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1. Basic notations

We have to 1ntroducq the "algebra of test-functions"” [1,2].
called k' and an extension ji of ]L . Though the algebra ji is
not of direot physiocal importance, ji oontains some interesting
subalgebras.

Let us denote with S", the linear space /equipped with the
Schwartz topology/ of test-funotions for the tempered distribu~
tions of n space-time points, So denotes the field of ocouplex

numbers. Now we consider "funoctions" @ over the non-negative

integers, the values of which for the integer n is in Sy @

(1.1) a: = atn) =z AlN;X,, Xy 00, Xn) € Sy

We denote the set of all such funotions by R . Obviously R

becomes a linear manifold if we conseider the mappings (1.1) to
be linear maps from R onto S;, . Indeed, j[ i8 just the di=-

rect product
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(1.2) ﬁ‘ JTS.\ sy h S o,')l,...

-

and we introduce the direct product topology in R, « Thus ,ﬁ,
is a complete local convex linear space, Now for a_,b € R,

we define the product a.b to be the map

(1.3) ab: n — 2 a(e) x bs) ; ras=n
with
(1.4) 8CE) X BES) = ALTS Kyyeors Xed BLS) Xpyyyeres Xrpg )

By this multiplication .R. becomes an algebra with unit ele-~
ment € that is defined by €(o)=), 6 e(n)=0 for h ¢ O,

The imbedding given by (1.4) of §, x Swm 1into S,,, 1is con-
tinuous and hence the multiplication in the algebra i is
continuous simultaneously in both factors., Finally JE, becomes
symmetric [3] by the definition

(1.5) a*

TR > AN Ke, Xy yeee s Xa) o

/The bar denotes the complex conjugate of the function a(w) /,
We mentiocn two simple properties of ﬁ» H

a/ There are no zero~-divisors in JZ .

Proof: If the two elements a, b are not identically zero, we
consider the smallest numbers r and s with alr)#0 and b(s)# o,
Then (ab)(r+s) = &(r)® b(s) is not the zero of Sp,.g .
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Hence ab £ O,
b/ 1t A€ R  and aMYE O then ale R.

Proof: We may assume afo) s | + Then the sequence
3 a

(1.6) b, = 2 (e-3) | na2,..,
3!0

converges in R hecause b (n) =b, (s) for all s>h.

/Remark (e~ a)ﬁ(n) =0 for 4§>n /. Therefore the limit b
of (1.6) is determined by b(n)e b,(n) . Now we have

bv\(ﬁ—&) = (e- a)bh ® bu“ - e

In going to the limit we obtain ba = abe e,

Remark 1: If a"'1 exists in 33, for an element éé i .
then thero is a neighbourhood Va of a such that the
map b > b with be V, exists and is bioonti-
nuous,

Remark 2: If a € R ana &(0)= 0 then for every formal po-
wer series P(*) the series (&) converges in §..

The support supp. a of an element g_,éi 1s defined to be

the smallest closed subset of the Minkowski space with the

property

(1.7)  suph. A5 X5, X) S fupp. & O @ Npp. &

with the n-fold product on the right hand side for n > 1,
Let be & an open set of the Minkowski space. The set k(a)
of all @& R  with supp. a ¢ O 1is a symmetric subalgebra

ot R, . Given an arbitrary subset A of the Minkowski space,
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we define

(1.8) Reay= NR6); 6O, & open.

A continuoud linear map T (ftrom R into 3/

T o« — a°

-

is called endomorphism of R , if

(ab)T = oF LT .

v T
If 7T 1is not identically zero we have € © € , Indeed let
: T
be a."'é O . It tollows 2= e “'L‘ and (e- CT)a.T= O .
Now there are no zero divisors in i . Hengcg e = eT

If we always have

the endomorphism is called symmetric. An endomorphism is oal~-
léd "automorphism" if it maps i onto é . An important
example of a group of symmetric automorphisms is the set of
automorphisms induced on k by the transformations of the in-
homogeneous Lorentz group. The connected component, of the
identity of this automorphism group will be denoted by r and
its translation subgroup by ’: .

