a) + pT(h)
T(ab) T(a) - T(b)
is valid. The set 7 («d) of sll pictures of elements of 94

(1.4)

under T 1is a subalgebra of B . T 1is called homomor=
phism onto B , 1if ’r(J)'B . If it happens that

() = T(A) | then we clesrly have T(®,= A.)=0 | The get
(1.5) J - {ind : r(a):of

is called the kernel of the homomorphism. Using (1.4) one
finds the following nronerties of the kernel: (i) it is =
complex linear subsnace of ._‘4 and (ii) it contains with
an element &, every element aa@, and a,a with erbitrary

qevd . A subset of an alpebra, satisfying (i) and (ii)
above, is ceslled an (two-sided) idesl. One finds that the
intersection of a collection of idesls‘is again an ideal.
Hence, as in the case of subalgebras, we may spesak of the
idesl generated by some subset of g}4 .

If ") is en idesl of Vd » then there exists a

homomornhism T onto an algpebre B such, that the kernel
of 7 coincides with the given ideal j . Ve see this

from & construction that imitiates the construction of
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factor prouns in eroun theory: Let us write @, 2 &, for two
elements of \A if end only if a-o,e€ 3 . In virtue of
the nronerties (i) and (ii) of ideals, this identification
of elements (or, equivelently, partitition in classes modulo

j ) indeed gives us a new slgebrs, the factor elgebra

modulo j , for which the symbr1: \A/J is reserved.

Let us add some terminology. If the kernel of a homomorphism
consists of zero only, the homomornhism is said to be en
isomornhism. Two algebras J and B are called isomorphig,
if there is an isomornhism from -..4 onto 6 . The name
automornhism of ..A is reserved for isomornhisms from the

alpebra 04 onto itself.

The first anppearence of an algebra in quentum theory
coincides with the berinning of the modern quantum theory.
Heisenberg, in orooosing his famous canonical commutation
relation pg -§p = +/¥% , did not think of the observables
P 3 to be some infinite matrices or onerators in Hilbert
space. The nossibility to reoresent f) and q in such a
way was reaslised a little bit later. (Following M. Born,
Jéisenberg, at the moment of his great discovery, was not
eware of the mathematical existence of such objects.) In this
snirit we may think of an algebra as generated by the obser=
vables of a certain physicel system and later on represent
this alrebra as sn elpebra of overators. At the time. of the
foundation of quantum physics it was not known how to connect

the algebraic technique with the powerful methods of analysis



and tonologv. Therefore, the influence of this line of
thinking was not so strong. Even to-day it seems that there
are more question onen than solved!

After these side-remarks we shall introduce & further
alpebraic structure. The very origin of it may be the fact
that we measure real quantities and thus in our mathemstical
formalism we need some device to distinguish real from comnlex
numbers, real from complex functions, hermitian matrices
end oneretors from arbitrary ones. This requirement is met
by involutions.

Let \14 be an algebra. An involution in \/4 is an anti=
linear map from uld onto \14

(2.1) aed — oy
satisfying + =
(Ra+pub)” = lo**‘/: b* (entilinearity)
(2.2) (CL*)* = a
( o} b)* = b* 0.*
Now a *-algebra is en algebra, in which an involution is
distinguished.

It is a matter of routine to define a *—homomor‘nhism

as an homomorphism of one *—alpebra Jd- into another one

satisfving ’z'(q*)_-. t(q)’. Similarly we speak of 1u'—isomor‘r)lflism.‘:.
*

*—automornhi sms, -subalgebras,...

»*

1f N is a subset of a -8lgebra, we write
. *
(2.%) N* {aeud Da eNf

N is called symmetric in the case N = N®. as &n exemnle,
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the kernel of every *_ homomorphism is & symmetric ideal. On

the other hend, the factor algebrs J/'J is again in &

natural way a *—alpebra for every symmetric ideal :’ of ud .
An element & of JA is said to be hermitian, if a.s=a’ .

If we are able to internret yA‘ as an algebra of observables,

then we should consider its her..itian elements as observables

or at lesst require hermiticity as & neccessary condition for

observables. The hermitien elements form a real linear space.
An element @ of s ‘Lelgebra is called positive, if it

can be written as 8 finite sum of the form

(2.4) a = Z,C%: qj ) a; € J4

One writes b, > by iff b,-b, 1is a positive element. It is

an imnortent cese, when b, > b, together with bl > 54

is only nossible if b, = b, . Then the real linear spsce of

hermitian elements becomes a semi-ordered one and the positive

elements form a prover cone. In the case we sre allewed to

interpret Q. &as an observable, & >0 meens the non-negativity

of a1l meesured values in whatever state the physical system

is.

Exampole 3.1.: A commutative algebra.

Let'7— be the nhase snece of a clessicasl system or, more
generally, eny local compact topological space. The points
of -7- corresnond to the pure states of the system and an
observable attaches to every such state a definite value, the

value of thie observeble in the given state. Demending that
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the observed values are not too different, if the considered
stetes are near neighbours, one msy restrict oneself to
observables that sre continuous functions. The set C(T)

of e11 continuous functions on T is of course an elgebra
with an involution given by the transition to the complex-
conjugate function. For non-compect T the algebra C(T)
conteins unbounded functions, growing arbitrary strongly.
Restrictions on the prowth of the functions will lesd to
subalcebras more anpropnriate for the ourposes of physics.

