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troduotio
At the end of the summer 1964 an approximative SU(6) symmetry

was discovered by SAKITA {1} and by Girsey & Radioati [2} ; see
also ZWEIG [3} . The iuportance of SU(6) symmetry should be viewed
not only from the astonishing progress in oalculating properties
of the "low lying™ hadrons which has become possible now: This first
sucoessful connectlion of 8yramic (or rather kinematic) symmetries
with internal ones seems to dlctate us some new direutions of
research 1ln the fundamental law domain of nature's secrets.
S8U(6) symmetry appears to be a generalization of Wigner's super-
multiplet theory of nucleii {X} s the gsrneralization 1s performed
both in replacing the isospin group by the unitary symmetry group
su(3) [5], (6] end in considering the so-called quarks (aces) as
well as antiquarks {7] , [8] as "fundamental" partioles and not the
nuoleons.
To see the remarkable feature of Wigner's theory let us abbreviate
rt , of, P}y 0y (pT~ proton with spin "up") by the integers 1,2,3,4
Nuclear foroces atre sy:metric with respsct to both the angular momen-
tun group (rotation group) SU(2)(J) snd the isospin group SU(2)(I)j
henoce the eoxakt symmelry group is 3U(2) x 3U(2). Tne permutations of
the states 4,2,3,4 in this group are generated by the oyoles {1,4§
32,31 and {1,2} {3,4} . Let us now assume in firat order the
nuolear forces to be 3pace depending only. In this approximation the
Hamiltonian should be symmetrio with respect to the full permutation
group of the states * to 4., Together with the order elements of
8U(2) x SU(2) we arrjve at the group SU(4) as an approximative
symme try group. For %11stance, to cilculate nuoleil with baryon
pumber five, we split the general covariant SU(4)~tensor of degree
five into irreduoible parts, and this procedure yields the supere



multipleis of baryon number five. Next the "breeking" of the super-~
multiplets into multiplets will be obteined by splitting the irre-
duoible representations with SU(2) x SU{2). Wigner's approach works
well for the low lying states and we may interpret this as the
following: The full Hamiltenian degenerates approximately for low
lying states and admits thersforme a larger symmetry grcup.The rea=
son for the aparent degemeracy 1is the fact that for taese states
the participating nucleoms will be with high propability in s-states
causing a degeneracy of J-~J-coupling.

SU(4) theory, hence, 18 & non~relativistis static approach, the
full relativistlo theory will not show to us any SU(4) symmetry.

Now let us turn to the theory of strongly interacting particles.

In a formal way, replacling the isospln group by SU(3) we get the
imbedding SU(2)(J) x SU(3) £ SU(6) instead of SU(2)(J) x SU(2)(I)
< su

However, let us mention that this is by no means a straight-

forward unitary extension of Wignex's 3U(4) theory! In SU(3) symmetry
the nuoleons belong to the 8~reprecsentation. Therefore a straight~
forward extension of Wigner theory with unitary spin should lead to
the group (or subgroup of) 0(416). (A Wigner SU(4)-subgroup of SU(6)

will be considered later ont) Eut let us now follow Wigner's proce~
dure using the quark particles ! Indeed, the quarks beloag to the
SU(2) x SU(3) representation of 3U(2) x S$U(3) and our first oxrder

approximation should express the full indecpendence of unitary spin

as well as of spin for the "low lying" states: SU{2) x SU(3) appéars
as imbedded in SU(6).

There wmay be objections agalast quarks: Nobody has seen them.

Indeed it is possible to coxnsider only representations of SU(6)

ocoupied with "normal" hadrons. This point of view, however, enlarges
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the number of ad hoo assumptions considerably. That is the reason
why we stlck to the quark hypothesis,

On the other hand, there seems to be no place for other "abnormal®
particles not bulld up of quarks like the so=oalled "oharming"
onses {9} .