Now we define R , the algebra of test funotions. Algebra-
ically R 1s a symmetrio subalgebra of i « An element
ae R is in R if there is an integer n, with a(a) = O

for all n > Ny . The smallest integer n, with this property
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is the "degree of @ ", The zero of R 1s said to have the
degree =00 , In R ohe has to introduce a stronger topolo-
&Y than the one induced in R ag a subget of R ., Namely we

consider R as the direct sum

(1.9) R=2%s, .

equipped with the direct sum topology. In this topology R is
complete and the product (1.3) turns out to be continuous in
both factors simultaneously, With respect to a point set A

of the Mmkowaki space we 1ntroduce the symmetrie subalgebras
(1.10) Rea)y = R Rea)

Let us further notice, that the restrioctions on R of the
automorphisms [ may be considered as continuous automore
phisms of R and we shall use the same notation [ for
themn,

Now we denote by K, the set of all elements of R  which

can be represented in the form of a finite sum
»*
(1.11) 2 Q; a, with  q.e R

A linear form A of R 1g "Positive", i.e, fulfils Wightman's

positivity condition, iff

(1.12) CAad > 0 Yaek,



« W8

The olosure K of K. with rospeot to the direct sum topolo=

gy also onjoys the property

(1.13) {Aad 5 0 WMaek

with respect to every continuous positive linear form A, For
every ocontinuous symmetric endomorphisms T of k we have
KT (4 K o« Further it can easily be seen that the sum of two
elements of K is in K and that with Q also %@ 1is inK
for non-negative real A . The more the intersection of K

with -~K congists only of the zero of ﬁl « Fur @ proof see

L]
2. The subalgebras R(N) or R .

Using the imbedding in i of R one can construct in va-
rious ways symmetric algebras, which may be of interest in
quantum field theory. Indeed, to formulate the usual axioms
[5] of quantum field theory it is sufficient to have a symme-
tric /topological/ algebra together with:

1/ a realisation of the Poincard grour in terms of /continuous/
symmetrioc autowmorphisms of the algehra in question and

2/ a notation of "support in space~time" for the elements of
the algebra, that is compatible with the automorphisms men-
tioned in a/. Obviously, such an algebra will serve as an

"algebra of test-functions",
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In the following we consider special examples of such
algebras. Let us call admissible a subset N of R with the
following propertiesa:

i/ e ¢ N

11/ NN & N, i,e. N 1s nultiplicatively closed
11i/ N¥ =N 1,0, with ae N also a¥e N.
iv/ a(e)= € for all a €N

v/ a¥¢ N for all ae N and all Te T,

To every admissible subset N of R one can assoclate a
symmetric subalgebra R(N) of R in a natural way: An elemsnt b

of R is contained in R{(N) if and only if one can

write it in the form cf a finite sum
-l .
(2.1) b= 23 @, with & € N

with complex numbers x; . To ocomment on this we note tirst
that by virtue of property 1v/ every & €& N has an inverse.,
Because of ii/ the product of two elemdnts of the form (2.1)
is again in R(N) and for the sum of two elements (2.1} and
for the multiples with complex numbers this assgsertion is tri=
vial, Hence R(N) is an algebra, This aigebra is symmetric
becauge of iii/.

i/ tells us that there is a unit element in R(N) and
finally it follows from v/ that R(N) admitts " as an auto-
morphism group. For an arbitrary point set A of the Minkow-

ski space we define

(2.2) R(N,A) = RIN)N R(aA)
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3. Pre=norma

Let N be an admissible subset of R, A real valued func-

tion ¢ on N
(3.1) §: & —> ¢(a) , ae N

is called pre~norm, if

(3.2) 8(2) > O for all ae N
(3.3) ¢(e)= |

(3.4) $(a) = ¢(a¥)

(3.5) ¢(ab) ¢ 8(a)¢(b)