An important exesmnle of such an subalgebre is the algebra

CO(T that consists of all such functions f of C(T) y

which annroach zero if their argument apnroaches the "boundary"
of T .
Example %.7.: The Bohr algebra.
Our next exemple, the Bohr algebra P(X), yields, as above,
also a commutative *-al,o,ebra and is connected with the
theory of Bose-lock-snaces and Gaussian measures. Let X be
a real (!) Hilbert space (or pre-Hilbert-snace) with scalar
product <X,y > . Tet us first consider an arbitrary bounded
function X —p f(x‘) defined on X and let us define the
supremum norm
5.11 1en s sup /fcx)/

X xeX
Next we denote by P,(X, the set of all functions on X of

the form
4:<x‘cy'>
b
(3.2) x - Z&j é , finite sum, yg fx

"'nder the usual addition end multinlicstion and comnlex-

conjuration /3.(X) obviously is a *-alw_ebra.



8.

Then P(X) exactly consists of those functions f on X ,
which can be anproximated by functions of tyove (3.2) in the
norm (3.1). This means «F‘ P{X) iff for every ¢ >0 there
is one 7 ¢ /3, (X) with ” f -ﬁzx<t. The construction above
is easily peneralised to erbitrary real vector spaces. Under
the influence of Nelson, limm, Jaffe and many others slgebras
of this tyne have become an impnortant tool in constructive

and euclideen quentum field theory.

Remark: In the algebres C(T)' (:(T)'P(X) an element of one

of these alpebres is hermitian, iff it is, considered as a
function on T or X » @ real function. If it is nositive
in the sense of (2.4), this function will in addition be a

non-nerative one.

fixsmple 3.3.: The eslgebra of matrices.

Let us consider the set B,,l of 8l1 n®n-matrices. We can add
end multinly matrices and the transition to the hermitian
conjugate of a metrix defines an involution. Therefore it is
natural to consider B,n as & *alpebra. Its hermitian elements
coincides with the hermitien matrices. An element of the
X_aleebra B% is positive iff the matrix is a positive
semi-definite one, i.e. if the eigenvalues are non-negative.

Of course we can think of B,‘_ a8 of the set of ell linear
onrerators of e comnlex linear Hilbert spece of finite dimension
M . Note that for finite snin-lattice systems or for the

spin variables of some particle the interpretetion of algebras

of the type B,,\ as algebres of observables is straightforward.



Example 3.4.: B*- and C*-elgebras.

Most onroblems in quantum nhysics need a complex Hilbert space
’x y which is not finite dimensional. Let us denote by (s,
its scalar nroduct and write as usual HWEU=V(§,§) . Ifr o  is
8 lineer onerastor from X onto 2 y we define its norm

by
(3.2) Noll = suplofll = WER=4 , el

and denote by B(X) the set of all bounded onerstors, i.e.,
operators with llooll € ©° | Ag in example %.% B(X) turns out
to be a *—algebra, the involution of which is defined by
(Q\“"l) = (q"(,'fl) . The norm (3.2) has a very imnortent
proverty which is also shared by norms of tyoe (3.1) :

(3.3) fo* o f = fat®

Norms with this nroperty are called C*-norms .

A subalrebra gA of B(I) is said to be a B*-elr.rebra

or a "“concrete C*—algebra”, if it is closed under (3.2): If
Qj e g and & GB(X) with [ & -oza-ll—¥0 , then aed |
A’—al,v_ebr'a, *—isomornhic to a B‘—algebr‘a, is called =
C*-nlﬁebra. There is & vast literature on the theory of such
alpebres to which we csnnot pive nroner attention. We only
mention one basic result, that historicelly was the starting
noint of the theory of such alpebras: Gelfend and Neimark
discovered that the existence of a C*-norm and the closedness
of the alpebre with resnect to this norm is sufticient for a
®_aloebra to be *—isomorohic to a B*-alfzebra and hcnce to be a

C*-alpebra .
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Examnle 3.5.: op*-alfr,ebras.
Most of the physicel observebles and quentities like differential
eand field onerators cannot be represented with the help of
bounded onerastors. They are essentiaslly unbounded. One way out
of this is to look for functions of them that are bounded,
in order to fell back into the class of C*—algebras, which
behaves mathematically very well. The prize we have then to
pay are considerable calculation complications. Therefore it
seems to be a pood advice, to look for more genersl algebras
of onerators. let us shortly describe, how to do this.

We supnose D to be a dense linear submenifold of X .
An onerator is in f,(ﬂ) provided the following is true:
(i) the domain of definition of @& coincides with J ,
(11) <« mans ,b- into ,a' , a,,J 4 40- ,
(iii) a,* exists and its domain of definition contsins .D’ .
(iv) a* mans 03’ into ob’ y i.e., o.*a&s oa' .
In virtue of these conditions oto (03) becomes an algebra of
onerators. By definition denotes 0.’ the restriction of @
to o« . It results en involution & —» o’ in &(d) and
the aleebra £+ (3—) becomes a *-algebra.

