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Abstract

An analogue of Buclid's algorithm is valid in
the algebra of test-functions R for gquantum
fields. From this a number of conclusions may

be derived.

For instance: The intersection of any two main
right ideals aR and DR is a right ideal dR.
aR + DR 1s a main right ideal iff 4 # 0.

The prime factor decomposition is non-unique
generally. However, there is a function aa»>[aj
with fab] = Ea} + Eb] and [a;] = 1

iff a is prime., There are "large" semi~-groups

with unique prime factor decomposition.,



0. Introduction.
Let us denote by R the algebra of test functions (see 1)2>and below)
for scalar hermitian fields>). A scalar hermitian quantun field may

be considered as a symmetric representation

Az a —— A(a) ’ a € R (0-1)
by unbounded operators in a Hilbert space. Now it is straightforward,
that in its domain of definltlon the operator

Aa + 1) with a=a (0-2)
is bounded from the belew by one. If the operator A(a) turns out
to be essentially self-adjoint, the inverse of (0-2) 1s well defined
and can be extended to a bounded operator.
More generally let us denote by N the set of all the elements b of
R with the property: In every symmetrie representation (0-1) the
operator A(b) 4is in its domain of definition bounded from the belew
by a real number larger than zero.
The set N 1s multiplicatively closed in R and one can construet
a canonical extension R of R such, that every element of N

is invertible., Therefore the finite sums

<

> 1 with b ¢« N N K% (0-3)

P,

constitute a symmetric subalgebra of this extemsion R and we may
try to comnsider such an algebgge%;ﬂﬁgét funotions for Haag-Araki fields.
However, the aim of this paper 1s mot to achleve such constructions

(a paper on this subject is under preparation), but rather to give

same results on the multiplicative struetur of the elements of R
These results shall be used in the oonstructions mentioned above.

1, Definition of R

Ke denote by Sn the linear space of test funoctions for the tempered

distributions of n space~time points. S, denotes the ring of
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eomplex numbers. Further we oconsider "functions" over the non-
negative integers, the values of which for the integer n is in
Sn ’
at n———> a(n) = a(n;x1,xz,...,xn) e 8, (1-1)
and with a(n) = 0 for all but a finite set of integers.
The ploture a(n) of a wunder the map (41-1) 1s called the
nth component of a., If not all oomponents of a are zero, there
is an integer n with a(n) # 0 and a(m) = 0 for all m
larger than n . Then the integer n 1s the degree of a and 1t
will be denoted by the symbol /a/ .« The component a(n) with
n=/a/ will be called the highest component of a. Sometimes
1t is oonvenient to define /a/ = «o i1ff a(n) = 0 for all
integers.
R bYeoomes a symmetrigc algebra by the definitions
(a + b)(n) a(n) + (@) , (2a)n) = ~-a(n) , (1=2)
(ab)(n) = éij a(i;x1,..,xi)b(n-i;xi+1{f..nxn) (1=3)
8" (B3X peeesx ) = aa;g;;;;;;“.‘.';;i;) (1-4)
(The bar denotes ocomplex conjugation.) We denote the unit element
of R by e . It is defined by ¢(0) =1 4, e(n) =0 for n> 0 ,
We mention that there is a natural topology for R (see 1) 2>).
From the definition of the degree we conclude
/ab/ = /a/ + /v/ (1=53)
/a +b/ = max (/a/ , /b/). (1-6)
If one knows /a/ # /b/ then the equality sign holds in (1-6).
For the set of elements with a(m) = 0 if m # n the map (1-1)
is an isomorphism onto Sn' Therefore we may identify Sn with a
subset of R . In dolng so we refer the elements of Sn sometimes
as "homogeneous elements of degree n" ,
An element a of R 1s sald to be prime iff its degree is lar-
ger than zero and no decomposition

a = aa, with /ai/ > 0 - (1=7)
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cxiata‘). (The first condition exoludes the zero of R and the
invertible elements of R from beeing prime.)
If the degree of an elemsnt a 1s larger than gero, there slways
exists by virtue of (1-5) at least one decomposition

8 = DyBpecely (1-8)
with prime elements p, and olearly the number 1 has to be
not larger than the degrse of a
(Obviously all elements of the /£dkst/degree are prime elements.)

Definition of [a] 13

S YN /L?;he following natural number: There exists a decomposition
& = PePreesp, With [a] =n and Pys 1w1,2,..4n prime. Further,
if a = Q4999 +q, denotes another decomposition of & in prime
elements, 1t is m =< n = [a].

