E2 - 8149

Свойства алгебр $\mathfrak{L}^+(\mathfrak{D})$

Рассматриваются свойства алгебры всех операторов, которые вместе со своими сопряженными операторами отображают в себе данное линейное подмножество гильбертового пространства. Каждый автоморфизм и каждая производная этой алгебры являются внутренними. Их можно определить алгебраическим образом.

Сообщение Объединенного института ядерных исследований Дубна, 1974

Uhlmann A.

E2 - 8149

Properties of the Algebras $\mathfrak{L}^+(\mathfrak{D})$

We consider properties of the algebra of all operators which together with its abjoints transform a given dense linear manifold of an Hilbert space into itself. This algebra admits inner *-automorphisms and derivations only and there is an algebraic characterisation of this algebra.

Communications of the Joint Institute for Nuclear Research.

Dubna, 1974

E2 - 8149

A.Uhlmann

PROPERTIES OF THE ALGEBRAS L + (D)

1. Definitions, results.

Let $\mathcal J$ be a dense linear submanifold of the Hilbert s_i ace $\mathcal X$. With $\mathcal L^+(\mathcal J)$ we denote the set of all such linear operators $\mathbf a$ from $\mathcal J$ into $\mathcal J$, $\mathbf a$ $\mathcal J$ $\mathbf s$ $\mathcal J$, for which $\mathcal J$ is in the domain of definition of $\mathbf a^*$ and $\mathbf a^*\mathcal J \mathbf s \mathcal J$. $\mathcal L^+(\mathcal J)$ is an algebra with respect of the ordinary addition and multiplication of operators. $\mathcal L^+(\mathcal J)$ becomes a *-algebra by the involution $\mathbf a \to \mathbf a^+$, where $\mathbf a^+$ is defined to be the restriction of $\mathbf a^*$ onto $\mathcal J$.

We shall prove the following theorems:

Theorem 1: Let τ be a *-isomorphism from $\mathcal{L}^{+}(\mathcal{J}_{i})$ onto $\mathcal{L}^{+}(\mathcal{J}_{i})$.

Then there exists a unitary map u from \mathcal{J}_{i} onto \mathcal{J}_{i} .

(1)
$$u \mathcal{D}_{1} = \mathcal{D}_{L}$$
 with

(2)
$$\gamma(\alpha) = u \alpha u^{-1} \quad \text{for all } \alpha \in \mathcal{L}^{\dagger}(\mathcal{D}).$$

Theorem 2: Every \leftarrow automorphism γ of $\mathcal{L}^+(\mathcal{D})$ is an inner one, i.e., there is a unitary element $u \in \mathcal{L}^+(\mathcal{D})$ with $\gamma(\alpha) = u \alpha u^{-1}$ for all $\alpha \in \mathcal{L}^+(\mathcal{D})$.

Theorem 2 is an obvious consequence of theorem 1. Note that these theorems suggest the existence of a "space-free" definition of f(D) (theorems 4 - 6).

Let us now remind that a derivation of f(D) is a linear map of f(D) into itself satisfying

(3)
$$\varphi(ab) = \varphi(a) b + a \varphi(b)$$
.

Theorem 3 (P.Kreger): Is φ a derivation of $\mathcal{L}^{+}(\mathcal{D})$, then there exists an element $x \in \mathcal{L}^{+}(\mathcal{D})$ with

$$\varphi(a) = xa - ax.$$

Hence every derivation is an inner one. [4]

One knows [2] that $\mathcal{L}'(\mathcal{U})$, where \mathcal{H} is a Hilbert space, is the von Neumann algebra of all bounded operators. Von Neumann has proved that every left ideal of this algebra is generated by a projection, i.e., an operator p with $p = p^4 = p^2$ (see for instance [3]). The technique of this proof also works in the more general case of the $\mathcal{L}^+(\mathcal{J})$ algebras. We now explain shortly, how one can use these techniques to characterise the algebras $\mathcal{L}^+(\mathcal{J})$ abstractly. Definition 1: Let \mathcal{A} be a *-algebra. \mathcal{A} is called an algebra with "property I" if and only if

- (i) every proper left ideal contains a minimal left ideal,
- (ii) every minimal left ideal is generated by a minimal projection, and
- (iii) every element of every subalgebra ., which contains an identity e, has a non-empty spectrum.

