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O. Inroduction

A contemporary theory of physical systems with infinite many
degrees of freedom makes use of the notation of ¥ -aglgebra. In
this theory it is assumed that a * -algebra R 1s associsted
with the physical systeﬁ in question in such a way, that the
hermitien elements of R /or a suitable subset/ form the obser-
vebles of the physicel system. Further, the set /or a subset/ of
all positive and normed linear forms corresponds to the set of
states of the physical system. Assuming that R contains an
identity element e we call a linear form "normed”, iff

f(e) = 1 1s valid for the linesr form f . Because of the above
mentioned interpretation, a positive and normed linesr form of

R 1s called "state of R " . The state-space®” of R is defined
to be the set of all states of R,
As a subset of the formal dual of R the state-space of an
¥ _-algebra R is a convex one. The extremal elements of the state-
-space correspond to the "pure” states of the physical system, all
other states provide us with "mixed"” states. Hence, performing

convex linear combinations of states is equivalent to the operation
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of statistically mixing of states. However, this aspect of the
theory will not concern us in the following. Another most funda-
mental idea of quantum theory is that of superposition of states.
Originally, the superposition of stetes was assumed to be meaning-
full for pure states only. This restriction, however, shall not
bother us here : from the viewpoint of # -algebra approach it is
much more naturel to work with arbitrary states in realizing the
idea of superposition. Later on, the restriction to certein cals-
ses of pure states is possible and in many cases natural.

In the ¥ -algebra abproach the superposition principle is resali-
zed in just the same way as it was done by the founders of quan-
tum theory : We have to represent the ¥ _algebra as an algebra

of operators in a hilbert-space. The vectors of this hilbert-space
/possibly with some exceptions/ than correspond uniquely to some
elements of the state-space of R . Thie mechanism is the Justifi-

cation of the physical interest in representations of % _5]gebras.

1. % -representations

t.1 Let us denote by R a ®-algebre with identity element e .
A representation A consists of a hilbert-space HA , & dense
linear subminifold DA of HA and a prescription, that associs-

tes to every element a R one linear operstor Aa

a-——’Aa ,a1l aeR /1=1/

with
1/ the domein of definition D(A)) of A, equsls D,
11/ Ay D, s D, =&lways

111/ Aa + Ab = A
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tv/ for all complex numbers we have ‘.a = pAa

The representation 1s culled “"symmetric® or ® -representation®

ife
(x,ha y) =(Ag x.Yy) all xy eDy oy

or, equivalently

As < (AY) -

1.2. If A denotes a ‘-repreaentaftion, we define
VD x
™
D, = a &R D(Aa ) /1-4/
Then let be
~v 3 N
Aa, = restriction of (Aa:x) on DA /1=5/
It can be shown [3] :
~
a—> Aj

is a /not necessarilly symmetric !/ representation with domain
~

of definition DK = DA and representation space Hﬁ' = HA

which will be called 72 .

A may be characterised as the maximal extension of A within

HA having the property
(x, Aay)=(As %.¥) ; yeD, | xeDy

1.3. The closure Z of a "—representetion A 1is again a
¥ -representation. A is defined to be the restriction of T

on the domain

/1=3/

/1-6/

/N=1/



Dy = %er DAL

Another definition is the following :

/1-8/

A is the maximal symmetric extension of A within HA having

the property
~ ~
A=A /1-9/

D,

2. The A~topology on A

2.1, We introduce now an important topological structure [l] H

The set of seminorms

g, ) = Ry aeR

' /2.1/
induces in DA the structure of a locally convex linear space.
This topolegy we call “A-topology" .

With the help of /1-7/ one secs that D, may be defined as the

intersection of Hilbert-spaces which are given with the aid of

he scalar products

(xl ’ ) + Z (Ka.;x- ‘Za,d), finite sum.

Therefore, '3; is a complete topological space in the A-topclogy.
2,2. With the help of the A-topology we can formulate the fol-
lowing two statements :

DK is the A-closure of DA .

- ~ ~

A = A 1if eand only if DA is an A-dense set in DA .