Some pronerties of af’,(-b) are similer to that of B(x) .

*_au tomorphism ¥ of

One cean nrove, for example, that every

i,(ﬁ) is inner, i.e., there is & unitary operator W€ f.c('a')
with (@) =W oew ., If oF =¥ is a Hilbert space, one has
Finally we define:

An oo*-alfzebra is a *—subalgebra of an slgebra of+ (OD‘)

which conteins the identity element of I{(-b) .
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. . . +*
Let us remark that, unlike our procedure in defining B -algebras,

we do not require & closedness condition for op -algebras.

Exemnle 3.6.: Algebra of field operators
Alpebres of field operators are, if properly defined a la
Wightmen, a snecial sort of oo‘-alfzebras.

Given the components §‘("‘3; ---,i’o“\ of some reletivistic
quantum field, their action as operators in its Hilbert space
X is sunposed to be ss followe: There is & dense linear
submanifold ob- of X y» 8 space of test functions
{(1‘,...-.”'..) of Minkowski spece-time points ¥, ..., %m (Let us
here use for definiteness test-functions of the temnered
distributions of Schwartz) and a rule, according to which
we have to define field operators éa‘...i,‘(f) € I;('b') .
One assumes thet

(3) f - f‘-‘_,.,-m(f) is complex linear in f

(3J) f - (&, Q.:....:: s) defines & tempered

distribution for every vector § ¢ JJ
(3jj) there is 8 S®fF -meatrix J;j satisfying
2:_ fiw Ly = 5;;‘
such that we alwsys have
+ ~
@i,... ;“(P) s é J:.',d‘“ ‘{",1'.., o(".‘ dn §34 3‘“ (f )
with

A -
f (i) = £ O, %)

(The bar cdenotes the complex conjugate of a function.) The set

of all such oneratore, which may also be symbolically written

(3.4) § . f) - H-'."""'@u“*’ fun.ny dw . dx,

4

4541"(:

’
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generstes topether with the identity of f*(-U) an op*-algebra
J[f,,,...,QSj , the alpgebra of field operators of the

fields §4’“.'§J .

3.7.: Test-algebra for quentum fields
Our last exsmple is called ter. -slgebra for quentum fields

and it is connected with the re onstruction theorem of

Wightman: There exists a *—algebra R such that for every
field with components éa, pé'g satisfying (J3),(Jjj) end
+*

(jjj) from the above example one cen find a ™ -homomornhism

T from R onto \A(@ql*")ésj . The elements # of R

are cefined to be the formal finite sums

(%.5) f = Qe + Z Z_ f (finite sum)

Lol )
where € will be the identity of R , A & complex
number and f‘-'_“‘-“ = f:‘“i“(ﬁ‘“..-,&) with 4 sy ¢§ are test-
functions deoending on m space-time points X, ...y X, .
“ . . . U,

In (%.5) f;f,_,;% is calles the ((4)-ta) component of #
X e is called its Ot'h component, which is salso denoted by
f“ o . R is in & naturel way a complex linear space

in which we add two elements by adding componentwise their

comnonents. We introduce the 1nvolut1on by

¢ - le+Z L #

=t O '
(3.6) *
f

o b

(‘11""”4;) = Z I"‘ £l‘“k‘ fk x)
k
with the help of the metrices &g occumng in (jjj) of

example 3.6. Finally, we exolain the multinlication in R :

(3.7) (3@#) Kyioa ) = Z,s‘mtk 4oy k)r Im w1 X )
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which determines the (taj-ita) comnonent of ?@f ,

?.f ¢ R . Some work with pencil and paper will convince
one, that R 1is indeed a *—alpebra with respect to the above
definitions.
Let us now consider the alpebra of field operators

J[i,,..@;] and define for every fe R
.8 U = A1+ 3 P Fw)

where the syvmbols in the right-hend side are given in example
3.6 and 1 abbriviates the identity of JS;(JI). Then the
following statement is true:

(3.9) g - $¢4) . {feR

is a *—homomornhism from R onto 94[51,...,§‘j.

3+T.: Further examples...

In our sketchy introduction we have not mentioned or have
not given due attention to other important clssses of
*alpebres: algebras connected with the canonical commutation
end enticommutation rules, algebres of differentiel onerators,
groun algebras, W‘Lelgebras and so on... This richness should
not bother one, as it only indicates the importance of the
*;algebra structures which may be well compared with groun

structures.

We have alreedy seen how to associate heuristically to
certein *ialpebrps concents like "observable","field oneretor"
They have now to be compnlemented by the concent of "state"

end "exnectstion value”". We need the observebles to distinguish
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and to characterise states. One mey say that in & sense, which

becomes cleer laster on, observables and states as well as

field onerators and exnectation values sre dual objects to

one another. Given an observeble @ &and a state § of a

physicel system, we try to find the "expectation value 9(a)

of @ 1if the system is in the state ¢ ", that is, the

arithmetical mean of the observed values of @ 1in the state
S .