Let us `irst add some remarks. A projector p is minimal in \mathcal{A} iff $p \neq 0$ and $pq \neq qp$ implies pq = p for every projector q of \mathcal{A} . If \mathcal{A} , is an algebra with identity e, then the spectrum of one of its elements a is the set of all complex numbers λ such, that $(a - \lambda e_0)^{-1}$ does not exist in \mathcal{A} .

We now construct an example of a *-algebra with property I. Let \top be an index set (an abstract set) and assume to be associated to every $t \in \top$ an algebra $f^+(\mathcal{J}_t)$. Then the *-algebra

(5)
$$\prod_{t \in T} f'(D_t) = f'(D_t, t \in T)$$

consists of all functions $t \to x(t)$ defined on T with $x(t) \in \mathcal{L}^{+}(\mathcal{J}_{t})$ together with the composition laws $(x_{4} + x_{2})(t) = x_{4}(t) + x_{2}(t)$, $(x, x_{2})(t) = x_{4}(t) x_{4}(t)$, $(x^{+})(t) = x(t)^{+}$, $(\lambda x)(t) = \lambda x(t)$

This construction provides us with a -algebra.

Theorem 4: $f^{\dagger}(\delta, t \in T)$ satisfies property I.

Theorem 5: Let $\mathcal A$ be a *-algebra with property I. Then there exists up to *-isomorphisms one and only one algebra $\mathcal L^*(\mathcal J_{\boldsymbol \xi},\boldsymbol t\in T)$ and a *-isomorphism $\boldsymbol z$ of $\mathcal A$ into $\mathcal L^*(\mathcal J_{\boldsymbol \xi},\boldsymbol t\in T)$ which maps the set of all minimal projectors of $\mathcal A$ onto the set of all minimal projectors of $\mathcal L^*(\mathcal J_{\boldsymbol \xi},\boldsymbol t\in T)$.

<u>Definition 2:</u> A *-algebra is called a "type I_d algebra" if the following two conditions are fullfilled:

- 1) A has property I
- 2) Let τ be a *-isomorphism from \mathcal{A} into a *-algebra \mathcal{B} with property I. If τ maps the set of all minimal projectors of \mathcal{A} onto the set of all minimal projectors of \mathcal{B} , then τ maps \mathcal{A} onto \mathcal{B} .

Theorem 6: A *-algebra is a type I_d algebra if and only if it is *-isomorph to a certain algebra $\mathcal{L}^*(J_t, \iota \in T)$.

According to theorem 6 the centre of a type I_d algebra is a discrete one, i.e., it is generated by its own minimal projectors. Especially, a type I_d algebra, which is to an algebra of bounded operators isomorphic, is a W⁴-algebra with discrete centre.

2. Algebras with property I.

To prove the theorems we need some further insight in the considered class of algebras.

Theorem 7: For every *-algebra with property I the following statements are true:

- 1) If p is a minimal projector, then there exists a positive linear form f with
- (6) pap = f(a) p for all a e.A
 - 2) If A contains only one minimal projector p., then
 p. is the identity element of A and A is
 isomorphic to the algebra of complex numbers.

We beginn with the second assertion. For every non-zero a. A the left ideal Aa contains a minimal projector p. The case $A\alpha = 0$ can be excluded, because in this situation a and the zero form a left ideal, that has to contain a minimal projector and this is impossible. Now there is an element a' with a = a'p, and thus (a-a')p = 0. By the same reasoning $\alpha - \alpha' = b p_a$ and from $p_a^2 = p_a$ it follows $\alpha = \alpha'$. So we see $\alpha p_0 = \alpha$, $p_0 \alpha^{\frac{4}{3}} = \alpha^{\frac{4}{3}}$ for all $\alpha \in \mathcal{A}$ and p_0 is the identity of ${\cal A}$. For every ${\bf q} \in {\cal A}$ there should be a complex number λ such that $\alpha - \lambda P_0$ is not inversible. It follows $\alpha = \lambda p_0$ because otherwise $\mathcal{A}(\alpha - \lambda p_0) \rightarrow p_0$ wich contradicts the assumption that λ belongs to the spectrum of α . The second assertion of the theorem is now available and the first assertion becomes obvious: The subalgebra pAp = 4., where p is a minimal projector of A, has to satisfy property I too. In virtue of the minimality of p , no projector different from p is in A. . Therefore, A. is isomorphic to the algebra of complex numbers and pap = f(a)p with some number f(a). Clearly, f depends linearly on a and

 $pa^{\alpha}ap \cdot f \cdot p$ has to be a positive element of \mathcal{A} . Hence f is a positive linear form.

