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GROUP STRUCTURES WITH INTRINSIC MASS SPLITTING
A.UHLMANN

1. Let us denote by T' the Poincaré group and by
a>U(o), o€l (1.1)

its unitary representation in' a Hilbert space of states. We assume the
gxistence of a «broken» (compact or noncompact) internal symmetry group
. Let

t >V (%), teS (1.2)

be a unitary representation of S in the Hilbert space H. Here £ serves to
label such representations: if s¢I' is fixed clearly,

t>U@EVENU*@O) =V (7 (1.3)
is again a representation of S in H, which is, in general, different from (2), be-
cause not all the internal symmetry operators commute with the Lorentz gene-
rators. Therefore we come to the following, rather general picture: in addition

to S, the internal symmetry group, there is a topological space I on
which the Poincaré group acts as a group of transiormations

EeD—>tel, ocl. (1.9
The points & of T label a set of unitary representations of S
>V (§1), 1€S, Eek (1.5)
in such a way that
U@VED)U*@=V(E 1), o€l (1.6)

is valid.
Let us introduce two further notations. In S there is a subgroup S,
of exact symmetries. The elements 7, of S, may be characterized by

te€S:V(:7) (1.7
is independent of ¢.

Next let us consider a point & of the space L. The set of all trans-
formations o € I' having ¢ as a fix point is a subgroup I'(f) of T':

cel(§):8° =& (1.8)
I'(¢) consists of all such elements ¢ that V (¢,7) commutes with the repre-
sentation (1).

2. Because U (q),V (£,7) are unitary operators in the Hilbert space H,
we may consider the smallest group of unitary operators which contains
all the U (o) and V (t,7).

This group of unitary operators may be considered as a unitary rep-
resentation of an abstract group G. Due to a theorem of Raifeartaigh [4]
this group cannot be a subgroup of Lie group, provided (l.1) contains
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discrete irreducible parts with different masses. Moreover it is possible (and
in some sense even natural) that one cannot usefully consider G as a topo-
logical group in the sense that the group multiplication is continuous si-
multaneously in both of its factors. Let us summarize. There is an abstract
group G containing the Poincaré group I' a set of subgroups S(§) with
EcX. X denotes a space that admits the Poincaré group as transforma-
tion group. It is ‘

oS(¢E)s1=S8(), cel. 2.1

In the following we shall consider sometimes not the group but its
Lie algebra. For non-Lie groups this implies convergence problems inclu-
ding questions concerning the domain of definition of some unbounded
self-adjoint operators. Here we will not discuss these difficulties but men-
tion that they can be settled at least in some simple examples.

3. Here we mention examples and explain how the structures described
above may occur.

A. Werle-Formanek-structures. Werle [5] and Forméanek [1] have con-
sidered an interesting class of (non-finite) Lie algebras. To these algebras
there corresponds a group structure with the property: I is isomorphic to
the Minkowski space and T (£) is the homogeneous Lorentz group that lea-
ves fix the point &. '

This property is most convenient for the purpose of mass splitting,
because the outer automorphisms of the Poincaré group which «change the
mass of an irreducible representation» just commute with a homogeneous
Lorentz group.

Let us describe a relevant example of such a structure by means of
one of its unitary representations: assume H, to be an irreducible repre-
sentation of the Poincaré group I' with spin 1/2 and mass m, (k = 1,2,3).
V’\z/e can represent the elements of H, by one-particle wave functions

Iy (x). Now in
H=H,+ H,+ H,4 3.1)
there is given by definition a unitary representation (1.1) of the Poincaré

group. Denote with & an arbitrary point of the Minkowski space and de-
fine the numbers b such that

b[kmk =m; . (3.2)
If ueSU(3) is a unitary matrix, we define V (¢,u) to be
k i
V (5u) Uy (x) = Y ur; Ty (bej (x —E) + E). (3.3)
i

It is easily to be seen, that the Poincaré operators and (3.3) generate an
«infinite parameter» subgroup of the group of all unitary operators of H,
provided the masses m, are different one from another.

Because of the construction clearly we have found a group containing
the Poincaré group and allowing for ‘representations with discrete, non
degenerate mass spectrum. Besides the constructed one, further represen-
tations of the same group with discrete mass spectrum are known [2,3].
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Now, though the group admits a discrete mass spectrum, it does not
fix this spectrum by its group structure. One can see that the structure
of the above mentioned group does mnot depend on the values bz (if the
masses are different at all). The more, Werle [5] has remarked the possi-
bility to fit every given mass spectrum in a representation of a suitable
group if we allow e. g. the bz to be functions of SU (3) operators. This
may be considered a shortcoming of the theory. However, one may rest-
rict this arbitrariness by imbedding the group constructed above in a lar-
ger group. On the other hand one has to prevent the group to become
a too large one, because then there may exist up to conjugate represen-
tations only one with a discrete mass spectrum.