(4.1) a — gQ(a) +— 8

We sunplement this by the assumption, that there are "enough"

observables, so that eny two states Q,,S, can be separeted

q‘(o,)* €, (a) with an aopropriate chosen observsble < .

Being this true, we ere allowed to identify mathematically

states end their expectation values, i.e., we are allowed

to consider e state as a certain functional

(4.2) e a — § (o)

of 211 the observable s,

What kind of functional (4.2) will be identified with a
state? Well, the concent of state - (like that of observable)
is so rich in structure, that we should not dare to describe
this conceont in some completeness. One can only try to give
some general "necessary condition" for the functional (4.2)
and this condition creates s "mathematical concept of state".
The mentioned necessary requirements are rourshly described
es follows. Firstly, (4.2) should be linear in @ |, which

means that for any two observables & and b there should
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exist one obrervable called &+ b satisfying @(a+b)=3(a)+8Cb)
for all states. Secondly, the exnectation value of an observable
should be real-valued. Thirdly, 9(a) 20 if the meesured
values of o ere sunnosed to be non-negative in all states,
i.e., if we consider the obrervable to be a "positive" one.
Fourthly, we need a normalisation: For eny two states 8,
and %, it should never occur that S,(a) = A Q. ()
for all x and fixed A .

These requirements are easily fulfilled with the help of
a 1"-alp:etnr'a. (In bypessing we point to more general ways to
do this. On cen start with a general resl semiordered linear
soace to characterise observables or one starts with a more
reneral convex set to describe states.)

Let \A be a *.alpebra. A linear functional @ over \,4

is a map a-+8Ca) of v4 into the complex numbers with
Q(+b) = 8} + (k) , R(Ax) =AQ(X) | The functional is
called hermitien, iff Q(a™)= TC(X) is fulrfilled for all
> € uA « It is celled positive, iff we have S(a) >0
for a1l positive elements & of lA .
The positive functionals are essentially those we are looking
for with the excention of normalisation. Let us now assume
that there is an identity element e in 94 . Then we
define: A state of»d is a positive linear functional 1
satisfying Q(e)= 149 .

Ir 9 is a notitive linear functional, then

<o, b> =z ?(Q*L) fFives us a positive semidefinite scalar
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product over uA- . Hence the inequality (Bunjakovski, Csauchy,
Schwartz,etc. inequsality)

(4.3) |g(o.*b)|" ¢ 3(a'a) .3(b'b)

ijs valid. Here we mention only one application. If § is a
state, then (4.3) gives with b= € the inequality

Q(o.‘u) > | 9(00"' . Therefore we may define the "uncertainty"”
of & 1in the state § by

(4.4) Al a) = Y 3ata) = 18T

which in some ceses is also called "fluctuation", “dispersion”

or "root-meen-squere deviation".... For two hermitian elements
o,b of 4 =& small celculation using (4.3) yields the
"uncertainty relation"”

(4.5) A (8, a) - A(3.b) 3 %lg(qb-bg)ll

which is in the cese of canonicel commutation reletion a
vereion of the Heisenberg uncertsinty relation.

The set of all staetes of a *—algebre may be called its
state snece. tiven some states 94,9, 1.-)FSwm 8nd some positive
numbers Py, Pyi-1 Pu satisfying X Pi' =214 , we get a new state
by setting § = J RS ¢ is called a mixture (a la Gibbs)
of the states §; with weights P; . This simple fact is
also exnressed by saying "the state space is a convex set"

and by calling $ & "convex linear combination of the §. ".

A state is called pure or extremal if every mixture $= ZPJ' %5

with positive weights is trivial, i.e., implies ¢ ; = < for
all < .
Let ue now have & look at our exemples. If ¢ is a

positive linear functional over C. (T) , then there exists
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by the Riesz renresentation theorem a messure /4. over T
with

(4.6) $(a) = s a(x) dp

Though for non-compact TT we have no identity in C,(T),
one can normalise § demanding T to have unity volume
with respect to the measure f . Hence 9 1is called a state
iff

(4.7) 4 = fdp

T

This fits very well in our picture: Interpreting T to be
the phase space of a classical system, the states of C:(T)
are in one-to-one correspondence to the probability distribu=
tions over T , i.e., to the mixed stetes of the system.
Furthermore, the pure states are given by Dirac measures on
T : For every pure state €& there is one points » of
the phase space T with &(a)= a(x) and vice versa.

The algebra C(T) admits not so much states: They are also
given by (4.6) but with the subsidiary condition that Y s

ie concentrated on 8 compact subset of T , because &n
arbitrary finite measure on T may have infinite expecta=
tion values for some unbounded functions.
As a rule, properly chosen commutative *—algebree are good
for describing classical systems, especially in statistical
mechanics.

Exanple 3.2 reduces in nrinciple to that of 3.1 by an imnortant
theorem due to Gelfand, which provides us with a *—ieomornhism

onto a certsin algebra C(T) However, the space T
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occuring here, is terribly complicated and cannot be given
in explicitly enouph terms. Let us mention only one classs of
states: If < {,12) is a nositive definite (or semidefinite)
quadratic form defined on the real Hilbert snace X , then
there exists a state € over F(X) which fulfills

(4.8) g(q)aexp{-i@‘.n)} with a(f)-= exp {£<§.~!>}

and which is called a "Gaussian functional of P(X)" .