2, The 6- and the 6-representation (ouark representatiopn) of Su(6),

First we consider the two lowest dimensional representatioans of
SU(6):
61 U+ U,

s g U e SUu(6) (21)
& =Y,

Here we denote with U the complexe oonjugafe of U. Reducing (2~1)
with respesot to SU(2) x 3U(3), we see the content (2,3) of 6 and
(2,3%) of 6. Therefore it is just space for the quarks in the 6
and for the antiquarks in the 6 #.

(Remark: If .misunderstanding seems not possible, we denote repre~
sentations by their dimensions end distinguish conjugate represen-
tetion by an sternik. All SU(2) representatlions are selfconjugate.
(pym) resp. (g,m ) denote the Kronecker product of the SU(2) repre=-
sentation of dimension n with the SU(3) representation morm

with dimension m (see e.g. {101 ). The representation space of

(2-1) is spanned by six-vectors f;' (oovariant vector) resp. 12{
(contravariant vector). They transform aocording to
2= W,
e §i > X t §e< '
% ¢ - K (2+2)
A S AR



The form Z §; )* 4s of oourse a SU(6) invariant, Let us ochosse
an orthonormal system of vectors ét ; an denote these vectors by
Q49859 0c-9Qg With (g ), = é‘is a(x.). Here ® denotes a sét cof
quantum numbers, which will not be affected by the SU(6) operators.

Table 1 shows the quantum numbers of the quarks.

Js. The The ILie algebra of SU(6).

We oonstiruct now a basis for the Lie algebra of SU(6). Neither from
the mathematical nor form the physicel point of view this problem
is a unique one. However there is an almost unique way to construot
a basis for the real form of the Lie a2lgebra which exhibits its
origin from SU(2) x SU(3). Tuere 1is further up to numerioal factors
anespecially simple oanonical basis of the complex form of the Lie
algebra. We first construot the real (hermittan) one.

We shall use the Paull matrices

6,-(75) & (s Y 6o )6 (15) e

together with the obvious relatilons

Tr: 61 6',,, = 245‘.( <3-2)

To get a sultable set of hermitian matrices we use the Gell~Mann

ores:t

R RS B WA P B () (33



It is

Tr(lgﬂj - 25,;)- (4,f =0, %) . (3-4)

and

’ N = , . ¢ ! ; - L] 8
The vaiues of #ij are shown in table 2.
Let us now introduce the matrices

X : (3-6)
Aa' = S'KX}\J

Beoause of

(4 B)(AxB)-(AN) (BB); Tr AxB ~T-A-Ir.B
it 1s obvious that we can write downt

T;-J\:.’i{» = tdum d:<3'

' (3=7)
[AX L] = [6,,6;] %A, A= 6nSix[An A

From the traoce-relations and the number of trace zero matxioces
so constructed (or simply by looking at the expligit form of
the matrices) we find a basis of the Lie algebra of SU(6) by using

K Ka0123

LK+ 0
"'’ 41_:0,4'2,'.8 ¥ (3-8)
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Considering now SU(6) as symmetry group acting upon an Hilbert-

spaoe %;, of states, we have a unitary representation

U~ DU o)

of SU(6) with the representation space 35 « The dimension of

SU(6) 1s 6°-1 = 35 and thereforec there are 35 "conserved quanti=

- e wr wn aw ww s O o - - -

L e U e - e hn R D AN D D PP Swes S GEe aEh e —

theory this Pfollows from the noether theorem {which also gives the
conserved currents bolonging to these quantitie3s). In genseral one
proceeds with the help of the one-parameter subgroups of the syme
metry group: Let U(s), s real, be a one-~parameter subgroup of SU(6)
and let A be a traceless hermitian matrix with
U(s) = exp(isA).
The oconserved quantity associated with the subgroup U(s) reap.
with the matrix A 1is then given by
. \
' (s) -1 A i DlUesy) -1 _
_"_,eum u) -A—"LS-’G 5) (3-10)