The property (6) is an essential characteristicum of minimal projectors for property I algebras. This shows

Theorem 8: Let \mathcal{A} be a *-algebra. Denote by $\mathcal{M}(\mathcal{A})$ the set of all such projectors p of \mathcal{A} for which (6) is fulfilled with a certain linear form f.

A has property I if and only if

implies $\alpha = 0$ in \mathcal{A} .

The proof proceeds in two steps. Firstly we need

Lemma 1: $\mathbf{W}(A)$ consists of minimal projectors of A.

From $\mathbf{p} = \mathbf{f}(\mathbf{a}) \mathbf{p}$ for all $\mathbf{a} \in A$ and $\mathbf{f}(\mathbf{b}^*\mathbf{b}) \neq \mathbf{0}$ we have

(7)
$$q = bpb^*/f(b^*b) \in \mathcal{M}(A)$$

(8)
$$d \propto d = \frac{k(P_{\psi}P)}{k(P_{\psi}P)} d .$$

We see this in the following way: $p \in \mathfrak{M}(\mathcal{A})$ and p = q = q implies f(q)p = p = q p = q for projectors q and thus p = q. Therefore $\mathfrak{M}(\mathcal{A})$ consists of minimal projectors only. The other part of the lemma is a straight-forward application of equ. (6).

We can now be sure that $\mathcal{M}(\mathcal{A})$ consists of all minimal projectors if \mathcal{A} has property I. In this case $\mathcal{A} = 2 \mathcal{A} p$ with a certain $p \in \mathcal{M}(\mathcal{A})$ for a given $a \neq 0$ and we get ba = p. Now $f(pba) \neq 0$ implies by positivity $f(b^a pb) \neq 0$ and we obtain $b^a pba b^a pba b^a b^a b \neq 0$. According to lemma 1 it is $a = \lambda b^a pb \in \mathcal{M}$ with some λ and a = a + 0. To prove the other part of the theorem 8 we choose an element $a \neq 0$ out of a given left ideal a = b. According to the assumption we can find a = b with a = b = 0. By (6)

one shows $f(\alpha) \neq 0$ and the positivity of f implies $\chi^{-1} = f(\alpha \alpha^{-1}) \neq 0$. Now $q = \lambda \alpha^{-1} = \alpha \alpha^{-1} = 0$ shows that g contains the minimal subideal Ag and theorem 8 is proved.

As a consequence of theorem 8, every *-algebra with property I is a reduced one [3].

Theorem 8 implies theorem 4 in virtue of Lemma 2: Let $\mathcal{A} = \mathcal{L}(\mathcal{J}_{t}, t \in \mathcal{T})$. For every $\S_{t} \in \mathcal{J}_{t}$, $\langle \S_{t}, \S_{t} \rangle = 1$ the element (px)(t') = 0, t + t' $(px)(t)\eta_{t} = \langle \S_{t}, \eta_{t} \rangle \S_{t}$, $\eta_{t} \in \mathcal{J}_{t}$

is a minimal projector and there are no other minimal projectors in \mathcal{A} .

Indeed, every projector q of A defines new projectors by $q(t) = q_t(t)$, $q_t(t') = 0$ for t + t'. q_t is smaller than q and if q was minimal and $q_t + 0$ then $q = q_t$. One sees that q_t projects \mathcal{D}_t onto a one-dimensional subspace of \mathcal{D}_t provided q_t is a minimal projector. On the other hand, every one-dimensional subspace of \mathcal{D}_t defines its projector and this projector is a minimal one.

Let us mention two further properties of $\mathcal{L}^*(\mathcal{J}_{t},t\in T)$. For every pair of projectors $p,q\in \mathcal{M}$ we distinguish two possibilities: Either they project into the same or in different \mathcal{J}_{t} . Let us denote by \mathcal{M}_{t} the set of all minimal projectors that are defined according to lemma 2 by the subspaces of \mathcal{J}_{t} . Then \mathcal{M}_{t} is the union of the \mathcal{M}_{t} , $t\in T$ and $\mathcal{M}_{t} \wedge \mathcal{M}_{t'}$ is empty for $t \neq t'$. One immediately sees that two projectors belong to the same \mathcal{M}_{t} if and only if there is an \mathbf{Q}_{t}

with paq+0. Of course, the later condition can be extended to an arbitrary property I algebra, the proof of this fact is evident.