3. Operators, gommuting with a % -representetion A

Js1. Denote by B a bounded operator of the hilbert-space HA .
According to [4] we call B "commuting with the * -representation
A", iff for all aéR end all x,ye DA

(A %, By) = (x, B Azvy) /3.7

The set of all bounded operators commuting with A will be

called
Com A

3.2. Com A 1is
a/ a linear manifold
b/ symmetric, i.e. with B also B® 1s contained in Com A

¢/ closed in the weak operator topology of B, .
3.3, B Com A if and only if
L d oo
B3 thsg Dk and B A x = A‘ B x
for all aé6 R and all x & DA .

3.4. We have ComA = Com A o
3.5. Let bo A = A . Then Com A 1s a von Neumann algebra.

Indeed, under the assumption esbove, the first condition of 3.3,
may be written B Qz-sinx where use wad made of 3.4. also.

The second condition of 3.3. becomes B A, x = Ay B x for ell

X € DK « Thus we see, that Com A is multiplicatively closed.
Thie, together with 3.7?., guaranties that Com A is a von Neumann
algebra.

The conclusion 3.5. was reached independently in [7] .

Remerk : if R 18 a dk -algebra [é] » than every operator Aa

is a bounded one and we have trivially Qx = 3; = HA and



the A-topology is the strong topology of l-lA o
Conclusion : If 2 =7 or, equivalently, if D, is A-dense
in ‘3; we can uniquely generalise concepts, usually defined for
representations of C. ~algebras only. Namely
a/ if Com A is a factor, then A 1is said to be primary.

/Note that then also the commutator of Com A 1is a factor.
b/ if Com A 1is of type I, II or IIT we call A & type I, II

or III representation.
3:6, Let us first remember of the following : B be a bounded
mep from one hilbert-space H into another one H’ . B™ 1is de-
fined to be the map from H’ into H satisfying (Bx,x') = (x,5%x’)
with x&« H and x* € H’ .
Now we consider a *-quresentation A and a bounded map B
from HA -onto a dense set of a hilbert-space H’ . We say that
B 1is A-interwining, iff there is a further ™ -representation
C with

W=Hc , BDy=Dc , BAax=(3Bx all xeD,

3.7. We keep the notation of 3.6 and prove :
If B 1is A-interwining, then
~
1/ BXD;C D,
~ - x v
ii/AaB"-Bca on Dg
111/ B B € Com A
The statement i/ is proved by observing that for x ¢ DA and

x’&H the last equality sign of the following line is valid

¢ ~e
if and only if x' & Dc

(A3 x,B X) = (BA3X,X)=((aB,X) = (Bx, Car X)

Using this equation and statement i/ we can rewrite its left



hend side as (x, A, B x’\ and its right hand side as (x,B Ca xﬁ
and this proves ii/. Now multiply i1/ by B from the right :

Xa, B"8=B"Ca B=B*CAB=B'B&on Da

thus obtaining /together with i/ / the assertiop 1ii/.

3.8. The operator B 1s an A-interwining one if and only if
B € Ccom 4 .
Proof : On~ part of the proof wgs done in 3.7. Let us now assume
BB € Com A ., We define D, =B D, . For every z 6 D, there
is an element y ¢ DA satiefying By = z . With this we define
Caz = BA, Yy € D,
This definition makes sense : Assume By‘ = By, « Then
=2 BB = B A b s"s€ ¢
0 = Ay (y1 - y,) = a(y] - yz) ecause om A .
It follows B A, (v, - y,) = 0 and hence C, is uniquely defined

on D, as an linear operator, which transforms D, into D, . From

CabBy= BAa AbY=Ca BApby=CaBApy=C,(, By

follows that

a—>(C,y , ae€R
is a representstion C of R with Do = DC . Setting
z, = By,, 2, = By2 with N € DA we have

(21, Caz2) = (BY,, BAays) = (B"Byw AaY,)= (Ay B’By,,yz)_-
=(B'BAz# YY) = ((# 24, 2,) .