L S20 S

Now SU(6) is a simple group and the representation (3-9) acts
non-trivially on the Hilbert~apace of states. Therefore (3-10)
gives a Faithful representation of the Lie alzebra. Using the
notation of Gell-Mann, we associate with the matrix % j\ f;

of (3-8) a conserved quantity which 1s called F;f . So (3-9)

is complemented by

4 7K —~9—F: (( s+ f0)

2 “w (3=11)

However, from a practiocal point of view, the representation (3=9)

is not given explicitely and nor is the Hilbert spaoce 25 5

Then we have to construct (for instance with the help of Noether's
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theorem or with direct symmetry considerations the currents which
are related to the conserved quantities.

Before we conslder the physical meaning of the self-adjoint
operators F;F we turn to a basis of the complex Tie algebra,

the use of whioh for physics was shown by Okubo '14] in comnection
with SU(3), For the sake of conosptual clarity we introducs two
different symbols for the matrices and their representation in

the Hilbert spaoe of states.

k

Let us define the matrioes a,” with the elements (i,k, = 1,2,...,6)

k T
¢ = . - A , -
(249, , Siv b - 1 4., g, . (3-12)
(3~12) gives to us 36 tracelass matrices with the properties
' ‘
(a,)" a(a,); Z a =0 (3+13)
4,
and the ocommutation rules
. L4 e P A
K bl .
[a'; ’ a‘M ] = JM Q,‘. - J R-“ <3"'14)
Further, if is any matrix, we get the formulas
e 4 7 3-15)
I (a,“6) =(8), , -2 Trb (
and é
ho 2 Afal s+ 7s b
- A L4, -
1,K=7 (3-16)
K ‘ X
with zd_;‘ - j Ay = T; (/G't' !5)

Therefore we can build up the matrices (3-8) out of the aik and

these linear relatlions are easely olbiained with the aid of (3=~16)1

[\: = Z (/‘h K ) OL"K (3""’7?)



On the other hand we may invert these equations because of (3=4):

a&./fz_z.g;u (A );c;.)\« (3-18)

With the help of (3-18) we are able to extend the representation
(3-14) to the complex form of the Lie algebrai.e. to the aike
The operators acting on the Hilbert-space of state¢s are denoted
k
by A,
i K
0L~‘( —> /% .

L

(3-19)

It »8 cbvious that the relations (3«13) and (3~14) are true alsn
foo the Aik. Especlally Aik 1s the adjoint operator of Aki¢

row one knows that every faithful representation of the Lie
algebra of a Lie group is transformed under the group as the
adjoint representation. Therefors we have (uik are the matrix
elements of the matrix U of SU(6) ):

DIUY AN DU )= Z U, M A Go20)

Appendix: Imbedding of SU(6) and U(6) ind U(12) with the aid of
the Dirac matrices. (Salam, Delbourgo, Strathdes [15] ).

Though we do not disocus the relativistic ganerélisations here,

1t 1s worthwile to mention a special imb;dding process of ths

real Lie algebra of SU(6) and U(6) in the real Lie algebra of
U(42). (The real Lie algebra of U(6) may be obtained by considering
all theimatrices }\““"as a basis, not excluding ~v = <« = c.)

If we replace the &,  in the formuis §.. Xﬁ\i .-/\la et (3=6) by

the set of matrices of order four



or by 6"(:) - (: 68.«,) (3~24)

we olearly get two 3U(6) od U(6) struotures if the index goes
over 1,2,3 or 0,1,2,3, The same is true, if we replace the
matrioss (3~21) by unitary equivalent sets.