Lemma 3: Let \mathcal{A} be a *algebra with property I. There is an index set T and a decomposition of $\mathcal{M}(\mathcal{A})$ in disjunct sets $\mathcal{M}_{t}(\mathcal{A})$, $t \in T$ such, that $q, p \in \mathcal{M}(\mathcal{A})$ belong to the same t if and only if there is an $a \in \mathcal{A}$ with $paq \neq 0$.

Now suppose $q b p \neq 0$ for $q p \in M_t(A)$. The element d = q b satisfies $d p d^2 = q b p b q = \lambda q$ and $\lambda \neq 0$, for A is reduced and $\lambda q = (q b p)(q b p)^*$. This gives

Lemma 4: $p,q \in M_{\ell}(A)$ if and only if there is a positive linear form f and an element $b \in A$ such, that equ. (7) and (8) are valid.

3. Representations.

Let:

be a *-representation of the *-algebra \mathcal{A} with domain of definition \mathcal{A}_{τ} . If $q \in \mathcal{M}(\mathcal{A})$ and $\tau(q) \neq 0$, then the functional q defined by $q = q = q(\alpha) q$ is a vector state of τ . Indeed, for $\Phi \in \mathcal{A}_{\tau}$ and $\Psi = \tau(q) \Phi + 0$ we have $\langle \Psi, \tau(\alpha) \Psi \rangle = q(\alpha) \langle \Psi, \Psi \rangle$. If now (7) and (8) is valid for the projector $p \in \mathcal{M}(\mathcal{A})$, we conclude $\tau(p) \neq 0$ and with f as defined by (6) we have $\langle \Psi, \tau(\alpha) \Psi \rangle = f(\alpha) \langle \Psi, \Psi \rangle$ with a vector $\Psi = \tau(p) \Psi$. Now $\tau(p)$ is a projector and hence

$$q(p)\langle \gamma, \gamma \rangle = \langle \gamma, \tau(p) \gamma \rangle \Rightarrow \frac{|\langle \gamma, \tau(p) \overline{\phi}_{o} \rangle|^{2}}{\langle \overline{\phi}_{o}, \overline{\phi}_{o} \rangle}$$

for all Φ . Setting Φ $= \Upsilon'$ we get $\P(P) = |(\Upsilon, \Upsilon')|^2 / (\Upsilon / \Upsilon')^2$ and the equality sign holds for $\Psi' = \tau(P) \Upsilon$.

Theorem 9: For any $P, \P \in \mathcal{M}(\mathcal{A})$ and

- (10) $p \propto p = f(\alpha)p$, $q \propto q = g(\alpha)q$, $\alpha \in \mathcal{A}$ every *-representation τ of \mathcal{A} with $\tau(p) \neq 0$ satisfies
- (11) $g(p) = f(q) = \sup_{x \in \mathcal{X}} \frac{|\langle \vec{T}, \vec{T}' \rangle|^2}{\langle \vec{T}, \vec{T} \rangle \langle \vec{T}', \vec{T}' \rangle}$ where the supremum runs over all $\vec{T}, \vec{T}' \in \mathcal{J}_{\tau}$ with the restriction

(12)
$$\tau(p) \vec{T} \cdot \vec{T}$$
 , $\tau(q) \vec{T}' = \vec{T}'$

We are now in the position to show theorem 5. Let \mathcal{A} be a *-algebra with property I. With T we denote the index set given by lemma 3. For every $\mathsf{t} \in \mathsf{T}$ we choose $\mathsf{P}_\mathsf{t} \in \mathsf{M}_\mathsf{t}(\mathcal{A})$ and define f_t by $\mathsf{P}_\mathsf{t} \propto \mathsf{P}_\mathsf{t} = \mathsf{f}_\mathsf{t}(\alpha) \, \mathsf{P}_\mathsf{t}$. Let us now perform the GNS-representation τ_t of \mathcal{A} determined by f_t with domain of definition \mathcal{J}_t and cyclic vector $\mathsf{f}_\mathsf{t} \in \mathcal{J}_\mathsf{t}$, $\mathsf{f}_\mathsf{t}(\alpha) = \langle \mathsf{f}_\mathsf{t}, \tau_\mathsf{t}(\alpha) \mathsf{f}_\mathsf{t} \rangle$. It is $\tau_\mathsf{t}(\mathsf{P}_\mathsf{t}) \mathsf{f}_\mathsf{t} = \mathsf{f}_\mathsf{t}$. If for some $\mathsf{f}_\mathsf{t} \in \mathcal{J}_\mathsf{t}$, we have $\tau_\mathsf{t}(\mathsf{P}_\mathsf{t}) \mathsf{f}_\mathsf{t} = \mathsf{f}_\mathsf{t}$, then $\tau_\mathsf{t}(\mathsf{P}_\mathsf{t}) \mathsf{f}_\mathsf{t} = \mathsf{f}_\mathsf{t}$. If for some $\mathsf{f}_\mathsf{t} \in \mathcal{J}_\mathsf{t}$ we have $\tau_\mathsf{t}(\mathsf{P}_\mathsf{t}) \mathsf{f}_\mathsf{t} = \mathsf{f}_\mathsf{t}$, then $\tau_\mathsf{t}(\mathsf{P}_\mathsf{t}) \mathsf{f}_\mathsf{t} = \tau_\mathsf{t}(\mathsf{P}\alpha) \mathsf{f}_\mathsf{t}$ and with the help of (6) we find $\mathsf{f}_\mathsf{t} = \mathsf{f}_\mathsf{t} = \mathsf{f}_\mathsf{t$