It is alsways

/a/ 2 [a] (1-9)
and the pz-:l.;z elements are characterised Ly [ a] - 4 ,
Furthermore one has
[a ] = [a] + [¥] (4-10)
later on we shall see that the equalit} sighnm always holds in (4-10).
On the other hand let us mention that for some elements the prime
faotor decomposition is essentially non-unique./® see this denote
by uwand t two homogeneous elements of the first degree with
ut ¢ t u and consider the decomposition
u (e + t u) = (e + vt ) u. (1-11)
The right as well as the left side of equation (1=11) is & produot
of prime factors. However, the two prime factors e + tu and e + ut
are not egquivalent,

[ We denple b Y [a J



29 Homogeneous elements,
The results of this paper are almost trivial for homogeneous

elements of R . However, these elements do not belong to the
olass mentloned in the introduotion.
Jemna 13 Let be a € R homogeneous and oonsider two prime
faotor decompositions

a = D,PoeePy ® Qqecely o (2=1)
Then we have n = m and there are oomplex numbers

A; with p, = Aiqi, 1= 1y0009n)e
Purthermore the prime elements p, are homogeneous ones.
Proof: Let use first mention that the component of lowest degree
of the product of two non-zero elements equals the product of the
lowest components of its factors. The same is true for the component
of highest degree. Henoe the produoct of two elements turns out to
be homogeneous if and only if its factors are homogeneous ones.
Beocause there are no zero divisors in R (as may be seen from
(1-5) for instance) the statement is simply proved by induction,
provided we know p, = .A1q1 for every homogeneous element a .
Rewrite (2~1) into p,by = q1b2 and assume /p1/ Z /qz/ = s ,/a/ = n.
Now we choose points 51,...,33_5 such that the funotion b, is
different from zero on the point (31""’Bn~a) of the product of
n=-8 Minkowskl spaces. It follows

p,(r;x1,...,xr)b1(n-r,qr+1,...,ﬁn) -
q1(s;x1,...,xs)bz(n-s;xs+1,...,xr, Br+1"“’nn>

Because of our assumtion on the 8's, the last faotor on the right
hand side of thls equation is not the zero of R . Therefore ) 7
ds not prime if r ¢ s . But from »r s 8 the last factors of
the right hand as well as of the left hand side are none.vanishing
oonstants, Hence we have the desired equation Py = )\1q1 .
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Induction with respeot to the degree or with respect to the number
[a] now proves Lemma 1.
Next we consider some counseguences of lemma 4, Assume
a b = b a (2-2)
for two homogeneous elements of R o If neither a nor b
i1s the zero and 1f Ja/ > /b/ , then there 1s an homcgeneous
element ¢ with
a = be and /e¢/ = Ja/ - /b/ . (2=3)
Namely, because of lemma 1, the prime faotor decomposition of
b coincides with the beginning of the prime factor decomposition
of a .
We may use this information for a further study of the relation
(2-2). Assume /Ja/ > 0 for tie homogeneous element a .
Define the cet
N = {b € R : ab = ba, /b/ > 0} . (2-4)
Denote by d an element of N having the smallest degree
of all elements of N . Then the asserttion is
N = { b € R b = Ad®, A constant } (2-5)
Proof: First we have a=4dc by the argument leading from
(2-2) to (2-3). If b e N we therefore have dcb = bdc. Because
the degree of b 1s not smaller than that of 4 , we coaclude
equal well b =4d £ for the arbitrary element b of N .
For given b e¢ N we define 1r to be the largest natural number
for which an eguation b = aFf g 1s valld. The elemcnts b and
d comnute with a and henoe
¥ (g a - ag) = 0.
Therefore g comnutes with a . Hence /g/ = 0, because otherwise
g €N and there should exist a decomposition g = d h and this

contradicts the choilce of the number r., But /g/ = 0 indicates



that g 1is a constant.
As a first application we prove:
Theorem 13
Bvery two oommuting elements of R are algebraiocally dependent.
Proof: Assume

a@, =88, » /a,/=m , [ay/ =m , nzm (26)
Without lost of generality we may assume @~ 0 o From (2~6) 1t
follows that the highest components of the elements under ocon-
sideration are commuting too. Hence there is an homogeneous element
h with

a,(n) = 7 4B y  ay(m) = Aoh®2.

Now we consider two independent free variables ‘g,? o The number
of linear independent polynomials of the form

E allk g;?k

L ki (2=7)

equals
| C(r+)(x+2)/2 .