Let us now choose the unitary (and hermitian) matrix

.1 /6 6 2 .
Bar (g5) i fP- 2 e

Bach of the two sets of matrices of order 12

(o, (- -
;‘;x.’ (/3 6::' /A)xﬁj and ﬁ); '(/géx) /’)xﬁj (3=23)

generate a real Lie algebra idomorph to that of U(6) or SU(6),
. &) (=)
depending wether ﬁ: resp. ]\(‘”)’ belongs to the set or not.
)
The connection with the Dirac matrices

0 6, 0 . v o Oy -aA,2,3 (3=~24)
= o - Y ]
y (O "’o) ! y (.a‘v o) / '
18 given by the formulaes (look at table 3.)
*

KT oK (3~25)

(2)

P p=73 (1t 1p?%)

(z)
5, /3

N

2(12ip ) -r r)w (120 96, 0 670 *).
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(+)
The two subgroups of U(12) generated by the A j resp. by

(') ~~
the A “  are denoted by U+(6) resp, U (6)
d

4, Important subgroups and the physical meaning of some of the

generators 3
3 To 3
The operators 7‘;, E Y rs / F:? (or, equally well, the

operators Aii) form a basls of a Cartan subalgebra of the Lie
algebra of SU(6). This set of operators is characterized by the
property that the quark states are simultaneous eigenstates of

all of them. We therefore look at the eigenvalues of these operators
with respect to the quark, to see their physical meaning. Namely,
dealing with additive quantum numbers, linear relations between

them should be the same with respeot to all representations.

In this way we get:

hypercharge: , )

Y..;—é: F:f» - A; - A, (4=1)
electric charge:

Q = 7-;°+,3-Z—, fy A;*AZ (4-2)

2 3
Ty = V3 R = A AL A (43)

37d component of the isospin -
o ) Tg
< F°e ( A . (4=4) L
I,-F° - 2(A, [\ ¢ :
rs
3rd component of the U=spin L

3 5 6
5 E’[; _’;Z $ zjmj'm* 5'A6) (4=5)



3rd component of the V~sp1n

Ky =2 R L B2 (A5 Ay -A)) o

3rd ocomponent of the S~spin (spin of quark singulet)
N 1 3 17 3 7( 3 6) (
S. - -2 F =1 - (447)
‘3 Iy 6 rs 2 A; ‘46
3rd component of the N~spin (spin of quark doublet) /fzr

Ny oI B, HA AT AL e

Before we ceonsider the relations between these operators we will
oomplete the "3rd components® to SU(2) subgroups., Here and later
on, when we will handle more complicated subgroups, an important
simplification arise from the following restricting assumption:
It 1s possible to divide the set of the six guark states in
such a way in subsets, that every subnset generate an irre-
ducible representation with respect to the considered subgroup.
For an 3U(2) subgroup these subsets contain either 1 quark (sing=
let), 2 quarks (doublet) or 3 quarks (triplet).
To ocharacterize the SU(2) subgroup, we symbolize the quark states
by six 1little circles and connect the querks which belong to en
Arreducible representations by a line,
We exc¢lude further the possibility of an irreducible SU(Z) repro-
sentation within the quarks with dimension three: thess represen;
tations belong to O3 subgroups which at this time are of no physie
cal importance. For doublets the quark with the eigenvalue +V2 may
be denoted by a plus sign in the cirele. We always choose the
following ordering of the olrcles, the circle with the k symbolize

the quark q, (see table 1).

3
3 0
0
6

<0 04

0
%
5
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For further fixing of our notation let Tys+ T,, T_ be generators
of a SU(2) éubgroup. We normalige in the following wayt
Ty has eigenvalues +Y2, ~¥2 and perhaps O, It holds

[N T)-2T, TxTeil, LT T.7-7-
7;--1- LT
2 (1 -T)

Now we write down the generators of the important groups.