Hence the vectors (12) form one-dimensional spaces and equ. (12) is valid without performing the operation "sup"! We construct the direct sum τ of the representations τ_{ϵ} , $t \in T$, and the result is a *-isomorphism of \mathcal{A} into $\mathcal{L}'(\mathcal{S}_{\epsilon}, t \in T)$ with properties required by theorem 5. We consider now a second *-representation $\tilde{\tau}$ into $\mathcal{L}^+(\tilde{\mathcal{S}}_{\epsilon}, t \in T)$

We consider now a second *-representation $\tilde{\tau}$ into $\tilde{\mathcal{L}}(\mathcal{D}_{\xi}, \tilde{\tau}^{\xi})$ with the same properties. Then the one-dimensional subspaces of \mathcal{D}_{ξ} and $\tilde{\mathcal{D}}_{\xi}$ are given by $\tau_{\xi}(\hat{r}_{\xi})$ $\tilde{\mathcal{D}}_{\xi}$ and $\tilde{\tau}(\hat{r}_{\xi})$ $\tilde{\mathcal{D}}_{\xi}$ and there is a one-to-one correspandence

(13)
$$\widetilde{\tau}(\underline{P_t})\widetilde{A_t} \longleftrightarrow \tau(\underline{P_t})\Delta_t$$

As proved above, the transition probabilities between onedimensional subspaces remain unchanged by the mapping (13). Applying a theorem of Wigner [4] there is a unitary or antiunitary one-to-one mapping U_{ϵ} from \mathcal{D}_{ϵ} onto $\widetilde{\mathcal{D}}_{\epsilon}$ with (14) $\widetilde{\mathcal{T}}(P_{\epsilon})U_{\epsilon} = U_{\epsilon} \Upsilon(P_{\epsilon})$

Considering now with the help of (14) the validity of

 $\widetilde{\mathcal{T}}(\mathbf{q})\left\{\widetilde{\mathcal{T}}(\mathbf{a})\mathsf{u}_{\ell}-\mathsf{u}_{\ell}\,\mathcal{T}(\mathbf{a})\right\}\mathcal{T}(\mathbf{q}) = \left\{\widetilde{\mathcal{T}}\left(\mathbf{q}\,\mathbf{a}\,\mathbf{q}\right)\mathsf{u}_{\ell}-\mathsf{u}_{\ell}\,\mathcal{T}\left(\mathbf{q}\,\mathbf{a}\,\mathbf{q}\right)\right\} = 0$ for every minimal projector \mathbf{q} we get

(15)
$$u^{-1}\tilde{\chi}(\alpha)u = \chi(\alpha)$$
, $u = \Sigma u_{\epsilon}$

Applying this to id too, one proves linearity of u. By this way we have not only proved theorem 5 but also a generalisation of theorem 1. Indeed, let $\mathcal{A} = \mathcal{L}^{\dagger}(\mathcal{D}_{\epsilon}, \epsilon \epsilon T)$, τ the identic automorphism and $\tilde{\tau}$ a isomorphism onto $\mathcal{L}^{\dagger}(\widetilde{\mathcal{D}}_{\epsilon}, \epsilon \epsilon T)$. There is a unitary map u of the direct sum of all \mathcal{D}_{ϵ} which impliments $\tilde{\tau}$.