Let us now consider the examples 3.3 and 3.4 , starting
with B(X) . Let d be a density operator of z y leoe.
a nositive hermitian operator with trace one. Then
(4.9) e : 8(x) « trad
is a state over B(X) - Hence some states correspond uniquely
to the density operators and these states are called normal
ones. If I is finite dimensional, every state is normal,
but otherwise there exists in addition a large set of the so-
called singular states. The later have expectation value zero
for every finite dimensional projection onerastor. A general
state is & mixture of @ normal and a singular one.

Further, if §e¢ ¥ is a normalised vector, (§,§) =1 then
(4.10) ¢ : () = (i,ai)

is & pure state. Every normal pure state of B(X) is of the
form (4.10).

ILet us now shortly consider a B‘-algebra A which is in
B(X) and conteins the identity of B(X) . If then @ is &
state of B(X) » its restriction §  onto the elements of

gA cleerly yealds a state of \/4. .« One can show that
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every state of pd{ cen be obteined by this procedure.

There is not known a general way to obtain states of an
arbitrary ‘Lalpebra. For op*-alpebras one always can find a
lot of states having a reoresentation like (4.9). Though
the problem of finding and describing states is much more
difficult in the unbounded case, it is encourasgine to find slso
some simplifications. Indeed, for some choices of the domain
ov in the definition of I.* (3) in exemple 3.5 the *—alnebr‘a
I;bO?has only states which are given by density onerators
end its pure states are completely given by (4.10) with
§6 J . To construct such & domain oD_ we take a self-
ed joint onerator @ with a discrete spectrum A, ,AL.-u
satisfying Z A;m < oo for & netural number wm . Then
T= N Jﬂ , ab:“ being the domain of definition of o« .

Whaet asbout the test algebra R ?TIf ~«x is a *-homomor=
ohism of R  into Ja and if 8  is a state of A ,
then Q(m):= g°(-r(u)) , AE R defines a state of R . Due to
its "universal character", R should ellow extremely many
states, though the known results in this direction are not
80 easy to obtain e&nd yet not sufficiently strong for the

nurnoses of physics.

Un to now we have introduced states end their mixing and

we ere poing to pgive attention to the supernosition of

1

states. To do this, we consider renresentations of -algebras,
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i.e., we look for possibilities to realise a *-algebra as an

elpebra of oneretors.

A *—renresentation of a *—alpebra \.4 is = *-homomornhism

T 1into an algebrs £¢ (J) . aD‘ sometimes is called domain

of definition of 9 and the Hilbert space x , in which J

is & dense menifold, is said to be the representation space

of T . For every fed (€.8)=1  the functional
(5.%) Qg (o) = (6,2 €) | aed

is a8 state of \A end this is described by sasying that §

L]

is a vector state of the reoresentation o .

The quertion arises whether we can renresent every state as

8 vector ctete. Yes, we can. One can even construct a *—repre=
. A £
sentation T of ~A 1n such a way, that every state of
A

\A is represented as a vector state of < . These
renresentations are, however, often too highly "discontinuous".

We are now able to define transition probabilities. Given

two states 91 and ?a. of 94 , we define P!.S , the
1Y

transition probability from 94 to ?,_ to be the suopremum

of el1l1 numbers ‘( E.'q)ll , where §, " run over all such
pairs of vectors of all *—representations T of ‘)4 , for
which ()= (§ 2 §) ana 3, (@)= (q,2(0)n).

Clearly,

(5.2) Ps..st = R

Examples:

£ =
) 05 BLg €1, Rg =1

u‘«

1) The transition probability of two different pure states of

&

a commutative -alpebre is always zero. (There is no super=

position in classical mechenics!) 2) Take §,1l¢3 andu‘et;('b)
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and denote by 9! , S the associated vector states (5.1) of
I¢(¢D). Then one heas Pgi'g.zalcg.”l)"' if (§E)=(qm)e1 .
3) Let g, 8, be two normal states of B(X) with density
onerators d, ,d‘_ . It follows Pg”gl= tf. d:,‘d:/l .
We finish our short excursus to *—renresentations with the
femous GNS-construction (after Gelfand, Naimark, Segal). Let
T be a *—homomorohism of \)4 into oC+ (’J) and let us
choose a vector §°€ & . Define ‘bo to be the set of vectors
§ , which cen be realised as §=%¥(a) §_ , XE U‘( . Sunpose
that \A hes an identity, so that €.e ’Uo' If abo -_-aD' y We
call §° cyclic vector of 7T .
Let us now assume §° to be cyclic, (§°.§°)=4 and denote by
S the vector functionel associated with E. by 5.1 .
Sunnnse now 7' to be another 1‘-r'em“esentation of xA into
an algebra x..(-b'l). Sunvose further, that the vector f:
is cyclic for 2’ and that the vector functional associateu
with §° equals ?° . Then T and ’C” are equivalent
renresentations in the following sense. Let us choose f(— I .
There is a,GkA with §= T(a) §°. Define W é = §' with
§'= 'r'(cn.) fo - Then W is well defined, maps J isometricals=
1y onto ;b" and fulfills w¥(&) = (U . ( W induces
a *-isomorphism from I‘(D) onto £+ (J') with ©'= T, T )
The considerations above show that a stnte g, uniquely

