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Faithful Representations of Algebras of Test Functions

It is shown that the topological * ~algebra of test functions

for Wightman fields can be faithfully represented as an algebra of

(unbounded) operators in a separable Hilbert space,
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1. Introduction and Definitions

This article is a continuation of a recent paper [ about the topo-
logical * _algebra of test functions/ 2.3/ in the Wightman axiomatical
quantum theory. The results are obtained for a more general class of
"test functions" algebras R . It is shown that the topological * —al
gebras R are reduced (semisimple, in the sense of Rickart) and conse-
quently, they can be faithfully represented as an algebra of (unbounded)
operators in a Hilbert space H . If the topological algebra R is

separable so the representation space H can be chosen separable, too.
&Y

We repeat the definitions of . The topological * —algebra
is the topological direct sum R =n@ Rn , where Rg=C is the
field of complex numbers and R, for n=1,2,. is a locally convex

linear topological space (over the complex field) of complex-valued functi-
(n)

ons on M =Mx ... xM (n times). M is a point set (the Minkowski
space, for example). We assume laally = . S,l{lf@i« a (x j,eeonx o to
be a continuous norm on the topological space R, . The multiplication
in R for two elements a =n220 a, and b =n§°bn is defined by
ashb =n§'_o (ab ), with  (a.b) =k+§=nak(x" R TR > € ST ceex )
and the * _operation is defined by a*ango(a*)n with (a*)_(x;,..,x )=
m ap (xp,eeenxy) (the bar labbels the complex conjugate function). The
existence of awb and a* in R and the continuity of these ope-



rations are assumed., With these operations R is a topological

* -algebra over the complex field, In the usual cases in /23 y» where

R_=S(M") resp. D(uM®) (the well-known Schwartz’ spaces) and M

n
is the Minkowski space,all assumptions are satisfied,
For two sequences ao. al. .. and /30. /31..- of positive numbers we
the norm a1t = S anllaanlly + Fo8 .11 gy llo

Beside the basic-topology, this means the direct sum topology, we regard

define in R

in R a second topology defined by the norm || || which is called

the norm-topology in R ., With respect to this topology R becomes
a normed linear space, but not a normed algebra., This norm-topology is

weaker than the topology in R , defined by the topological direct sum,

Let k, be the convex cover of the set of elements a*a for
aGR . It is easy to see that K, is a cone in R , i.e. for k ,
k’ &K, and two arbitrary positive numbers s,t it is sk + tk *G-K °

and if k€K, and k¥ 0 then -k & K, .,

In [ » Theorem 1, it is proved the following

Lemma 1

The sequence a, a ... in the definition of the norm || || can be
chosen so that in R the topological closure KH 1l of K, with res-
pect to the norm || || is a cone. Consequently, the topological closure

Ko of Ko in 'R with respect to the direct-sum topology is a cone,

too, because K, C Kll I holds.

The sequence ,80 s ﬁl,,,can be chosen arbitrary positive, In the

following H H is always the norm from Lemma 1,

2. Positive Functionals on R

Theorem 1

For each b&GR , b # 0 , there exists a positive continuous linear
functional W, (a) on R with W, (b)¥ 0 and Wb(k) 20 for k&K .
For b G—K” I the functional W, (a) can be chosen so that |W, (a)|<||a ||

. . 4
holds., Consequently, the topological * -~algebra R is reduced( ,

p.270).
Proof:

Let first b ¥4 0 be an element of K LItis o ¢ b o+ K K hecause
| u |]<8}

= ¢ holds. Now we define

¥ is a cone. Further let U =1{ u be such a neighbour-

I
hood of the origin, that un (b +KH ”)
. 2 ae K ={k +#+ sb +su: k&K
Lo=lilk =k, )k ky @Ky 1} and K, * e
s>0 , uc U} . L 1is a real linear space in R and Ki a cone with

the interior point b and we find LNK,={0} (the origin). For if

. Rt >0, s
a=1(k1—k2)=k+sb+su GLﬂK‘, kl,kg,kG-K” H ,u&eU , s 2 it
¥=2ek=sb —su

follows a*=- a , l.e. and finally

k + sb + su
k+sb+sul=0,u‘=—12—(u*+u)C—U LI s >0 , then it would be
L k + b @ U and this is a contradiction to the construction of U .
’I‘l:erefore we have s= 0 and consequently k =0 | too, i.e, a =0 .