Now we estimate the number of linear independent elements of R
of the form

i _k
Zcxik ay & : i+k <1, (2-8)

The degree of such an element does not exceed rn. Every element
(2-8) commutes with a, and a, and therefore the highest
component of such an element is of the form A h° with rn Z /h/s
Hence there are at most

1+ 1 ’ with n, =1 /h/"1 y
linear independent elements of the form (2-8). Evidently, for
sufficient large T , the number (z+1)(x+2)/2 is larger than
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1+rn, . Hence there is a pelynomial (2-7), not vanishing identi-

ocally, with
25‘0(ik a% ag =0 .
The Buclidian algorithm,
In this seotlon we shall establish an analegue to Euclid's
algorithm for the maturals. We start with
Lemma 23 Conslider any two elements a anmd b
with b # O. Then there 1s at most one element t
satisfying
/a =bt/ < o/ (-1
To prove this we assume /a = bw/ < /b/ . From this and (3-1)
we conclude /(a - bt) - (bu -a)/ <« /b/ . Therefore
N/ + /Ju-t/ < /b/. Because b 1is different from the
Zzero,y the number /b/ 1s finite. Therefore /u -t/ < 0 and
hence u = t.
Zheorem 2: Let us assume for the four elements a,b,p,q of
R the relation
ap = gb sy /fa/z /i (3-2)

There exlists an element t satisfying
/ a-aqt/ < /[y

/" v-tp/ < /of
Proofs Let us abbreviate /a/ =n, /b/ =m, /p/ =, /q/ = 8.

It s n+r =m + 8. We have to show the existence of an element

(3-3)

t satisfylng for all k with 0 ¢ k < n-s the equationa

(L)

a(n-k) = Z ... (s=)) t(n-s=lk+3) (3-4)
b(mel) = 2 t(mereked) p(r-d) (3-5)

Here we assume, that 1.g. p(1) =0 if 1 becomes negative,
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The proof proceeds by complete induotion.
First stept Assume k = 0, Then we have
a(n) (r) = q(s) b(m) , (3-6)
Beocause only homogeneous elements are involved here, there is
an element t(n-s) with

a(n) = q(s) t(n-s) (3-7)
end inserting ir the equation (3-~6) we find
d(m) = ¢t(m=r) p(x) , N0=8 = m=2 , (3-8)

Hence the equations (3-4) and (3=5) are valid for k = O.
Second step: We now assume that our assertion 1is correct for
all nunbers k with O < k <1 <(nr -3 =me=pyx and for the
homogeneous elements t(nes~k) . We then consider
(a p)(u+r-1) = (g b)(m+s=i) (3~9)
and revrite both sides of this equation as followings
(ap)(n+r=1) = a(o=1)p(r) + Z;i a(n=i+1)p(r=3)  (3-10)
——
= a-DN=) + 22 a(e-lt(m-e+lti-1)p(r-1)
and o
(@)(msm1) = q(b(m=1) +2 . ) a(s=3)t(mert+l-1)p(r-1)
(3=11)
Ihe left hand sides of (3-10) znd (3-11) are equal and the right
hand sides would be identical if the index 1 oOnly runs over

1= 4424000 Therefore we have to have the equation

() + Z T a(emDtawnes)

' (3-12)
a(o~L)p(r) + > ) a(8) t(n=s+J=1)p(xr=3)
a:
“ (23]
b(m=1) = t(n=s+j-1)p(r=y) | =
W= [ (o) ZJ’=4 } (3-13)

[ - 3 a(e-)e(mers-2) | B(x)
4=
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Row q(s) is different from the zero and the number n-1i is
not smaller than the number s o Henoe there exists an homogeneous

element t(n-i-s) with

a(n-1) -~ ZO(: q(s=j)t(m~r+j-1) = q(s)t(n=i=-s) (3-14)

Inserting this into (3-13) and remembering that p(r) is not
the zero we get

b(m-1) - zg;?1 t(p=s+j=1i)p(r-j) = +t(n=-i-s)p(xr) (3-15)
But the equations (3-14) and (3-15) are identical with (3-4)
and (3-5) for i = k., This completes the proof.
Remark: As one can see, 1t 1s not necessary for the proof to consider
the equality (ap)(j) = (ab)(J) for J < r+s. Hence the con=-
clusion of theorem 2 1s valid if only

/ap = qv/ < /o +/p/ 5,  /al = [4/ (3-16)

is satisfieds The equation /Ja/ + /p/ = /go/ + /b/

is a consequence of (3-16).

