Ласснер Г., Ульман А.

E2-3583

О точных представлениях алгебры основных функций

В работе показано, что топологическая * -алгебра основных функций обладает точным представлением в некоторой алгебре (неограниченных) операторов в сепарабельном гильбертовом пространстве.

Препринт Объединенного института ядерных исследований. Дубна, 1967.

Lassner G., Uhlmann A.

E2-3583

Faithful Representations of Algebras of Test Functions

It is shown that the topological *-algebra of test functions for Wightman fields can be faithfully represented as an algebra of (unbounded) operators in a separable Hilbert space.

Preprint. Joint Institute for Nuclear Research.
Dubna, 1967.

G.Lassner A.Uhlmann

FAITHFUL REPRESENTATIONS
OF ALGEBRAS OF TEST FUNCTIONS

1967

1. Introduction and Definitions

This article is a continuation of a recent paper $^{\left|1\right|}$ about the topological *-algebra of test functions $^{\left|2,3\right|}$ in the Wightman axiomatical quantum theory. The results are obtained for a more general class of "test functions" algebras R . It is shown that the topological *-algebras R are reduced (semisimple, in the sense of Rickart) and consequently, they can be faithfully represented as an algebra of (unbounded) operators in a Hilbert space H . If the topological algebra R is separable so the representation space H can be chosen separable, too.

rations are assumed. With these operations R is a topological * -algebra over the complex field. In the usual cases in $\binom{2,3}{}$, where R = S (Mⁿ) resp. D(Mⁿ) (the well-known Schwartz' spaces) and M is the Minkowski space, all assumptions are satisfied.

For two sequences a_0 , a_1 , ... and β_0 , β_1 , ... of positive numbers we define in R the norm $\|a\| = \sum_{n \geq 0} \alpha_n \|a_{2n}\|_0 + \sum_{n \geq 0} \beta_n \|a_{2n+1}\|_0$ Beside the basic-topology, this means the direct-sum topology, we regard in R a second topology defined by the norm $\|\cdot\|$ which is called the norm-topology in R. With respect to this topology R becomes a normed linear space, but not a normed algebra. This norm-topology is weaker than the topology in R, defined by the topological direct sum.

Let K_o be the convex cover of the set of elements a^*a for $a\in R$. It is easy to see that K_o is a cone in R, i.e. for k, $k'\in K_o$ and two arbitrary positive numbers s,t it is $sk+tk'\subseteq K_o$ and if $k\in K_o$ and $k\neq 0$ then $-k\notin K_o$.

In $\frac{1}{1}$, Theorem 1, it is proved the following

Lemma 1

The sequence α_0 , α_1 ,... in the definition of the norm $\|\cdot\|$ can be chosen so that in R the topological closure $K_{\|\cdot\|}$ of K_0 with respect to the norm $\|\cdot\|$ is a cone. Consequently, the topological closure K_0 of K_0 in R with respect to the direct-sum topology is a cone, too, because K_0 C $K_{\|\cdot\|}$ holds.

The sequence β_0 , β_1 ,...can be chosen arbitrary positive. In the following $\|\cdot\|$ is always the norm from Lemma 1.

2. Positive Functionals on R

Theorem 1

For each b \in R , b \neq 0 , there exists a positive continuous linear functional $W_b(a)$ on R with $W_b(b) \neq 0$ and $W_b(k) \geqslant 0$ for $k \in K_{||}$ || • For $b \in K_{||}$ || the functional $W_b(a)$ can be chosen so that $|W_b(a)| \leq ||a||$ holds. Consequently, the topological *-algebra R is reduced (||4||, p.270).