The last part of the proof of theorem 5 contains the following statement:

Theorem 10: Let τ be a *-isomorphism of $\mathcal{L}^{t}(\mathcal{J}_{t}, t \in T)$ onto $\mathcal{L}^{t}(\widetilde{\mathcal{J}}_{t'}, t' \in \widetilde{T})$. Then there exists a unitary map u from $\sum \mathcal{J}_{t'}, t \in T$ onto $\sum \widetilde{\mathcal{J}}_{t'}, t' \in \widetilde{T}$ and a map j from T onto \widetilde{T} with $u \mathcal{J}_{t'} = \widetilde{\mathcal{J}}_{j(t)}$

and

$$r(a) = u a u^{-1}$$
, $a \in L^{+}(J_{\epsilon}, t \in T)$.

Theorem 10 implies the theorems 1 and 2 and shows how to prove theorem 6: We have to consider an imbedding

 $A = L^*(X_{t_1}t \in T) \leq L$ with $\mathfrak{M}(A) = \mathfrak{M}(A)$.

Theorem 5 tells us, that we need to consider the case

only. Further, \mathcal{A} and \mathcal{L} have to be *-isomorph (theorem 5) and hence there is a *-isomorphism from \mathcal{L} onto \mathcal{A} , i.e., into \mathcal{L} that leaves stable the set of all minimal projectors as a whole. This *-isomorphism has therefore to be an *-automorphism and it follows \mathcal{L} : \mathcal{A} .

4. Proof of theorem 3.

Let φ be a derivation of $\mathcal{L}^*(\mathcal{S})$. Using an idea of P.Kräger we construct the element X of eq. (4) explicitely. For any two vectors ξ, η of \mathcal{S} we define $\mathcal{P}_{\xi, \eta}$ by

Now $\xi \to P_{\xi,\eta}$ is a linear map of ∞ into $\mathcal{L}'(\mathcal{D})$ and we have $\alpha P_{\xi,\eta} = P_{\alpha\xi,\eta}$ for all $\alpha \in \mathcal{L}'(\mathcal{D})$.

Now we define

 $x \eta = \varphi(\gamma_{\eta,\xi}) \xi$

and get a linear map $\eta \to r \gamma$ from $\mathcal J$ into $\mathcal J$. Now

is a map of \mathcal{D} into \mathcal{D} for every $\alpha \in \mathcal{L}^{\dagger}(\mathcal{D})$ and

$$\mathcal{P}_{A}(\alpha) \gamma = \mathcal{P}(P_{\alpha \gamma_{i} \xi}) \xi - \alpha \mathcal{P}(P_{\gamma_{i} \xi}) \xi = \left\{ \mathcal{P}(\alpha P_{\gamma_{i} \xi}) - \alpha \mathcal{P}(P_{\gamma_{i} \xi}) \right\} \xi$$
shows that

$$\varphi_1(\alpha) \eta = \varphi(\alpha) P_{\eta, \S} \S = \varphi(\alpha) \eta$$
.

Hence $\varphi_{i} = \varphi_{i}$, Substituting $\alpha = P_{\eta_{i}, \xi}$ we get $\langle \xi, x, \xi \rangle = 0$. Next we consider $\gamma(\alpha) = \gamma(\alpha^{*})^{*}$. γ is again a derivation and we construct as above $\gamma \gamma = \gamma(p_{\eta, \xi}^{*})^{*} \xi$ so that $\gamma(\alpha) = [\gamma, \alpha]$ and

$$\langle [y,\alpha]\eta_1,\eta_2\rangle = \langle \eta_1,[x,\alpha^*]\eta_2\rangle.$$

Choosing $\eta_{*} = \{ , \alpha = P_{\overline{\eta}, \{ \}} \}$ we obtain with $\{ \{ , x \} \} = \{ \{ , y, \{ \} \} = \emptyset \}$

$$\langle y \overline{\eta}, \eta_i \rangle = -\langle \overline{\eta}, x \eta_i \rangle$$
.

Now y maps \mathcal{J} into \mathcal{J} and $x^+ = -y$ so that $x, y \in \mathcal{L}^{\dagger}(\mathcal{J})$ and the theorem is proved.

Reference

- 1) P. Krüger, Ableitungen in $f'(\mathcal{J})$ preprint, Leipzig 1974.
- G. Lassner, Rep. Math. Phys. 3 (1972) 279;

Math.Nachr. 52 (1972) 161 .

- 3) M.A. Neumark, Normierte Algebren, Berlin 1959 .
- 4) Bargmann, Ann. Math. 59 (1954) 1.

Received by Publishing Department on July 25, 1974.