Therefore the representation is a symmetric one, and B is

A-interwining.



2.9, According to 3.4, an A-interwining operator is automutiosliy
A=interwining. It is B DK‘DE .

3.10. Keeping the notation of 3.6. and assuming B to be
A-interwining end Dc to be equipped with the C-topology, we
have :

The mappings

B : DX - Da
s ~ ~
B : Dc e DA

are continuous .
We mention further, thst every element of Com A represents ean

~
A-continuous mep from DK into DA .

4. Islsnds, gyslic representations

Using a methad of Mackey, Kadison [ﬁ] hes given a classification
of states of & dl-algebra according to the von Neumann factor
types. This goes via certain sets of states of R called islands
[s]-

4.1, Denote by A a’-representation of R . If x6 DA and

¥,x = 1, the formula
{(3)=(*1Aa X) /4-1/

provides us with a positive linear functionsal over R satisfying
f(e) = 1, i.e. with a "state of R " .
The set of all such states of R 1is called "islsnd of the
¥ _representation A " end will be denoted by F, .
From the definition
Fp = Fa /4=2/
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4. 2, A representation Ao is called "subrepresentation of
the representation A " iff

i/ Ho [ BA , DAo & DA
1i/ Ao(a) is the restriction of Ae on DAo .

It follows, that the A, -topology and the restriction of the

A-torology on DAo coincide . If x denotes an Ao-limit point,

then x may be considered as an A-limit point of D, also,
(o
because DA is A-complete. Hence

-~ < D-
DA. = DA /4-3/

On the other hand, the vector x ¢ HA 1s contained in DA

o (")
ifr gy) = (Ao(a‘y,x) can be for every @& R continued
to a continuous linear form over HA . Becsuse
(o d
11 / of the definition, this is clear for x in D, :
~
~
> Dy NH
DAo = VYA Ao /4=4/
If we consider a special cese :
-— ~o ~o
from A. T Ao 1 ) 'S =H nD /4=5/
Ao AO A

4.3, Ir Ao is a subrepresentation of the b -representation
A it follows with the help of /4-3/

FA. Q FA /4-6/

4,4, Let be A a’-repreeentation.

A vector xé¢ D.' 1s caelled "strictly cyclic™ iff every 3{61)A
is of the foem y = A, x with certain a &€ R .

A vector x‘Dx is called "cyclic", 1ff the set

iyf': y = Agx, aeR}
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is sn A=dense set in DT

Obviously, if x 48 strictly cyclis, then it ia cyclie too.

If £ 4is a state of R the ONS-construction /short hand for
Gelfand-Neumark-Segal construction/ provides us with.-representa-
tion /uniquely determined up to equivalence by f / such, that

f is generatéd by a strictly cyclic vector according to the
formula 4-1 .,

The island of the GNS-representation determined by the state

f 1is denoted by Ff .

From the uniqueness of the GNS-construction we have
¢F 4 {eF
Ff €Fa f A /4-1/
Therefore, for every state f of R

F‘F = (\Fa with £ ¢Fy /4-8/

In /4-7/ we have used the relation /4-6/ .

4,5, Let us consider a positive semidefinite operator B of

Com A . The linear form
9@ =(Bx,Aax) , xeDj oy
is a positive one. Indeed, from 3.4 and /3-1/ follows
(Bx,zacax) = (B'Ia X, Ia x)

and B 1is supposed to be non-negative .
- N

If A = A , then g €F, if gfe) = 1.
/4.10/

To see /4-10/ we remember ourselves that under the mentioned
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.condition Com A 1is a von Neumann algebra and therefore the
positive root B, of B ie in Com A and we may write
L o d
gla) = (Bo x, Ay By x)
o~
Ag

The assertion follows now from Ta =

4.6, Let be 2 = T and consider a -representation C
which 1ls connected with A by an A-interwining operator
B : B Ay = Ca B . Then

{3: qta) = (Y, Caj) Yy el "3"*1}.4&

/4=-11/

Namely, we can rewrite such a form as

gfa) = (B x,CeBx\

with certein x 6 DA . But B is an A-interwining operator and

(Bx,B Aax) = (B’B X, Ag x)

therefore B’B € Com A ., According to 4.5. g 1is a positive
linear form. g is furthermore normed. At least /4-10/ is valid
because of A = A . Hence /4-11/ 1is proved.

