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SOME PROPERTIES OF THE FUTURE TUEE
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In the following we conslider some properties of the (open)
future tube T s which are connected with the conformal
group. Indeed, the orthochroneous conformal group is isomornh
to the group of all analytic automorphism of the future

tube /1’2/. The equivalence of T to a certain bounded
symnetric domain of C'“’)that_was examined by

E. Cartan’/>’ is vety simular to that of L. Siegel's 7/
seneralized "unite circle" and "upper half plane'" of complex
dimension 3 . With the help of the large group of T

it is straight_forward to construct the Bergman kernel/s/

of T using constructions described for instance in/6/.
This yields a class of Laplace-~Pourier transforms of

tempered distributions/7/ whicih form irreducible progective-
unitary representations of the conformal group, Independently
and with other methods this was done very recently in/8/
also. Finally, the minimal conformal invariant compactification

/9,1c/

of the Minkowski space may be described as the
Shilov boundary/ﬂ/of bounded realizations of T R
1. The Future Tube,
i : i Y
The future tube T is defined in as the set of all
complex “vectors" { 25272.2°f< & such, that {‘Ni‘gr{qas

is time~like and forward directed
' 2
Ty @) () -ED -Gy >0 (WD)
9° >0
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Let us use the 2-by-2-matrix B = (::) and the Pauli

matrices 6,4:5,, 63 in order to define for every complex
vector @ the matrix
Z = °F +p'4 +2%, t2’s (1.2)
- hg 3 2 °=y
It is
i \
(%7  irf ImZ >0 (13

‘where we have used
Y 2 = = (z-2%) (1.4)
Hence, T is equivalent to the domain
T. = {2Z: I Z >0] (1.5)
(We write Y >0 if-Y is positive definite.) We shall
call T:, "generalized upper half plane". Now we perform
a Cayley transformation -4 (1.6)
w = (Z-i€E)(Z2+iE)
If WwZ >0 then Det Z+0 and therefore (1.6) is
non-singular for 2 € Tg and $e may ask £or the domain
T, » which is the pictire of T, under (1.6). We get
T, = {W'- E-wlws>o} (1.7)
That domain may bve refered 8t as "generalized unite circle",
But (1:7) defines a E.Cartan type I domain and so we see,
that the future tube T is ecquivalent to the symmetric
irreducible bounded domain Tz. .
There are some useful relations in connection witk the different
realizations of the future tube., For every coumplex 4-vector

Z& we get with respect of *he transformations (1.2) and (1.6)

22 = Det Z =« Det (W+E)(w- E)~1
(d2)? = Det(dZ) - -4 D {E-w) " dw |

(1.8)

(1.9)
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To calculate functional @&x determinante we need the differentials

'\)‘a d?*a J%ﬂad%‘/\ J‘l" / \,'.."’JZ«"dZ“‘dZ“AJZQ (1.10)

1) :dW AdW, L"J J.Af‘dwll

which are related by

< . -4
- —,7,01‘ = & Det. (E-w) 1)2 (1.11)

For completeness we add the following: As the lowest
dimensional member of +the type I domains, the future
tube may also be represented as an E.,Cartan type IV domair:

Let be
Eo--g“...tt:-z, - ir--—{,‘ = A1

and define with the complex variables f,, 4z ©,...§ the sel
G= {t;: Tet =0, Tgl* 50
N
On (4 the expression “Jau fof, is always different
A
from zero and G decomposes into two domains according
to its sign. Let be
131G 3ntq 7 50}
. 4
If we now identify two points J¥;3 ana {¢;} if
and only if there is a t#o with {;3-(.-{-&' y we get

another representation =% T3 of the future tube,

Resumee : f The domains T, -‘-.1 ¢ Ta, T; are holomorphically
n(i.e.analytically) isomorph.

2. Analytic automorphisms of the futurec tube,

One calls holomorphic or analytic eutomorphism of a complex-
analytic domain :b every one-to-one mup from .& onto
eb which preserves the complex-analytic  structure of 2
The set of all analytic automorphisns Toruis a group denoted
by f'(oﬁ) y the connectecd component of the identity of

which should be called P(c%)
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Clearly, if two domains are hoiomorphically isomorph, then
their groups of holomorphic automorphisms are isomorph.