Given two pre-norms g, and gz the pre-norm 92 1is
called "stronger" /more exactly "not weaker"/ than Q. 1f

g,(a)),g&(a) for all a€ N , Consider a Pre=norm 9 amd

define
(3.8) g§la)= inf [ g(aq) ... glag)]
with Q; ¢ N and @ = Q,Q,..Qs

The function Q= §(0.) is a pre-norm again and § is called

"the regularisation of the pre~norm 9 "+ A regular pre-norm
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is a pre~norm, which equale its regularisation. Note that
the regularisation g— of a pre-norm S is the strongest
regular pre-norm, which is weaker than the original pre-norn
® . An element &€ N 1is called N-prim, if there does not
exists a decomposition A = Q.&, with a;e N and

a;¥ € for (=12 ., If ais N-prim, so does a¥ . Define

(3.7) Np = {aeN ; a 1is N-prim }

and consider on NP a real valued function @ -3 So(@)
satisfying  q.(@) = ¢ (&) > O . Then, setting ¢.(e)= |
we construct

gla) = duf. [g.Ca)) ... g,(as)]
(3.8)

with @Q;€ NyU {el and a: qa,.. ag

If it turns out that if g(a)# O on Np , the function g
is a regular pre-norm and every regular pre-norm may be ob-
tained in this way. Of course g(a)*=O 1implies for Q@ the
existence of an infinite number o6f different decompositions
@ = O4...Q4¢ with Neprim elements a4, . It is most likely
that such a situation can not occur at all. However, we are
able to prove this only for a restricted class of admissib-
le subsets N of R . A prenorm 3 is called

r ~invariant, it

(3.9) g(a) = g(at) fv a11 Te I
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It S is T ~invariant, then the same is true with its
regularisation § « To oonstruot " —=invariant regular
pre-norue one has simply to use a [ -invariant funotion
¢ on NP in the formula (3.8).
Remark: Thore is an obvious gap in the definition of pre-~
norms: it is desirable to have a smoothness ocondi-~
tion for ¢ « Probably the following definition

is & relevant one, We call Q smooth, if the set
(3.10) N(g,\)e {aeN: gayen}
ia relatively closed for every real positive A

i.e. there exist in R subsets hAk which are clo=

sed in the direot sum topology and satisfying
(3.11) N(g,A) = Nn M,
4, The Banach algebras Q(N,¢).
Let ¢ ©be a pre-norm on N, We denote by

QLNvS)

the set of all complex-valued functions defined on N
(s.1) $: 04— $a) , aeN

enjoying the property
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(4.2) %lf(&)\gca) & oo

This implies the vanishing of £ for all €N with the
exception of a countable set. Now we consider @ as a mea-
sure on N that gives the value

> gCa) , o€ N,
to the set Ny € N /N is equipped with the discrete topo-
logy/. Clearly, Q(N,q) consists just of the absolute in-
tegrable functions /integrable with respect to the "measure"

© /. Therefore with the norm

(4.3) g($) = 2 1$a)] gla)
aeN

Q(N,s) hecomes a Banach space,
+«*
Now we define an involution f-') s— by

(4.4) 0 a > §(a¥)

The involution maps Q(NJg) onto itself and preserves the

norm:

(4.5) elF) = o ($®)

Next we introduce a multiplication between the elements of
(N,g) . With every pair of elements f, g of QN, Q) we

asgsociate the function fg defined as following

(4.6) ( fg )3) = 2 *(au)g(&z) wth a,€ N and a= 8,34
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The following estimate proves that the product (4.6) is

well defined and belongs to Q(M,g) again:

edg): 21 2 $@)gla) | slan)
< acaq

¢ 3 | $dlay | glaa)
Ry, %,

¢ S | fta)gta) -1 1 gcanlslan)
24,2,

= ¢(f)e(g)

Thus we have seen the absolute convergence of (4.6) and the

relation

(4.7) e (¥ ) ¢ s(H)slg)

In Q(N,g) there is a unit element. This we denote by 1

and it is given by

(¢.8) 1(e)= 1 and 1(a)= O for a¢ e

Eence we have

Lemma 1. R(N,g) is a symmetric Banach algebra with unit
element..