*

defines, un to equivalence, & -renresentation 9 with the
cyclic vector E‘ and 9“«)'(?.,‘!’(‘)&). The usuel wey to

construct this representation is as follows. Define

(5.3) 2={L€J:?°(ab):o qﬂa.ecAf
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3 is a subalpebra of ud with the property abe 2’ if

only Le} and & GJ . Because of this prooerty, is
called a left ideal. Defining f‘:ao-) so that tq. a f.,
is the seme 88 &'~ ¢ 2 , we get

5.4)

( §¢4 ¢ §Q. = fq_oc.‘. ' X g‘l * EAOI.

The set of all "classes modulo : " §“ is, according to (5.4),

a complex linear vector snace J . The scalar product

+
(5.5) < E.a' fa.> = $.Calal)
is uniquel_v defined and nositive definite on J . The GNS-
representation U given by §, now reads
(5.6) & — P(a) with (a) f,‘, = 5“", ,
end one easily checks that (5.6) is a ®_representation of .,4
into £+(ﬁ). The cyclic vector is given by it , € being
the identity of ..A . All vector states of the GNS-represen=

tation given by @, are obtained by the ensatz
(5.7 gca) = g,(bab)/g,(f'b) vith bed , b¢ D,

let us now consider an example. In the Hilbert space x“ of

<
one-oarticle emplitudes ,(k) with scalar product
3
D, > d’k
(g = | Firgd) v
we have 8 real subspace X consisting of all real-valued

Y
functions f(k) . Consider the Bohr algebra ﬁ(X) and the

state $, defined as in (4.8) by

5.3 5,(eT) = ep{-tp} , PR fig)

with %G X . Carrying out the GNS-construction, denoting by
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£1° its cyclic vector and writing

(5.9) t(e‘?) eii(’)

we have

i §eg)
(5.10) <L, e‘§ ¥ 0.5 = exp{-g(;.g)f

This relation characterises the Bose-Fock space with vacuum

S), , one-particle space 3{, and free field operator

(5.11) @(%) = f§(2) 3(1’) 4K

Hence the result of the GNS-construction with the Gaussian
functional Q; over /3()() yields the Bose-Fock space in
the so-called "Q-space" reoresentation. Constructions of such
a kind have been used by Segal, Glimm, Jeffe, Nelson and others
in its approach to "constructive quantum field theory". One
has to find stetes over /3()() , different from the Gaussian
ones and satifying some rather natursl conditions to obtain
by the ONS-construction of such & functional quantum fields
"with interaction". To-day, thanks to the initiatins work

of the authors mentioned above, this nrogrem can be carried

through at least for some models in two snace-time dimensions.

6._Continuity

By the very nature of physical reessoning ani to come into
contact with enelytic methods one hes to perform limiting
nrocedures and to make continuity assumptions and considerea=
tions. In some ‘-aleebras, for example in C*-alpebras end the

nlqebras¢f*(jy), it is intrinsicelly prescribed already by
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their nlpebraic structure, how one has to handle correctly
continuity arsuments. In other ones, however, there is some
or even larre freedom, 8s in the case of test algebras. The
generel methods can be found in every book on topology. As to
the way of nresentation, we follow an idea of Treves.

In a riven comnlex linear spe .e ®( we consider seminorms,

which are resl-velued functions §-» 1(“ . §6 m with
(6.1 q({) 30, 9(2§) =IAlg(}) , q(g+n) < 9C8)+ (D

A set T of seminorms is called a topology (a "local convex"

one, to be more precise) if the following is true:

(i) If qe T end the seminorm Jo satisfies %Aﬁ)ﬁ}(g)
for 11 §€ W , then q.e W .

(ii) From ?,,q,e T it follows q,*?be T .

(iii) For every §#* O there is at least one g€ ¥ with ?(ﬁ)#o.
A toonology 3’ is generated by a set of seminorms {?,‘i )

if T is the smallest set of seminorms containing ell ?.(

end fulfilling (i) and (ii). We have to satisfy (iii) already

by the set {?.(i . If T can be generated by one single

seminorm 9 » then % is called a norm end T isos

norm tonology. In a C‘-alfzebra we have a C"-norm topology...

A subset I ¢ M is called closed with respect to 'f

(» ¥ -closed") iff from £ 4’- W there follows the existence
of a q,GT with g# 7[ for all E obeying ?(i - §°)<1.
W is celled dense in U , if there is no other closed
subset of then m itself, in which ’XZ is contained.
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We now consider two linear spaces m4 and ’ma, with
tonologies ’5: end /6; - Aman T from W, into
'Un,_ is called continuous, if for every q.‘_i ?: the seminorm
’4:"(1‘(;)118 in 'J:‘ . CBecause of pronerty (i) above it is
enough to show Aﬂ,'(f)’-‘h('(ﬁ} for a seminorm ¢, of Y .
Hence we can check continuity with the heln of a generating
system of seminorms of z; and of a:_ ]

The last noint of the general introduction is e rather
special concent. T is called barrelled, if every seminorm
§o » for which the set of all § satisfying 3. (§) 21 is
T-closed, is always contained in T .