Now we use
Lemma 2 (Mazur S.)

Let K be a convex set with an interior point b in a real locally
convex space R and L a linear subspace of R which does not
contain an interior point of K . Then there exists a linear continuous
functional f (a) on R  with f(k)>0 for k GK, f(b) >0 and f(a) =0
for a& L /sl .

Ot



If we regard R as a normed linear space over the real field,
it follows from this Lemma the exiStence of a real linear continuous functio-
nal f(a) on R with fla)=0 for a &L ,f(k) >0 for k&K, and f(b)>0 |
Then Wb(°)= f(a) —i f(ia) is a linear functional on the complex linear

space R4 continuous with respect to the norm-topology in R and it

holds W (b)# 0 and W {k)=fk —iflik = f(k)> 0 for k & Ky,
because ik& L . This implies W (a)is a positive functional on the
algebra R . Evidently, we can choose W,(a) so that [W,(a)| < | a Il

holds. Of course, these functionals are continuous with respect to the
basic-topology in R , too. A

Because for every b = a*aG‘KH I a positive functional Wb(a) with
W, (b) # 0 exists if b # 0 , there exists such a functional for an
arbitray b o 0 of R ( [ 4l p. 271) which is continuous with respect
to the basic-topology. In general, it is not continuous with respect to the

norm || 1| .

Corollary:
The set { W, :b&K | of these.positive functionals is a relatively

bicompact set in the weak topology in R’ (the dual space of R ).
The Corollary follows from well-known facts 6l , because for these

functionals | W, (a) [<1l all holds and; consequently, they are equiconti-

nuous,

3, Faithful Representations of R

Theorem 2

The topological * _algebra R can be faithfully represented as

a * _algebra of (unbounded) operators in a Hilbert space H .

If the algebra R is separable, the Hilbert space H can be chosen

separable, too,
Remark:

In the usual cases for Wig/htman fields, where R is the tensor
/2,3 . . n
algebra over s (or D ) el R = s (or p* ), R is se-
parable,

Let us first recall the definition of a faithful representation.

Definition: A representation of a topological * ~algebra R as ( un-
bounded) operators in a Hilbert space § is given, if for every a @ R
there is a linear operator A(a) in the Hilbert space H so that

1. for all @ & R the domain D(A(a)) = D is the same dense sub-
space of H and D is invariant for all A(a)
holds D(A(a)*) 2 D

., Aa)D C D , and it
2, for a, bR and ¢ & D it holds A(ab) ¢ = A(a) A(b) ¢ ,
Alaa +Bb)¢ =aAla)p +BA(b) ¢ and A(a*)¢ =A(a) *¢

3. (A(a) ¢ ,¥) with ¢, ¥y € D is a continuous function on R

The representation A(a) is said to be faithful if a » A(a) is an one-

to-one mapping.

Proof of Theorem 2

Let ¥ be a system of positive functionals on R such that for
each a @ R,a4 0 ,in § one can find a positive functional W & ¥
with W(a*a) ¥ 0 |, By Theorem 1 such a system J exists for R .
Then for each positive functional ¥« ¥ by the Neumark-Gelfand-Segal
construction there exists a cyclic representation A, (a) of R in a
Hilbert space Hy with an invariant domain D and a cyclic vector

¢, . For this representation it holds W(a*a) =|| A la) b H? . Let
A(a) -‘@f’__ltw (a) be the direct sum all these representations Ay(s) .
This is a representation of R in the Hilbert space H -‘@?ﬂw with
the invariant domain D =3 D, . This representation A(a) is faithful,
because for each a # 0 there exists a W& F with || A(a) <;Sw||2 -

=l Aga) gy || =Wia*a) 4 0 .



Now we must yet prove the second assertion of the Theorem. If
the algebra R is separable so the Hilbert spaces H  are separable,
too. Consequently, the second assertion would be proved , if for a sepa-
rable R the system ¥ could be chosen countable, To prove this

we use the

Lemma 2

If X is a separable linear topological space and G a bicompact
set in the weak topology in X’ (the dual space of X ), then the weak
topology in G can be given by a metric 6l .

let G be the weak closure of the set | LN bG-KH ”l . G con-
tains only positive functionals and by the Corollary to Theorem 1 G is
bicompact in the weak topology in R’ . In consequence of the last
Lemma, G is a bicompact metric space and therefore separable, Let

i be a countable dense subset of © , then ¥  has the desired

properties.
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