Proof:

Let first b \neq 0 be an element of K $_{||}$. It is 0 $\not\in$ b + K $_{||}$ || , because K $_{||}$ is a cone. Further let U = { u : || u || <\delta\$} be such a neighbourhood of the origin, that U \(\cap (b + K \) \) = \(\sigma \) holds. Now we define L = \{ i (k_1 - k_2) : k_1 , k_2 \in K \) \(|| \) |, i^2 = -1 \} and K_1 = \{ k + sb + su : k \in K \) || ||, s \geq 0 , u \in U \} . L is a real linear space in R and K_1 a cone with the interior point b and we find L\(\lambda K \)_1 = \{ 0 \} (the origin). For if a = i(k_1 - k_2) = k + sb + su \in L\(\lambda K \)_1, k_1, k_2, k \in K \| || || , u \in U , s \geq 0, it follows a* = -a , i.e. k + sb + su* = -k - sb - su and finally k + sb + su \(1 = 0 \), u_1 = \(\frac{1}{2} (u * + u) \in U \) . If s > 0 , then it would be \(\frac{1}{3} \) k + b \in U and this is a contradiction to the construction of U . Therefore we have s = 0 and consequently k = 0 , too, i.e. a = 0 . Now we use

Lemma 2 (Mazur S.)

Let K be a convex set with an interior point b in a <u>real</u> locally convex space R and L a linear subspace of R which does not contain an interior point of K. Then there exists a linear continuous functional f(a) on R with $f(k) \ge 0$ for $k \subseteq K$, f(b) > 0 and f(a) = 0 for $a \subseteq L$

If we regard R as a normed linear space over the real field, it follows from this Lemma the existence of a real linear continuous functional f(a) on R with f(a) = 0 for a \in L , f(k) \geq 0 for k \in K $_1$ and f(b) > 0 . Then $\mathbb{W}_b(a) = \mathfrak{f}(a) - i$ f(ia) is a linear functional on the complex linear space R $_1$ continuous with respect to the norm-topology in R and it holds $\mathbb{W}_b(b) \neq 0$ and $\mathbb{W}_b(k) = f(k) - i$ f(ik) = f(k) \geq 0 for k \in K || || , because i k \in L . This implies $\mathbb{W}_b(a)$ is a positive functional on the algebra R . Evidently, we can choose $\mathbb{W}_b(a)$ so that $|\mathbb{W}_b(a)| \leq ||a||$ holds. Of course, these functionals are continuous with respect to the basic-topology in R $_1$, too.

Because for every $b=a^*a\in K_{||\ ||}$ a positive functional $W_b(a)$ with $W_b(b)\neq 0$ exists if $b\neq 0$, there exists such a functional for an arbitray $b\neq 0$ of R ($|\ ^4|$ p. 271) which is continuous with respect to the basic-topology. In general, it is not continuous with respect to the norm $||\ ||$.

Corollary:

The set $\{W_b:b\in K_{||}\}$ of these positive functionals is a relatively bicompact set in the weak topology in R ' (the dual space of R).

The Corollary follows from well-known facts $\binom{|6|}{}$, because for these functionals $|W_b(a)| \le ||a||$ holds and consequently, they are equicontinuous.

3. Faithful Representations of R

Theorem 2

The topological *-algebra R can be faithfully represented as

a *-algebra of (unbounded) operators in a Hilbert space H .

If the algebra $\,^{\rm R}\,$ is separable, the Hilbert space $\,^{\rm H}\,$ can be chosen separable, too.

Remark:

In the usual cases for Wightman fields, where R is the tensor algebra over S (or D) $^{/2,3/}$, i.e. $R_n = S^{4n}$ (or D 4n), R is separable.

Let us first recall the definition of a faithful representation.

<u>Definition</u>: A representation of a topological *-algebra R as (unbounded) operators in a Hilbert space H is given, if for every $a \in R$ there is a linear operator A(a) in the Hilbert space H so that

1. for all $a \in R$ the domain D(A(a)) = D is the same dense subspace of H and D is invariant for all A(a), $A(a)D \in D$, and it holds $D(A(a)^*) \supseteq D$.

2. for a, b \in R and $\phi \in$ D it holds $A(ab) \phi = A(a) A(b) \phi$, $A(a + \beta b) \phi = \alpha A(a) \phi + \beta A(b) \phi$ and $A(a^{i}) \phi = A(a) * \phi$

3. $(A(a) \phi, \psi)$ with $\phi, \psi \in D$ is a continuous function on R.