4, Right main ideals
The set of a2ll elements ab, b € R with fixed a constitutes
a main right ideal of R  that shall be called aR .
Theorem 3
For any two elements a, and a, of R there is an element
d € R with
ay R~ a, R = d R . (4-1)
If d is not the zero of R , there exlists an element a of R
with

1
In the later case we have

3/ + o = Jay/ + [ay/ (4-3)



Proof: Define

J w a R + ay,R o 8=/a/+/ay/ o (44
The theorem is valid, if J oonsists only of the zero of R ,
decause in this case we have 4@ = 0 . Now we assume, that at
least one element different from the zero 1s contalned in J and
proceed with the ald of ocomplete induotion with respect t s .
If s = 0, the theorem is true and we may choose a = d = e .
We now assume, that the assertion 1s correot far all 8 <n and
we consider the case with s = n ., Let be d ¢ J an element dif-
fexent from the zero of R. There are elements b,, b, with

d = a1b2 = a2b1 (4=5)
and because of theorem 2 there is an element ¢t of R satls-
fying
/a, =a,t/ < [fay/ 5 [bg =tby/ < [by/

and henoce /a1 - azt/ + /a2/ < n.
If a, = a,t , we can ohoose d =a, and a = a and the

2
assertion 1s true. If a, ¥ a,t, we find

and therefore the right 1ideal
does not consist of the zero only and we are 1in the domaln of
our induction assumptions.
Therefore there are elements d1 and a with

J
and with

4 = d1 R and (a1 - aat) R+aR = a R (4-6)

184/ + /o) = [ay/ + [a, «ayt/ (4=7)
Because of (4-6) we are allowed to write

a, R + a, R = a Re

1
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Next we consider the equation

(8) = apt) 0, = 250, = g, (4-8)
which follows from the first equation of (4-6). Hence we may
write

d = a, 0, = a2(01 +ast) €& J. (4-9)
From (4~7) and (4-8) 1t follows that

18/ = fay/ + [0y = [a) v [4,) = Jay - a,t/
= /ay/ + Jay/ - [df

is valid, Now we prove J = d R and to this purpose it is

sufficient to show d ¢ d R , for d has been choosen as an
arbitrary element of J , different from the zero. Now we have
/ (a1 - a, t) b, = d1 b = (a1 - a, t) o, b

because the right-hand side of the last equation 1is in J, and

because of equ. (4-8). Hence b, = ¢, b and

E=a1b2

Remark: One can explizitely construct the element a of the

=a102b= db d R.

theorem with the help of the "Euolidicn algorithm" There are

elements Azyeeeeya = a and elements t1,...,tn~2 with

a = ak+1tk ta .,y kst,...,n=2 (4-10)
and

/a,,/ ;/aZ/ and /ak/ >/ak+1/, k=2, ...y0-1, (4-11)

Because of lemma 2, the elements tk and a, are uniquely deter-

J

mined by a, and a, « To construct the element d one has to

1
consider the elements

bn =a, ; b

Then it follows

d = a,b, = a,b, (4-13)

Now we come to the following
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Lemms 3: Let p be a prime and b an arbltrary element of R.
It exists an elemont q with bR N pR = bqR.
If /qo/ > 0, then q 15 a prime element.
Proof: The existence of the element q 1s provided by theorem 3.,
Let us assume q = Q4Q, -« We have
bq1Rn PR 2 bgq,R = bR APR 2 bg R PR (4=~14)
Hence
bqﬂR/\pR = bRAPR = bgyqyR.
If this ideal is not the zero ideal, we ocan write
bg, + PR = aR (4-15)
by theorem 3. Because p 1is a prime element we can choose
either a=p or a= e, If a=p we oonclude via
Bq1E,pR that bg,R € bgua,R 1s valid, Hence  /q,/ = O.
If a=e we have bR+ pR = R also, From this and (4-15) we
find with the aid of the degree relation (4-3)
/bay/ + /p/ = /o/ + [p/
and this means /q1/ = O, Thus in every decomposition
9= 949, at least one factor is of the first degree, 1.g. q
is prime if its degree 1is larger than zero.,
Next we prove
Theorem 4: It is always
[a] + [v] = [ab] (4=16)
and every prime factor decomposition
of an element a $# 0 conslsts of exact [a]
prime factors.
To prove this, we mention first that it is sufficient to consider
the second assertion of the theorem. We use induction with respect
to the degree of a . If /a/ = 1 we oconoclude at once that
[éJ =4 and hence a 1s prime, Let us now assume the assertion