Remark : The proof runs as well if the vector y in /4=-i1/

is in B DK . Hence :

If 6 BD§ and 3(&)=(3,G y) , then g6 FA /4=12/
4.7. Let be f,g two states of R. We write

{e g /4-13/

if end only if there is a positive number P> o with

{(d’d) 2 pg(a'd) a11 2 6R /4-14/

Clearly, because f(e) = gfe) = 1, wehave 13p > o.
From fé& g , g h follows f& h .
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There is a geometric interpretation of this relation. The state
space of R 1is a convex set. A subset N of the state space

of R 4s called "extremsl®, iff <f€& N and

{:P,g,f...ﬂ»P..g“ v pi 20 .ijzi /4=15/

with states gJ implies gJeN all J .

Especially, the extremal points of the convex set of states are
the extremal sets consisting of one point only .

Now we have :

The set N 4is an extremal set of states if and only 1if

f & N , r& 8 implies g8 € N always .

Proof : Consider a convex linear combination /4-15/ of states.
Obviously, f(& a) > Py 3J(a°° a) all J . Hence if with

fE&€N and re g always g€ N , the set KN 1is extre-
mal. On the other hand, if /4-14/ is fullfilled with p ¥ 1!

h = (1-)'1 (t-pg)
is an state and £ =p g + (1-p) h. £&6N for extremsl N
therefore implies g€EN . If p =1 4n /4-14/ we have £ = g.
Nemely, f - g = r 1is a positive linear form with r(c) = 0
and this is only possible for r = O . Thus the assertion is

proved.

4,8, Let us now again consider two states f ond g and de-
note by A and C the ONS-representations determined by f
and g . There sre x¢D, and y € Dy with £(s) = (x, A, x).
and g(a) = (y, Ca y) .
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Now :
fi&’g if and only if there is an A~interwining operator
B connecting A with C and satisfying B x = y.
Proof : 1If such an operator B existe, we have
sle*e) = Moyl Naa, «U°& ol faxp - qalle(s).
This means f& g . If on the other hend f§ g y we have
hcyy nzénAa x "1' p~! and we define B by the relation

B Aa X = Cay all aé& R,

B is a uniquely determined and bounded map from DA onto Dc

and can thus be extended to a bounded map from HA into Hc

From the relation g(a) = (Bx, Cqy Bx) = (B'Bx, Aex) we see
that £ = g 1iff B*s is @ multiple of the identity. Hence,

for given f there is a state g with f& g and f # g if
and only if there is an A-interwining operator B with B‘B
not beeing a multiple of the identity., Now if Com A 1is not
trivial, there is an operator B‘G Com A wich is not a multiple
of the identity. BRecause B, 1s boundec, B1 + pj_ = BZ is

a positive definite operator for large P‘ and there exists an
operator B with BB = B2 , 82' not a multiple of the identity.
These last rema;Ls can be written :

Statement [78] ¢ f 1s an extremal state of the state space if
and only if for the GNS-representation 4 of f the commutator

Com A 4is trivial /consists of the multiples of the identity only/.

4.9. Let us call a state f "self-adjoint/ 1iff the GNS-represen-
tation A of f satisfies A = }' .
Consider now a * -representation C .

If the self-adjoint state f is contained in F then

c ’



e/ from f£% g it follows g & F,
b/ there is ean extremal set of states with

feNcF N exiremal Jete)

The two staetement a/ and b/ are equivalent ones. Now

f € Fg gives F. < Fo . From f & g there is an
A-interwining operator B connecting the GNS-representations

of £ and g /4.8/ . Now from 4.6. follows g € Fp .

Thus a/ 1is proved.

Problem : Is the island ZE‘A under the condition A = 'K extremal?

With incomplete proof this was stated in [7b] .
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