A tonologicel *-algebra is a talgebra \A together with a

topolory T such, that with ?6 ’X' aleo the seminorms
(6.2) o #9(a") , a =+ q(ba) , a = g(ab)

are conteined in T for every ,ond « The continuity of
the maps 0.—00.*, asba, a-sab is then guarentied.

All this apnlies to every op*—algebra, which is by definition

conteined in an alrebrs £4.(‘3) To introduce the l.assner

tonoloey or uniform tonolosy 2:‘ of ud we first define

(6.3) () 13 sup ’( E' Q’Yl)'
?7‘ §ment
for every subset n of FJ . ’{2 is generated by all such

?n y which turn out to be seminorms, i.e., for which
for all & e uA we have ?n(u) < o

These tonolories work nicely because of the followine fects:
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'Y one cen recover the lLassner tonology of f* (fb’) purely
aleebraicelly, not ¥nowines anything sbout JT in advance.
2) Every closed 1*—subalgebra ua of ¢E+('b') ,for which J-X
. . . . R
is & Hilbert snace,will be equinped with its usual C -norm
3* . z” . *

tonolory by 0y i.e., 'd 18 generated by the C -norm.
%) Assuming \AAS "44 , Wwe get 1ir en obvious sense 3‘:‘—‘2 @L :
In roing tc smaller alpebras the tonology becomes "stronger".
4) In the situation just described let ~144 be berrelled with
resnect of T « Then T = TJ if the seminorms of

L ‘Aq l d&
ere considered only for elements of P
5) The cone of positive elements of ~£1 is normal with respnect
to 'qg , i.e., there is & senerating set of seminorms {q&}
with ?d(oL+b)>,<¥‘(0.)for all positive elements Ot,b of \)4 .

What is so importent concerning 4) and 5) is the following
. L

result of Schmiideen (which covers also the C -case):
Tet \;4 be a *-algebra with identity element and with a
tonoloecical structure z~ . If then \}4 is & barrelled

*-elgebra end if its cone of positive elements

4

tonolorical
is & normsl one, then there exists a bicontinuous *-isomorphism

A
onto &n on‘-a]pebre ud with topological structure TA .

4

As a rule, not every state of a *—-algebra (of observables,

field onerstors or test functions) hees some physical mesening,
is & "nhveical" state. The reason is thet in the definition

of states such important requirements as symmetry principles,
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positiveness of energy and mass spectra, causslity conditions,
continuity and anselyticity requirements and similar things
are not included. Therefore we have to select out of the
state space of the *Lalﬂebra in question the states satisfying
a piven set of subsidiary conditions. Generally snesakiner,
these conditions are "linear"ones: It is possible to define
e linear subspace W of hermitian linesr functionals of
the *;algebra with the property that a generel state fulfills
the desired requirements, if and only if the state is con=
tained in W . Because of this, one has only one non-linear
condition to setisfy, the positivity condition. In virtue of
this, one cen sometimes divide & complicates investigation
into two parts: the "linear bprosrem" or the construction of
“W as exnlicit as possible and the "non-linear program”
or the search for those solutions of the lineesr program
which are states. In the Wightmen frame, for instance, the
linear program consists in finding all Lorentz-invarisnt
distributions which fulfill the locality (Einstein ceusality)
and spectrality axioms and in exploring their nroperties.
This is elready an extremely complicated task, despite its
mentioned "linear character"!

let us mske one further concrete step to meet physicsel
demands. Tet \)4 be a *—alpebra and -r. be the Euclideen
or Minkowskian snace (or a lattice or even & general tovnolosi=

cal soace). A local structure in y‘d over .7~ is given

by associating to every open set CT of '7~ a *-snbnlpehrn
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V4(6’) of \,4 with the monotony property

7.0y AlG) < A4(0;) ir O, ¢ O,

We heve further to add & continuity requirement. Assuming
thet ‘}4 is & topologicsl ‘—elpebra and assuming that the
union of the open sets O:‘,O'“ .. of -T is equal to O— ,
the algebra pgenerated by the subrlgebras \_,4(0')' 3‘- 723,...
shoculd be dense in J(O") . 1 N s any subset of T
we meyv define \A(IV) to be the intersection of all algebras
A(0) with Ne O, 0 onen.

In statistical nhyrsics,- where T is an Euclidean sonace
or » lattice, one asks for a local structure with a,a,=@,a,
for all a‘QJ(OQ),atGJ»(Q) if 0, A0, is empty.