13

Remark. Let W, (x) be three «quarks fields. Choose the numbers b such that
b, mp =const and consider the vacuum expectation values constructed by using the ope-
rators )

k k
Ty (b x), Wy (br 9)- 3.4

These expectation values do mot satisfy all the Wightman axioms: they are not trans-
lation invariant. However, we may require for them exact SU (3) invariance. Then the
proper Wightman functions admit the infinite parameter group constructed above.

B. A possible connection with the currents. Formally, a set of currents

j2(x) gives rise to a structure (1.5) by defining the generators of V (n,7)
to be

F (n,4) :gj:dfm. (3.5)

In this case, £’ is the 4-dimensional space of all flat spacelike hypersur-
faces of space-time. The group T (v) contains rotations and space-like
translations.

However, there may be a link to the case A. Let ¢ be a world point
and definite the hypersurface £(s) to be the one given by

g™ (Xn — En ) (Xm —Em) = s2> 0. (3.6)

£(s) is a space-like surface and if there are no zero-mass particles present,
the integrals

F(EA)=lim| jhdfm (3.7)
s—0 &(s)

should exist in the same sense as (3.5) exists. Furthermore, one may hope
the lines tc make sense in a distribution topology.

4. In the following we give a set of operators and a set of commu-
tation relations corresponding to a (non-finite) Lie algebra, more general
than the Werle-Formanek type. We come to this structure starting with
the generators of T and V (¢,t),t € S for some fixed ¢ X and trying to
close the commutation relations and thereupon enlarging the algebra furt-
her. Let us mention in advance, that the relations between two sets of
generators, belonging to different points &, contain infinite sums (similar
to the coefficients of Taylor expansions of one function at different points).
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In the following we shall not write down explicitly the dependences
on £. We denote the Lorentz generators by

Mnm, pPi - 4.1
Now let us consider besides S an upper sequence of Lie groups
S, =S5, < ... (4.2)

It is worthwhile to remark that the way of imbedding the group S, in
the group S, is very important. We denote the Lie algebra of a group
S, by LS, and we consider the sequence of Lie algebras

LS=LS,cLS,<=... (4.3

Now we write down a system of generators of the Lie algebra LG of
an infinite group G. This system consists in the Lorentz generators and
in other generators denoted by

F(), Fu(\), Fo (M), ... . (4.4)

These are symmetric in the indices, which run over 0, 1, 2,3 and \ ran-
ges in
LS for F(}),
LS, for F,(A), 4.5)
LS, for Fpp, ..n, -
Furthermore, the F, should depend linearly on \. Before writing down
the commutation relations we introduce an abbreviation. With «, B, ...
we denote index sets. « may be the empty set or may consist of n indi-
ces. With af we denote the union of the two index sets a, B. The number
of indices in the set « may be called its degree and shall be denoted by
|la]. Now we may rewrite all the generators (4.4) and the condition (4.5) in
the following way:
Fa (}\), A € LSM, (46)

a= {2}, {n}, {n, m}, ....

Now we summarize the commutation relations which generalize the
Formanek ones [1]:
a) the Poincaré generators obey the usual commutation relations;
b) it is
[Fa (), Fs(\)]l= Fop([A, N]) (4.7)
with two (possibly empty) index sets;
c) with respect to M,,, the Fs are tensors:

. .\ .
[Mnm1 F[, geeey [s] = "Zlgn[i F[,, cees My +eey iS —1 )ngf,‘ F“ ..... My ooy [s) (4.8)

d) the relations (4.7) and (4.8) are compatible with
[Pj, Fu(N]=iFs (D)) (4.9)
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if and only if D is a derivation from LSj. into LSja+1. This means: D is
a linear mapping from the Lie algebra LSy, into the Lie -algebra LSjq+1
which is compatible with the inclusion (4.3) and which obeys

Dr, V] = DA\, M+ [\, DV (4.10)

Remark. The set of generators (4.6) with the restriction [of >m performs an ide-
al Ty, of LG. Especially

LG/T, = LT, LG/T, =~ LT @ S. (4.11)

5. Let us now consider the form of the mass operator in a special
case. Assume there is an element p € LS, with the property '

Dk = i [A, p]. (6.1)
Then it follows because of (4.7) and (4.9)
[Pj—Fi(@), FaM)]=0 (5.2)
for arbitrary A and index set a. Hence we can write
Pj=P;+ F;(p) (5.3)
and consider
P, P" (5.4)

as invariant of the total group G.

Now let S be semi-simple. As we have LS — LS, we can consider the
decomposition of LS, in subspaces irreducible under LS. So we can do
with the element p:

p= Dy, (5.5)

The index % labels the irreducible representations of LS contained in LS;.
Therefore

Pj=B;+ Y Fi(w) (5.6)
k

and the imbedding in LS, of LS determines the structure of the four momentum
operator with respect to the «brokem» inner symmetries S. For the purpose

of mass splitting it is therefore sufficient to restrict ourselves on group
sequences (4.2) with

Sc8=8,= - 5.7)
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