Now looking at E.Cartan 's work we can immediatly write down
the structure of all transformations of f‘( 7;.) , namely

W > Wa (AW+B)(GwWr D)7 (2.1)
with A B E o

Q g © —EXC)) (O E) (2.2)
o ML) 2> su(zeR) (2.3)

Ay
With respect of ['(T.) the group ["€Ta ) is composed of two
cosets. An automorphism not connected to the identity is

given by -q
w = (Pt W) w (2.4)

which really is a linear transformation,
Returning to T4 by (1.6),' the equivalent transformatéons
of T,, read

Z->7'- (0(2‘“/3)(1’7—*;) - (2.5)

(a; sis) (—Oei 7 J) ( (2-e)

The transformation (2.4) "commutes" with (1.6) and is hence

with

equivalent to

7 > (pet.2) 2 (2.7)
in 7:' o The explicit transition from 7:, to | is a
bit invclved, We see however from (2,5) that
Det@2) >  Delfi2’) = - Det(d2) (2.8)

Ay > A= Ry

Therefore, (1.9) tells us, that r (T) consists of

(2.9)
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conformal transformations only, Counting the 15 parameters
we therefore see, that P(T) and hence F (Z;), F(E)
are isomorph to the connectes component of the identity of
the conformal group. For instance, the tran _sformation
2°y - 2° (2.2)“’ ; 2V > + 2% (2-3)"1 R AL TIYE
is equivalent with
7 > — z™" “ T,
w. . —> — W N
Finally, the map (2.4) is expPessed in T as
2°> 2 27> -27 REE A

i.e, it is a space reflection.

The space-time reflection on the other hand

Reaf 24 —> — Real 2’ PR LNV N 5 (2.10)

is expressed as * . T
Z 9 — Z g
and as

W —> W” "an .T;

These are "antiholomorphic"automorphisms,
3, A Cauchy-like formula.

Let us define with some vector 2, = {8:3 e T the group

F(T2) = feel @) : 27=2.7 @0

i.e. the set of all holomorphic autororphisms leaving
invariant the vector g¢ . Because F(T) acts transitively,
the group structure of (3.1) does not depend on the choice of

the vector #¢ .

Lemma 1 r (T‘%.) is isomorph to

U (2) @‘My ,
U4
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For the proof we choose Z.,-{C. o, °c°§ o This vecfor
correspond to the matrix W = O , Now the corresponding

stability group P(E,O) consists of the transformations
W > U WUy J U,, U, unitary (3.2)

which may be seen directly from (2.1) and (2.2).
Corollary 1; r' (T-, 2) is a maximal compact subgroup

of r' (T)

Corollary 2: The centre of l"(772) is a one-dimensional

compact group.

Lemma 2: With 2¢€¢ [ 1let us denote by €(s) , 0s S ¥
the centre of. P(Tazo) with canonical parameter §
and primitive period 2T
Then for every holomorphic in T  function {(!)

we have 'y

)
“’(é.\ - 2% 5.1((*“ )'“ (3.3)
]

for every }eT °

Proof; Ve show lemma 2 by proving it for o, = [ ¢, o,o,.}
and going to 7: o In 7; we have to establish the

117
z [3(Tw)ay

formula

9(0) =

for every holomorphic in 7; function, But with respect

(3.8

of W =0 the domain -E is a Reinhardt domain.. Hence

in L_ we have a compact convergent sery
o

g(w) - Z jz (w) (3.5)

J.SQ
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With homogeneous polynominals 3,, of degree V¥ in

the matrix elements of wW o From this (3.4) follows,

4, Some Hilbert spaces of analytic functions
Let us consider the matrix
E— WiWw
Using a transformation W -» w' af l"(7;) given by
(2.1) and (2.2) we get

E-wrw, = (WD) (E-w "w/) (W eD)  (un)

Let us denote by dV- the euklidian volume element.