Spin group SU(2)(J) : Jy and

I-/ff". A

/ (4~38a)
y 2 3
A A‘}, As, ]: /45*A6, ../L
isospin group SU(2)(I) I; and 1.
o . 0
I, - oo InsF / : (4=da)

I, - ASA LoAgAs e
U~spin group SU(-)(L) ¢ Ly and

L1 . ;(.0’ LZ - }-}o o &—-0

L, - A, +As, L -A; A, o o=

V-8pin group 3U(2)(K) Ky and

P<2' _ ;fo ;{- ) }To & O o

¢ 3 S (4=6a)

1 b g——w0
Kr ‘A’f "’A‘f/' K--Aj fA‘ °

(4=5a)



a‘!}u

S=-spin group SU(2)(8) Sy and

4 1 1 1 1 2 A
- F-- . VW .-1
> re o '3"6/ S, VE’FO rs’Fg ¢ (4~72)
S- Ay, S.-A;
+ 3} - b
g O
N-spin group SU(2)(N) N, and

N
N, IR A N Rl f
2
S

N-ALAL, WA

The meaning of the groups (4=3),...,(4~6) 18 known from SU(3)

(4-82)

0

symnetry. The groups SU(2)(8) and (N) have been used by several
authors.[36J « In Interactions, invardiant under these groups,

the spln<«spin~eoupling is out off betweenr quark singlet and doublet;

The groups mentioned above are not independent one to the other.

We have the relations (10]

, L1, Lz]=o (422

N + S =j/ , N/ SJ‘O (4=10)
Because of the last equations and because

[?,f]‘[fZ]z[jR]’o C4=11)
[[,5]-0
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the only neon trivial, non SU(3) resulte in commuting the generators

of tke various groups are obtainable from Sespin and U-spin:

(L, S.J-A% (L., S T<A;
[1__,541 ’"A:,[L_/S_] "“A:' (4-12)

[l 5] 3R, 1A ,
[L S] A: 'IY 2 [ L3] +.2,S+ (i3

Comparing the equations (4=12), (4=13) and (4=5) we see how to
find the generators of the SU(2) subgroups symbolized by

o / © o O (4-14)
o \o ©c °©, 0 &0

Commuting the second and the third (or the first and the fourth)

of them we arrive at the group
o o
1 (4-14a)
o O
Now the same prooedure will start with (4-14a) and the isospin
greup.
Result: The three 3SU(2) subgroups (I), (L), (S) already

generate the whole group SU(6).
Invariance under these three groups implies 3U(6) invariance.

Now "the" SU(3) subgroup of SU(6) is generated by

Eo (‘- -1 % 0 8) .8 (4=~15)

/

A3
M
Av +Av+3 , (v//w"hz,:’)



We may therefore state:

SU(6) 1s generated by SU(3) and 8U(2){8).
We have defined already the most remarkable SU(2) subgroups and
"the" SU{3) subgroup. Next we define the subgroup SU(&)(W).
This group consists cf all 8U(6) transformations which leave in-
variant the quarks qy and qg, 1.e. SU(4)(W) permutes the quark
doublet and does not affect the singlet. The mass splitting of
the quarks due to (medium) strong interactions remains stable
against that group. We write down the generators of SU(4)(W):

K Y+F©
. T 1,23
]-; ‘ {K.o,—f,z,b' vat23)/12 Rty (vet 23) (4=~16)

Al 25 (AS+AS), (7 =1an )

FPinally let us define two groups whioh should reproduce the
electromagnetic mass spiltting of the quarks,

Considering these symmetries we "forget" about medium strong
symmetry breaking. The groups may therefore be viewed of as
analogy to the U~spin group and one may establish e.g. "trapes
lawa" with their help.

ou 2
v, LEY L F" .. o
R’._}‘Fs.,’.ﬂ]:;*r‘_,g val3 o
1 1(AT.AY (4=17)

’R*:A:’QR--A" R'z(A,'A') o O

gGroup SU(4X(V)
v | 4

T:‘K' };K’, }Lgﬁ V‘E-"F’K’{K.o“r,z‘.i)‘. E -[’; g,V 143

: 2V | ¢ Vo (4-18)
A:-rj,;&’(A, *Aq ),(",} "2/3/5/‘.)‘
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The group SU(4)(V) consists of all transformations whinh d¢ pot
change the quarks g, and qy-

We have aseen alrezdy, that S~ and U~spin together generate all
grouvps {4-14) and (4-99%) and hence SU(4)(V):

ST(4){V) is genevated by SU(2)(L) and 3U(2)(S).