Now turning to property V) for admissible sets N we see

that there is a matural action of the group r- on Ci(bgs)

provided g is [ ~invariant, In this case r. is reali-



zod ae a group of symmotrio automorphisms of Q(N,S) by de-
fining }t to be the map

(4.9) $T 0 a > §(aT), feqiNe)

for a¢N and Te I” . Becanse of (3.9) obviously always

(4.10) g({-'r) = ¢($)

Hence T can be considered as group of iscmetric automor-
phisms of Q(N,¢) provided g 1is I <invariant.
Finally we have to introduce the notation of support for
the elements of Q(N,g). Iz $€ Q(N,¢) than supp. £ is
defined to be the oclosure of tho union of all supp. a sa =
tistying §{(a) ¥ O

Now supp. a for any a6 K is tho closure¢ of an open set
in Minkowski space. Hence gupp, £ is the union of at most

countable many such sets, Therefore

(4.11) supp £ = closure § intemor of supp.§}

For an open set & of the Minkowski space we have

(8:22)  Q(N,,8)= { FeQNg): mpp f e &}
and for an arbitrary set A of space-time points

(4.13) A(Ng, )= N QN,g, ¥)
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with A ¢ & ama & open,

Now we may state (4.13) in another form. %€ Q (N,g, 1)
is equivalent with supp. § [ & for all A s&’,O’ open.
But every set is the interseotion of open sets. Hence
(4.14)
QIN,g, 8 § Se@iNg)isuppfe Al
for all sets A of Minkowski space.

In this way we see easily

(4.15)  QIN,g, 8.) &€ Q(N,8,8,) 4f B, A,
and furthormore

(1.16) RN, NAL) = Q GLIN,g,Ax)

where {Ag.g denotes an indexed system of subsets of the

Minkowski space, Let us note two consequences of (4.11).

Firstly
(4.17) QIN,g,2) € A(N;g,A)
with E = closure iinterior of A}

Proof: If $€ G (N,Q,A) them the interior of supp. f 1is
contained in the interior of A and hence supp. f is con-
tained in the interior of A and hence supp, f 3s oontai-
ned in the closure of the interior of A . From (4.14)

we see especially, that Q(N)g,A\ consists of the elements
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)\1 on)y if & 1is nowhore dense in Minkowski spaoce.
Seocondly lot & be an open bounded set of space=~time

points, If we have for the opon sets

(4.18) 0, < oi.-n VA

we oconclude

(4.19) VAN, D) = QIN,5, &)

Indeed, if f¢ &(VN,q,b) then supp. £ is compact and the
system of the sete U; is an open covering of supp, f.
Therefore a finite number of the 0"; is sufficient to co~-
ver supp. f. Because of the first condition of (4.18) we
have supp. £ C O’;° for a certain index ¢(, . Let us

further mention the action of an automorphism Te 7T :

(4.20) T QNG L) — Q(Ng, AY)

/The corresponding element of the Poincaré group is denoted
by T also/. One may cénsider Q(N,8) as the closure with
respect to g of a graded algebra., To explain this, we
consider an element @ € R which is not the zero of R,
Let us define {a] the largest of the natural numbers s with
the propertys There is decomposition

Az A,0,...0y , OQER

and the number of factors a"- with aJ-# aje, R ;\J'
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oomplex numbers equals s, For oxample [e]w & ,[a]s 1

1f a 1is of degree oneo, We now refer to the following leme

ma /see [8] for a proot/:

Lemma 2: Let be a,beé R and ab# O then

Lab]l = [al+ [bl
Now let be $¢ @Q(N,g) and 2 a complex number with
Il & 4 We define an endomorphism