From the equation above it is easily to be seen, that
-y
w = Dt (E-W*rw) 7 dv (4.2)

is invarint under the transformations of /7(7;). Because
of the transitivity of this group the invariant volume element

is unique up to a normalization factor and hence
) -4
k (w, w) = Det. (E'W W) (4.3)
is the Bergman kernel of 7;_ 0
More generally let us define for real § and measurable
functions on 7;_ the norm

Ceny - TS 140 K ww) e s

£ 4

L (L) - { 4 04l <= ] (5.5)

can be considered in an obvious way as Hilbert space,

The set

In this Hilbert space we construct a projective unitary
representation (representation withmultipliers)of tne

conformal group; For €€ p(T:.) we define

Bo(ew) = £ f Det (Cw+D)} ™ (1.6
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fixing the phase & in such a way that 9‘ is positive
real for W = O ., Because of the transformation

properties of functional determinants the map

{ - ‘f" B, (e, w) =U ¢ (4.7)

is a unitary one in fg(";) and
e - YooY , e (7 ) (4.8)

is the desired projective unitary representation of /7(7;)
(that gives a unitary representation for 2s = integer).

Now according to the general theory

L () (4.9)

the subspace of Ig (Tt.)Of holomorphic in 1;_ functions,
is a closed subspace of is (E) o Let us dendte by

7s
the projection operator from fs”:)onto XS (IJ o Let

us define the kerrel of the projection operator:

( -3
) = kS(W,W,.-) K(ww) 4(w) @ (4.10)
(T £)(wa) 2 {

Because the subspace (%,9) is invariant with respect of the

unitary operators (4.7), we have
. - . —————
ks(w‘, w,) - !(; CARAS 93(6;‘”4)‘9, (e, w,) (4,11)

Furthermore, for every complete orthorormal systems of (4.9)

we get the compact convergenti serv

ks(w,.w,_) = %: ﬁv(wa) 39(W4)

(4.12)

Next, in the subspace (4.§) of helonorphic functions the
functional {. -)‘(0) is continuou:. and hence there is an
element 30 of XS(R with (. 533 - %(0)
uniquely defined, Because 30 is invariant under all

transformations (3,2) it nmust ve a ccenstant,



Inserting this into (4.12) by using %« Qs the first element

of a complete orthonormal sery we get

K, (wio) = 1,17 (#.13)

Again by transitivity (4.13) and (%.1%) Jetermines the

kernel kS uniquely and because of (4,1) there is no other

possibility than

2 ) - ks
K (waw,) = 1% Det (E-wi'w,) (1)

LY )
Now there are two possibilities; Either as(T;.) consists
of the zero only, i,.e, it is trivial, Then the constant

3, has to be zero. Or 3° =0 and we have & non-trivial
progective representation of the conformzl group by analytic
functions on the future tube., Now from the definition of 70

we have 2
9. = (3o 3:) 5 = 0 9.1,
and therefore

278
%‘ = 3 C
with -
o Vet mw) w
s = = K ' (4.15)

Lemma 3; xs(n)is noi.-svrivial ii end only if
B8 < <

Next, because of (4,12) and (4.14) we obtain

Lemma 4:;  For every 4 € XS(T;) we have the inequality

- % =23
‘ {KW)\ < H{"s 'b"(S) Ded (E-WW) (%4.,16)
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Remark:

If we return to -T. » the inequality (4.16) has to be replaced

i
by . (q1+ P&+ (P°)z-f'4) 3
| %(2)‘ < (rl)IS (4.,17)

with & = (714'? and some constant o .
The inequalities just derived may be expressed as relations

between different norms. Let us introduce the norm
x 23
14]. - ;ur!.,g(\.,) det CE-w'w)™* [ (410
) WeT,

We see from (4.4)

” {”sﬁ,, « 1{ls W i "Hs “3.:‘)"“; (4.19)

Thus we obtain with the help of the obvious inequality
'{4 “lls‘,.;; = I ‘£4,3_‘ ) ’42. 'S,_ (4.20)