Now the same reascning»appliedvto the quarks 1,2,4,5 instead

cf 243,5.6 gives us:

SUC4)(W) is genereted by SU{2)(I) and 8U(2)(R).

Hence

U(6) is generated by SU(3) and SU(2)(R).

The various groups definszd up to now enabls us to handle the
symmetry breaking in terms of decreasing sequences of SU(E) sub-

groups.

"Physleal chaln:

SUCE) 2 SUCT) x SU(2)(J) B SU(2)(I) x Y x SU(2)(3)2 Q x su(2)(d)

Prom the right to the left we bave symmelries of the slectromagnetic

semisgtrong, "very™ strorg interactions.

NUnphysicsl ehalnl 0

SUC6Y 2 SUC4AX(W) x SU{Z)(S) x ¥ 2 sU(2)(I) x sU(2)(X) x SU(2X(8)xY
28U(2)(1I) x su(2)(d) x ¥

"Japhysical elechromagnetis chaip®:

30(6) = SU(2)(R) z SU(45{(V) x Q 2 8U(2)1L) x Q x SUL2)(J)2
2 Q x 3U(2)¥)

If a particle is coupled minimal tc electromagnetism, the magnetic
gy
moment is proportionel to Q@ - J . Now we essuma this to hold for
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quarks and we assume further that the magnétio moments of the
lower lying partioles com frem vester addition of their quark
constituents, This assumption gives astonishing good results

We therefore construct an operator which belongs to the generators
of the SU(6)-representaticn and which reduces to Q . T for quark

states. So we get

3 B R | 4 ,j« 4 ‘ {4""19)
From (4~47) we find the ideniity

117V, A 7l a ?(\ - 2 J

(g b)-T5 20

Now the magnetic moment is prcportional to a reciprolke mass.

The correcting term due tc the mass splitting of the quarks is of
“" -
the form - 5),
Hence
4 - oA
-\ v - = «-“".S
(/;, ~ Ry 3 ‘w3 7Y (4=21)

The correction due to the quark masses does nct affect the magnetic

moment of the nucleons because they are S~spin singlets.
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o ticles and x e tations.
Under the representation (3«9) the Hilbert-space decomposes into
finite dimensional irreducible subspaces. Some of them may be
viewed as "one~particle" states belonging to low lying mesons
and barions.
To have some definite imagination we assoclate these particles
with local or gquasilooal (4n the sense of the Haag-Ruelle ssattering
theory) quantum f1elds which transform according to some 3U(6)
representations. Procducts of flelds will therefore transform like
the direct product of these representations. We get the "one~
particle"” states by applying the fields on the vacuum state.
To introduce a simple model of symmetry breaking one may think
of the vacaum state as a mémber of a ncn-trivial SU(6)~representa~
tion. (For strong interactions the vacuum has to be & su(2)(J) x
SU(2)(I) x Y singlet or there is a vacuum degeneracy.)
For SU(6), however, all this 1s only a very crude picture:
One olass of difficulties arises from the non-exactness of the
symmetry, the other is related to the problem of Lorentz invariance.
In the followlng we bypass these shortcomings.

For an irreducible rep. the centre of the group is mapped on
muitiples of the unity. The numerioal.factor is a multiplicative
quantum number.