(4.21) 5, -— N\ @ &
by
(4.22) Aef:o—> ACQ] f{Ca) torall a€e N

With the aid of lemma 2 we see by straightforward calcula-

tion that (4. 21) defines an endomorphism and that

(4.23) g(Aef) ¢ ¢($)

(s.24) (Ae§)* = T o ¢¥

(4.25) (Aef )T = Yo fT torall TeT
(4.26) sapp (Ae§) = supp §

is valid. Moreover, define for any f(— Q(N)g) the elcment
'S"«- to be the map



- 259 -

(4.27) a — 4f(a) i ae N, ralek

a ~>» otherwise
if otherwise

Obviously

(4.28) th - f with ig(-}“) ©¢(f)

and

(2.29) Ae § = 2)\"5—"

Therefore for any continuous linear forn (P of Q( N,g)
the expression { ¢, 9 °‘S’ > 1is holomorphic in 24 ftor
[Al& ! and

ft

(4.30) L@ 205D 2%“4‘1";‘5’%)

It therefore < ¢, ‘5’)’- O for real 9§ , I2le |

it follows ( ¢/, £, 50 , k= o,1,2,...

Now let be Yl closed subspace of Q(N,g) with kel e N
for real |A] <] . If fe¢ U ama Fr is defined

by (4.27) , then fké Yl . Namely every continuous linear
form which 1s zero on 2% is zero for the elements f'k by
the above arguments. Henoce because L 1isg closged, -S-ke YT
Shortly, a c¢losed linear subspace 7T is generated by

elements with the property

re § = A%F , 1141
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it and only if XA YL & YU for real %, IX1& 1.

We shall call such a subspace an homogencous one. A function,
defined on N and being zero with the acoeption of at most
a tinite subset of N 1is called finite. The set Qo(N)

of finite functions on N 1s a subset cf Q (N, Q) . The
more Q.(N) is a symmetric subalgebra of Q(WN,g) which

is dense in @& (N,g) .

(4.31) Q@ (N,g) = § closure in QN, g) of QOCN)}

There is a natural homoumorphism of Qo (N) onto R(N)
defined by

(4.32) A, : §— 2{(0.).51, fe Qo(N)

Let us further denote the kernel of this homomorphism by
I,(N) . Unfortunately only rather trivial things are
known about the structure of the ideal I,(N) . For
example, every T € T‘ may be considered as on automor-
phisms of Qo (N) as well as of R(N) . Tt is for

f€Qo(N)
(4.54) Le($T) = (Xof)T torelr Te T

and therefore

(4.35) I'(N)"" = J,(N) for all Te€T
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From the definition eof supp, £ we wee

(5.30)  suppd 2 twpp(Xef) , e QotN)

beoause supp. 4 = supp. a~> for all a¢ R, ated ¢ O
Now lot be §i+f, ¢ [J(N) and assume supp, f; ~ supp.?,
to be nowhere dense. It follows from (4.36) that supp.(X,$, )N
supp. (X. ﬁ;) is nuwhere dense, But Z.f, = 'X.'f; and
thus the supports of X,f; are equcl and nowhere dense,
Thercefore the support of x.f’; vairishes and x,j»;' is a
multiple of e, This is equivalent with
Lenma 3. It f +§,€I.(N) vut f,~§,(e)-1 ¢ I (N)

tor two elements {,, f, of Q,(N) then

supp. £; O supp 1,

contains an inner dcint.
Let us consider a further property of J,{(N) . The factor
algebra Q,(N)/IO(N) is isomorphleto R(N) and therefore
contains no divisors of the zero, The conclusion is: if
§g¢ To(N) then neither § nor § is contained in
I.,(N) . In other worde, J,(N) 18 a prime ideal,

Lastly let us mention, that under (4.32) the spectral

bebaviour of the elements will be changed. Consider an ele-
ment § which is different from zero only for one ae N

with f(a) = 1 , We have
Y(f-22)= @' -2e= f(e-Na) - 5'e 77

Therefore, 1f with a¢N also (1-2)'(e-Na)e N
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the olement Xy ($~21) is invertible in Qo/I.
5. Popitive linear forms