It is similsr with the algebra of field operators ¢4[§4.-~-.§SJ
which we inspect a bit closer. In this case | = M is the
Yinkowskian snace. The support Supp f of a test function
f. f("'“-“~"«\ of m space-time points is the smallest closed
subset N of M with the prooerty: From f(r;,‘..,x;‘)*o
it follows X‘JGN y ¥ 14-m . Now ‘A(U) is defined to
be the subalgebra of ‘A[{"“”';SJ generated by the identity
end all field oneretors éi,.-.i“(f) for which supp .f s O .
In the Bose case, to which we restrict ourselves, the fields
are as usual called locel fields, if o, a,=o &, for

e(j GUJ(O") whenever the space-time regions 04, 0,_ are
epace-like senarated. The same procedure holds for the test

alpebra R . For every fe R the smallest closed set of

space-time points containing the supports of &sll comoonents of
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f is celled suoport of «f anc is also written supp § .
The subaleebra, generated by all f with Su”:(sO" , O open,
is the building stone R(O') of the local structure of R .
Let us now consider the *-homomorohism T (ea.(3.9)) from
R onto an algebra of Bose field operators. Clearly, 0 4
mans R(O’) onto './4(0') and preserves the local structures.
Let us consider the kernel U of the homomornhism T . If
the sunports of f, and f:. are space-like separated, then
the commutator of the field onerators @(ﬂ) and @H") have
to vanish. Hence ﬁ@ ﬁ— fl‘&.f‘e D Because j is an idesl,
we consider the idesl jo , Fenerated by all such commutators
?10&_‘ \F‘G‘f.‘ with snace-like eenarsted sunports. It is j, ¢ ]

and ']. is called locslity ideal of R » One necessary

condition for a state € of R to become a state of an
alpebra of locel Bose fields is therefore §(£)=0 for all
{e J, . If we could use R/7J, instead of R in the
construction of fields, we satisfied sutomatically the
locality axiom. However, the structure of R/'Jo is not known.
We now combine local structures with symmetries. lLet \/4
be a ik-z-wlgebrﬁ with & local structure over T . A symmetry,
compatible with this locel structure (sometimes also called
"coverience system") consists of i) a groun /-' of *—auto=
morphism of ~A and 1ii) & proun homomorohism & — &

from r' into a transformation pgroun [’ of the spnace T
such that every €€ [ maps \)4(0') onto (& O') , where

& O' is the set of all space-time noints & x with xe O .
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A good example ie the test algebra R to see this
mechenism. Let P be the Poincaré& group and let us define
the action of € on an element f of R componentwise

by
(7.2) (6'4{.‘.““\(&...-.&.\ sz Fal®) P @ &_”u(e—n,-vv,sm)

Then the sunport of c’f is the transform of Supp f under &
end this shows the comnatibility of the symmetry with the
locel structure. (The matrices ﬁ} form a representation of
the Lorentz groun of finite dimension. In order to define

¥ _eutomorophisms by (7.2), they have to obey the relation

{- Koo Fou * 2:- Yeifinw )

Let us now consider a state § over R  with zero
exnectation values for the locelity ideal and sssume the
invarience of $  under M .

(7.3) Q(f)=g.(ef) o1 € r

In nerforming the GNS-construction with € , domain &
and cyclic vector Ll we arrive at a certain alpebra L,A

of locel field onerators with the local structure described
sbove. Now @ 1is inveriant and the uniqueness, up to equiva=
lence, of the "INS-construction comes into action: It guaren=
ties the existence of a unitary reonresentation of the
Poincaré group & - U(&), & ¢ r which lesves &)  invarient
and fulfills the comnetibility condition for the new algebra

u4 because of

da UG FUY UG = Eled), W@ Rae L
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Having reeched this stete of affairs, only the soectrality
oronerties remain open from the fundamentsl requirements

for a relativistic local Bose quantum field. These, however,
sre in the first instance requirements to the unitary
renresentation & —» U(§F) , restricted to the translational
subgroun of f; . If § is & four vector snd U(§) the

representative of the translation by § , we have to demand
y
(7.5) 5 (%) U(E)d it =0

for every absolute integrable function ? , the Fourier
transform § of which is vanishing on the closed forward
cone of momentum spece. This condition can be pulled back
to the test algebra R . Applying (7.4) one sees the equi=

valence of (7.5) with

(7.6) $(#)a.=0, (;...i,.u“' a1 ,(3’( t) Tp.;r..‘}{" fy-)d'

This cen be expressed in terms of § . Let us call :}n
the set of all such elements of R. for which every of
their comnonents ﬁ_ﬂ(fvanm\ fulfill the condition: If for

~
the Fourier transform eiw of f¥v~ we heve {L_(k‘,,qk") *0
kekue) Ntk bk,

then et least one of the four vectors k - )

my
is not in the closed forward cone. The zero component of #

as to be zero. This set }; is a left ideal and our L4

Fives & theory with spectrality condition by the GNS-construcs
tion, if 8§ vanishes for all elements of 9. .

The fact, that }o is a left idesl, has an interecting

consequence: Nenote by 9= Z-Fj Sj a mixture of states
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with positve weights. The vanishing of 8§ for the elements
of 2% implies the same for e£ll the states ?f .
Now we may summarise the statements about R : There
is ® lineer snace of functionals 9 such that Q@ is a
wWichtmen functionsl if it is a state and if it is in .
A is of the form m- anmnmg AW, contains the

invariant functionals, satisfying (7.3), a, and 77[3

contain the functionals, vanishing on 'J° and '30
respectively. This illustrates what was said at the beginning

of this section.
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