Lemma 5: The set

R(TY = U X (T) (.21

is an algebra with respect of ordinary multiplication
and an holomorphic in ‘7; function n{ is contained
in it if and only if for one § the norm "fls

is a finite one,

With the aid of the relation

i/{'. ( Z4 - Z:) =(/EW.)-'(/E- Mn{')(f_%xj"’ (4.22)

one can translate the results of thic section *o the

generalized upper half plane,

5. The closurc of Minkowski space,
The fact, that conformal transformaiions in liinkowski cpace

are usually singular at scme light cone can be interpreted

as following: Some points at ~ufinitly are missing,
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Indeed, the Minkowski space M may be considered as the
part  “dam Z =0 of the boundary of T,, and only the

group consisting of Poincar®& transformations and dilatations
/ ] *
Mgy={2-2"= AZA tH , H=H"}

remains regular on 3’*«2 =0 , Now wnder the transformation
(1.6) the iiinkowski space becomes isomorphic to a part of

the set E"'W*W=O :
M~ {uw: wu=g , det.(u-e)40f

Hence M is isomorph to a subset of the Shilov boundary
()= {w: WW*"Ef (5.3)
of 7;_ and vie use the maps (1.6) and (1.2) to define
/‘7 y the closure of M y tOo be isomorph to the
Shilov beundary (5.3) of 7; . /‘7 is a compact mani=
fold. The group r'(7;) acts fcgularly on (5.3) and hence

the confommali group acts regularly on M o From the

explicit form of the transformations we see “hat

l-'/(7,,‘) ~ [o-c- (%) : E°=F} (5.4)

This meand that M ray be cdefingd equally well by the

right cosets

e

~ T,
M //"(7) (5.5)

/
with /_’(7') being the group (5.1) consicered an the
future tube 7 .

We see that the points at infinity of M are given by

M\ M ~ { U : uU = &, Det. (U-E)=o} (5.6)
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This set is the closure in fq of a light cone with
"origin® (A = E . Hence f"(‘r) is the group which
leaves fixed the origin of the light cone at infinity.
Topologically (5.6) is the three-~dimensional analogon of a
Klein's bottle, oneeuator of which is contracted to a point
(and this point is the origin of the cone). According to
(1.9) on (5.3) the Minkowskian metric is given by

2 i -2
ds® o - 4 Detf CU-£) T du} (5.7)
From (5.7) the singularity of the covariant Minkowskian
metric tensor is to be seen as well as the vanishing of its

%he contravariant components at the light cone at infinity.

Last not least ww shall indicate, how to proceed directly
with T, (or T ). To 4o this, we compactify G P in
a conform invariant way,

Let us consider all pairs (@"G;) of 2-by-2-matrices

with the subsidery condition

G,.* Q, + @,_* g, > 0© (5.8)

7
4
by the following identification

I 8/ : = Q!
(6.,8.)=(8, q/) irr Q=& A,DtAH (5.9
P: is a compactification of Ct” o One proves, that

X x
{(e,,e‘) . 6, 9,-0.Q,>0 § (5.10)

is a set of equivalence classes (5.9) and t.is set of P:

Define

is holomorphically isomorph to 7:, e« The isomorphism in

questifon is given by

2 = 8,09 (510>
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Because of the compactness of Ti:' ,» the Shilov boundary
of the imbedding in P; of 7, under (5.11) is defined
and we may perform the ¥ analysis above as well with this
imbedding. Especially, the conformal group acts regularly
on the whole closure of the imbedding of ], in P;‘ .
The pairs (O.,, &L‘ yield a linearization of all conformal
transformations, The more, the cofiformal group can now be
considered as the subgraup of F(P:) that leaves fixed
as a whole the domain (5,10),

It may ve interesting to note, that the complex Lorentz
transformations too can be considered as a subgroup of

P(P:) . This subgroup consists of the transformations
(Q,,,a,_\-)(AGﬂB&..), Det. A =Det, B 4 0 (5.12)
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