The representation A(a) is said to be faithful if $a \to A(a)$ is an one-to-one mapping.

Proof of Theorem 2

Let \mathcal{F} be a system of positive functionals on \mathbb{R} such that for each $a\subseteq\mathbb{R}$, $a\neq 0$, in \mathcal{F} one can find a positive functional $\mathbb{W}\in\mathcal{F}$ with $\mathbb{W}(a^*a)\neq 0$. By Theorem 1 such a system \mathcal{F} exists for \mathbb{R} . Then for each positive functional $\mathbb{W}\in\mathcal{F}$ by the Neumark-Gelfand-Segal construction there exists a cyclic representation $A_{\mathbb{W}}(a)$ of \mathbb{R} in a Hilbert space $H_{\mathbb{W}}$ with an invariant domain $D_{\mathbb{W}}$ and a cyclic vector $\phi_{\mathbb{W}}$. For this representation it holds $\mathbb{W}(a^*a) = \|A_{\mathbb{W}}(a)\phi_{\mathbb{W}}\|^2$. Let $A(a) = \bigoplus_{\mathbb{W} \subseteq \mathcal{F}} A_{\mathbb{W}}(a)$ be the direct sum all these representations $A_{\mathbb{W}}(a)$. This is a representation of \mathbb{R} in the Hilbert space $H = \bigoplus_{\mathbb{W} \subseteq \mathcal{F}} H_{\mathbb{W}}$ with the invariant domain $D = \sum_{\mathbb{W} \subseteq \mathcal{F}} D_{\mathbb{W}}$. This representation A(a) is faithful, because for each $a \neq 0$ there exists a $\mathbb{W} \subseteq \mathcal{F}$ with $\|A(a)\phi_{\mathbb{W}}\|^2 = \|A_{\mathbb{W}}(a)\phi_{\mathbb{W}}\|^2 = \|A_{\mathbb{W}}(a)\phi_{\mathbb{W}}\|^2 = \|A_{\mathbb{W}}(a)\phi_{\mathbb{W}}\|^2 = \|A_{\mathbb{W}}(a)\phi_{\mathbb{W}}\|^2 = \|A_{\mathbb{W}}(a)\phi_{\mathbb{W}}\|^2 = \|A_{\mathbb{W}}(a)\phi_{\mathbb{W}}\|^2$

Now we must yet prove the second assertion of the Theorem. If the algebra $\,^R$ is separable so the Hilbert spaces $\,^H_w$ are separable, too. Consequently, the second assertion would be proved , if for a separable $\,^R$ the system $\,^G$ could be chosen countable. To prove this we use the

Lemma 2

If X is a separable linear topological space and G a bicompact set in the weak topology in X' (the dual space of X), then the weak topology in G can be given by a metric $\frac{1}{6}$.

Let G be the weak closure of the set $\{W_b:b\in K_{||}\}\}$. G contains only positive functionals and by the Corollary to Theorem 1 G is bicompact in the weak topology in R. In consequence of the last Lemma, G is a bicompact metric space and therefore separable. Let G be a countable dense subset of G, then G has the desired properties.

References

- 1. G.Lassner, A.Uhlmann. On Positive Functionals on Algebras of Test Functions for Quantum Fields. Dubna preprint, Comm. in Math.Phys., to appear.
- 2. H.J.Borchers. On the Structure of the Algebra of Field Operators. Nuovo Cimento, 24, 214 (1962).
- 3. A.Uhlmann. Über die Definition der Quantenfelder nach Wightman und Haag.Wiss. Z.Karl-Marx- Univ. Leipzig 11, 2, 213 (1962).
- 4. M.A. Neumark. Normierte Algebren. Berlin, VEB Deutscher Verlag der Wissenschaften 1959.
- 5. M.M.Day. Normed Linear Space. ch.I, §6, Springer-Verlag, Berlin-Göttingen-Heidelberg 1958.

8

6. N.Dunford, J.T.Schwartz. Linear Operators, I, ch.V New York-London, Interscience Publishers.

Received by Publishing Department on November 4, 1967.