is correct for all elements with degree less than n . If



a = DPieeel) B Queeelg 9 /a/ =n
we may distinguish two possibilities: If p1R = q1R we DAy assume
Py = Q4 o By the assumptlon of our induction we then have r = 8 .
Now, 1if p1R # p,R we oan use theorem 3 and lemma 3 to show
the exictence of two prime elements p and q with
e = Q.
With a certain b we have
a = p1pb = q1qb
or
pb = Poreel,, and gbh = QpeseQg o
We see that we can use the assumption of our induction for pb
and qb and for b, Therefore [pb] = [b] +1 = [ﬁp] and r = 8 ,
5. Stropgly prime elements
Definition:
An element p of R 1s ocalled rs=prime ("strongly prime from
the right"), 1ff a ¢ PR and b¢ pR always implies abd pR
P 1is called ls-prime, 1£f a¢Rp and b¢Rp always implies
ab ¢ Rp.
we call p s=prime, 1ff it is rs-prime as well as ls-prime,
Remark:
If p 48 rs-prime, then it is prime. If the degrees of a and
b are larger then zero and 4f p = ab , then neither a nor b
is contained in pR . The same appllies for ls-prime elements.
We mention a simple consequence: If a product 848 0002 is
contained in pR with rs-prime element p , it follows that at

least one of the factors a, 4s contained in pR .

i
The existence of s=prime elements 1s given by the following

lemmata.
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Lemma 4: The element p rs-prime if 1t satisfies the following

condition: If /p/ < /a/ and pR n aR does not contain

of the zero only, then either pR = aR or aR =R .
Proof: Assume ab = pd but a ¢ pR. If aR # R then /p/> /a/
and there is an element t with /a - pt/ « /p/ and
(a = pt)b ¢ pR n (a-pt)R. Obviously a - pt # O, because other-
wise a ¢ pR. Now the assertion of lemma 4 tells us (a - pt)R = R.
Hence

ab = (pt + A e)b = pd with A #0
and therefore
b = pd = ptb € DR.

jee b is contained in pR and p 1s rs-prime.

Lemma 5¢
Under the assumptions /a/ =n and a(n) 1s prime, e elment

Q@ of R /s s-prime
Proof: First part: sssume aRnbR #{0] . It follows that

there 1s an equation

a(n)o,(sy) = b(mWox(s,) , /b/ =m
with homogeneous elements ci(si) . Namely there is an equation
of the form ac, = be, by assumption and for the oi(si) we
take the highest components of the ¢y .
Now assume /a/ > /b/ it follows (lemma .:Z.)

a(n) = b(m) t with /t/ >0
But a(n) 1s a prime element and hence /b(m)/ = 0 1l.e.

/b/ = 0. Now by virtue of lemma 4 the element a  1s rs-prime.

Second part: The assumptions of our lemma apply with a to a’™

also. Hence a*  1s rs-prime and a = (2%)™ 1s ls-prime.

We conclude that a 1s s-prime.
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We now come to some questions of uniqueness of prime factor
decompositions., We start with
Lemma 6 Assume a ¢ PR and aR N PR # {TO} o If p turns

out to be rs-prime, we have

PR naR = apR . (5-1)
If aR = R, the assertion is trivially valid. In the other case
we have pR naR = aqR with a certalin prime gq according to
lemma 3. Now aq « PRy a ¢_pR and p rs-prime. Hence by definitlon
qQ £ pR. But q 1s prilme and therefore pR = qR.
A simple consequence 1s the following:
Lemms 7¢ If both elements, p and q, are rs—prime and if
PR N qR # O, we have pg = Qqp.

Namely, from lemma 6 it follows pgqR = gqpR 1.e.
Pg = ) qp with a complex number A . The last equation remains
true for the highest components of p and q and because of
lemma 1 we must have A = 1,

Yet us now consider two prime factor decompositions of an element:

a = DyPpeesPy = Qqlpeeedp (5=2)
(Because of theorem 4 the number of prime faotors 1s always the
same.) We skall oall the two deoompositions equivalent if and
only if the following is true: 1) With suitable permutation of the
pumbers 41,...y0 Wwe have

Py = N qk1 sy 1 =1y400.yn (5=3)
with some complex numbers A; . 2) If this permutation is not the
4denty permutation we can write it as a produot of transpositions

of tkhe form

{J%(JM);

, with q4Q = Q.,.04 (5-4)
NERRIEET I 37 g+
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An element of R 1is sald to have an essentially unique prime
factor decomposition, 1ff every two of its prime factor decompo-
sitions are equivalent.
Theorems5: If one of the prime factor decompositions of
an element a &€R consists of s-prime factors
only, the the element has an essentially unique

prime factor decomposition.