The reducing ideal of Q(N,¢) is defined to be the set
of all %Q QUN,¢)  with <Y, §>= O for all positive
continuous linear forms of O\(N)g),

Lemma 4. The reducing 1deal of Q(ng) is homogencous. To
prove this, we remark that {->A°§{ defines for real mm-
bers smaller 1 a symmetric endomorphism of Q(N,g) . Hen~
ce with ¢ the linear form Heo ¢ is a positive one
too., Hence the reducing ideal is homogeneous, We now get to
show some cases with trivial reducing ideal and list nece-
ssary condition for this,

Agsumption 13 The pre-norm g is a regular one,

Agsumption 2: The elements cof N? are strongly prime [6].
Remark: An element q of Q_ is said to be strongly prime,
if firstly ab € qR,a€9R impijes bEQR and if second-
1y abé Rq,a¢Rﬁ implies b€ P\,q . It can be shown [6],
that an element o' of R the highest ocomponent of which is
prime /indecomposible/ is strongly prime, This applies espe-
cially to every element of the first degree,

Assumption 3t The elements of N? are normal ones, i.e

£ 3

(5.1) qq* = 99 for all q & Np.

We denote by oC.(N,g) the closed ideal of Q(N,g)
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generated by the eloments -}‘3* szf with supp{»'v supp g’
With .[(N,g) we denote the closure in Q(N,¢) of £L%AN,¢)

with respect of the following set of seminorms:

.2)  N§NE = 2 gl fo]

falsn

Clearly, the system

QWN,g,8) A LIN,g) def
(5.3) A - / = BN, ¢2)

LIN3)
where A runs over the /open/ sets of Minkowski spaoce is

a8 local system of normed symmetric algebras oontained in

(N,9)
(5.4) B(Nye) = & 8/.C(N,g)

Lemma 5, Under the agsumptions one to three the algebras
Q(N,g) and B(N,g) are reduced ones, i.e,
for every of its elements there exists a conti-
nuous linear form, nonvanishing at the given ele-
ment.,

Proof, Because of assumption 2 the elements of N allow

for an almost unique prime factor decomposition /see lemma

6/: two such decompositions differ only by different orde-

ring of the factors, hence

(5.5) g(ab) = g¢la)glh)

because of assumption 1,
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[

Now consider in R the group generated by the elements N,
This group we oall G, We construct in the usual manner [3]
a faithful representation of G, We denote by II the Hilbert
space consisting of all complex valued functions on G sa~

tisfying

(5.6) 2 1)< oo

acq

The scalar product is of course

(0 (hop) = 2 E@ ),
For every b from G the operator

(5.10) Uk) :  fla) — §(ba)
18 unitary. The more,

(5.11) b = Ulb)

is a faithful representation of G, Now we try the follo-

wing ansatz for fe& Q(Ng):

AU«
(5.12) g
= fteyuce) +3-¢f(" 201 (Ul ten] ...

with o [utady+ wian]

a'azv'l Q,‘l q, ; a&e '\’r
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For a moment let us assume that this is a good definition,

then obviously
(s.13)  BAGHN ¢ 2 1f(@)]¢ta) = ¢CF)
(s.14)  AU®) = A'cH)

By simple algebraics one also finds

(5.15) Atg) = A$)ACE)

In general, however. (5.12) is 111 defined. But the peculiar
assunptions two and three for N prevent us from this desea-
se, Indeed, one can prove [6].