Proof: We prove the theorem by induotion with respect to the
lenght of an element. If [a:] = 1 4, the assertion is trivial.
Now let us oonsider an equation (5=2) under the assumptions that
Firstly our assertion is true for elements of length smaller than
h and that secondly the faotors Py in (5-2) are s-prime ones.
It R = q4R we may devide by b, and the assumption of the
Induction establish the theorem for elements of length n . In the
other case we conclude with the help of the definition of s-prime
€lements that dpe++q, € P,R and for a 1s contained in

p1R n ¢,k , there is an prime element r, With q,p, = pyT,
(see lemm=z 6).

Now elther 4R = qoR or qz...q, € 4R and there is an element
rz with QoP4 = PyTo by the same argument. Going further on this
line we see: There is an integer s with P4R = ¢ R , there are
prime elements TyyeeeyTy 4 With qp, = p,r, . Hence we may
Tewrite (5-2) as

p1...pn = Qqeeelg yPyQgyq el 8 = p1r1...rs_1qs+1...qnﬁ
with complex constant B8 ., Now, after deviding by Py s We make
use of our assumption and conclude that the elements

r‘,...,rs_1,qs+1,...,qn are s-prime. Because Rp1 n Rrk is
not the zero ideal, we have by an obvious extension of lemma 7

to left main ideals
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PeT = TpPqy = QPq » Tx = Y (5=5)
Equation (5-5) tells us: After some transpositions of the type
(5-4) we are allowed to devide by p, and we may use the assumption
of our induction a second time showing that Ppeceely and
Qpeeels_40g4q°**dy are equlvalent decompositions. This proves
our assertion by induction. The following theorem and lemma show

that rs-prime elements have remarkable simple properties.

Theorem 6:

Assume p to be rs-prime. An element a oommutes with p if
and only if a 1s a polynomial in p . If a 1is prime, this
polynomial is of the first degree.
Proof: Take a # 0. Because of [p,a] = 0 there are polynomlals
Qi(ﬁ) with

o (a) + PP e, a) + ... + Q) = O (5-6)
for a certain n . We may assume Q,# O (otherwise we devide by

a8 power of D ). Now we have

0 (a) € IR (5-7)
and on the other hand there is a decomposition
@ = pll@-)e (5-8)
Phus, with a complex number , , We conclude
a=- Ne & DR (5=9)

because p is rs-prime. Now we start an induction: There are
elements ay and complex numbers /u1 with
a")\e = Pa 9 p,aw =0
1 r[ 111 (5-10)
8y = 8 = P8y s [Pyay| =0

' YREEEEEEXEEEEE X NN E N NN X N N I N N A I S N N N

as - /use = Pas...“ [ [P, a8+1]= 0

and
/a/ >/a1/ = /82/> cecee 7 /as+1/ (5"11)
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The procedure ends by arriving, for a certain s ,

=0, a_, # 0. Hence the resolution of (5-10) shows,

at a s

s+1
that a 1s a polynomial in p . Because every prime polynomial
with complex coefficients in one variable is linear in the variable
the second part of the assertion is established too.

Corollary: Let p be rs-prime. The set of all elements commuting

with p ccnstitutes a maximal commutative subalgebra of R .

Lemma 8: ILet be p rs-prime and consider an arbitrary complex
number B . The element p - Be 1s a prime element.

For the proof we are allowed to choose B = 1 because with p

also its multiples have to be rs-prime., Now assume p - € = ab ,

a prime. We get pa = a(ba + e). If aR # pR we have (ba + e) ¢D

From /ba + e/ = /p/ we conclude ba + e = B,p. Therefore pa = 31

1
and 51 =1, It follows that a 1s a polynomial in p (theorem 6)
Because a 1s prime, it has to be llnear in p . Therefore

/p -e/ = /p/ and hence /b/ =0. If aR = pR , a is prime

trivially.
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(4) This concept is somtime denotes by "indecomposible® and the

word "prime® 1is used in the sense of our "s-prime®. In the
proofs we have tried to use standard arguments of the theory

of commutative rings.