Lemma 6: l.et be
(5016) alql-v- ah s b'b&.'b bn

with strongly prime 4; and b, . Then the bk
are a permutation of the Q; , All relations of
the form (5.16) are consequences of relations of

the form
(5.17) AnQm = Ay Ay ; Qu,04 Strongly prime

Furthermore, if the a5 are normal elements this

implies
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(5.18) Qn q: - q; On

In this way we see that (6.12) defines a4 representation
of @Q(N,¢) in H . Now let be $ homogeneous of de-

gree N , Consider
(5.19) AP E.=1 f.e)=1, f(a)= O otherwise

Let be &< 4,Ay... Ry, an element of N of degree h

with strongly prime Q. for all k . Then
-n
(5.20) M(e) = 2 g(a){ta)

and we have

G.21) I 3 HDE N> 27" T 10 gha

falen
Obviously this is a lower bound for the minimal regular
norm in @ (N,€) . Now because § has been chosen homo-
geneous but otherwise arbitrary, the reducing ideal does not
contain homogencour elements different from the zero. Hence
by lemma 4 the assertion is proved for @(N,g).
Now J (N, @) is homogeneous and because of (5.21) and
the closure of this idezl under the seminorms (5.2) the
maximal homogeneous subspaces of -[(N,g) are complete
with respect to the minimal regular norm of Q_(N,s).
Henoe in @ (N,g) the ideal L(N,¢) 1is closea with
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rospect to the minimal rogular norm, and oconseguently

Q(N,g)/ LIN,8) is reduced,

6, Elements, bounded from below

llere we consider elements of R which are - in a more
or less heuristic sense ~ bounded from below: In every re-
pregentation A of I by unbounded operators in a Hilbert
space, such an element a gives rise to an operator A(a)
with the following property: There exists an bounded opera-—
tor B with B-A(a) = identity in the domain of defini=

tion of A . First we define the sets

M, = faeR: ¥a-ree K for certainreal A >0 |
(.
M,_ s {aek : qa"_)& e K for certain real 7\)0}
Obviously
- .o *
(6.2) M, = faeR:a €M, 1 =M

Because the zero-components are non-negativ for the ele=-
ments of K s the zero-component of every element of M:i
18 non-vanishing, Clearly, M‘i is oclosed with respect to
the multiplication with non-vanishing constants. Further-
more, M;cs M5 if T 1is a symmetric endomorphism, that

is not identical zero,
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Finally, we consider two elemonts 4, and @, of /eay/ M‘,

Then
(dqd,_”a‘d,_- )1)1‘ L a:(a"q"’ 3.&)0;"‘ al(a:al-al‘)‘ K

for suitable A; > O , Therefors M, is a multiplica-
tively closed sot /a semigroup with respeot to the multi-
plication of R / and because of (3.2) the same is true
for M!. . There are of oourse plenty of elements in the
sets M3 . For instance oonaider an hermitian element

*

a= o and a purely imaginary number A . Then atue

is in M1r\ Mz . This ie also true for a € K and
real M > 1] « Now we define

(6.3) M= §aeR:aeMAM, , a(e)=l §.
The considerations above show
(6.4) M¥e M , MMEM

i.e. M 1s closed with respect to the involution and the
multiplication of R . For every symmetrio endomorphism
T# O we have

(6.5) Mt ¢ M.

Hence M 1is an admissable set, Consider a symmetric

/eontinuous/ representation
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(8.8) A: a-> A(a)

, a¢ R

of R into a Hilbert space ¥ . This implies that

\/ there exists a dense linear submanifold D of W
which is the common domain of definition of all the
operators Aa) and that

a/ D is stable under A(a) : Aca)D e D _

The meaning of the terminus vgymmetric" 1s A(ol*) & A*(a)

For every a €& R the map

) @ = oy Aare)

determines a positive linear form on R . Let us consi~

der this in the case Q€ M . Then

»
(6.8) (w,A(%G°7‘°)°")20 , A>0
with certain A and all W €D . Hence

(6.9) I Alaye I 3 A-lewl | 2l weD

Let us denote by S(&) the largest number .\ such that

(6.9) bholds. One gets

s(aa) >0 ’ S(e) =]
(6.10)

SCab) 2 SCa)Scb)

Form this we can construct a pre-norm on M by defining

(5.11) ¢ta)* [ sta)sta®) 17
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