If we conslder the quark fields as an irreducible set of quantum
fields, the values of multipllocative quantum humbers are deter~
mined by the quark assignments, 80 we arrive at

T8

, B = barion number (5-1)

e¥ 1

Let us note ( (3 is the TCP operator)



- if B = integer (5=2)

34T 8 LT Ty

always (5=3)
One may compare this with the (non central) relations

3TY | 1T Iy TR ariL (5~4)

& / .
We oall particles with integral By Y, Q "normal",
All known partilcles are normal ones. It has been suggested
%] that abnormal particles obey parastatistiocs 8 .
Then the quarks should behave like parafermions of order three.
Because particles with different statistiocs have to be

incoherent, & irs

induces a superselection rule.
If all particles obey normal statistios we should have (because

of the general spin-statistics=~theorem)

ir
gt . TP (5-5a)
If abnormal particles obey abnormal statistics, a relation
e Z = @ ¢T3 (5~%b)

seems to be reassnable, too,
Now, after all, the "normal" particles can occur in the combina-

tions qd, 9qqd, (mesons) 3 qaq , qaaqqq , (barions) ;

1qq, ... (antibarions).



In the following we write down only the symmetry relative to
SU(6), indices, omitting the other quantum variables. (We have
to symmetrize these other quantum variables acocording tomeither
the usual spin-statistics rule or to the parastatistics rules.)

Most naturally the mesons ocour in

1 x7-K= g.?i?.K"bLJiK?s7$}+616-;K?57‘

(5~6)
a x = + (o)

6 x €% = 35 + 7

The first row shows the quark oontent, the second the same reduce
tion of the direot product with the aid of Young tables and the
last the convenlent notation using the dimensions of the repre=~
sentations.

Next we reduce the direct product qqq 1in two steps.

First

Tl "3 (9% 9 9] * £(9; 9,9, 9,)

(5=7)
00 x U = B + m
G x 6 = 15 + 41
We abbreviate the antisymmetric part by ,4‘_/ and the symmetrio
one byS‘;‘,' 3
-2 1 -
9:%9, ZA‘,Kfz Sik. (5-7a)

Next we get




(I« - o+ [ (>-9)

21 x 6 = 56 + 70
It 1s a sort of empirical fact that the low lying barions are
in the 56~plet, i.e. their empirical dates are in good agreement
with that repregentation (see next chapter).
We obtain the antibarion states by going to the conjugate repre-
sentations (1.6, q 33, 6 —» 6% 15 =15 » coee)e
Sometimes it is interesting to have further decompositions of

direct products. We give some of them.

15 x 15>
EE (o) + 5 + | (5=10)
15 % 15 = + 35 + 189

21 x 21 *

[ J —
(1] ~x - (0) + |- + (5=11)
] ]

21 X 21 = 1 + 35 + 405

56 x 56 A* = T [ )
= (e) + + + (5-12)

= 1 + 35 + 405 + 2695
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22.%.26

= [T1] + ED + Em* (5=13)

56 + 70 + 41134 + 700
To ocalculate 3% x 35 we first see

+ (5-14)

M x =

21 x 15 ]

3 I
T

Now because of (5-6) we have

(35 +1)(35 x 1) = (6 x 6™)(6 x 6%) = (6 x 6)(6¥x 6%),
With the aid of (5~7) as well as (5-11,12,13) we find

35 x 35 = 4 + 3%+ 35+ 189 + 280 + 280 ¥+ 405 (5=15%)

6. The 26~plet,

As an important example we discuss the barion assignment to the
representatinn {_| | ) of dimension 56. Let us recall that SU(6)
contains the spin variables and have in mind the astonishing fact
that the lowest barion states are not antisymmetrioc with respect
to spin.

a&. Partioles

To f£find the states belonging to particles we deocompose the "56"
with respect to 8U(2)(8) x SU(4)(W) x Y, We get

56 = 1x 20 + 2 x 10 + Jx4 + 4 x 1

Y $ 1 0 -1 -2 (621)
Here n x m denotes the direot product of the SU(2) rep. of dimen-

sion n with the SU(4)(W) rep. of dimension m. The Young tables



of the latter ones are of course &J [T and [ 1] .

We may omit the next step in the U-chain and continue

with ¥ x SU(2)(I) x SU(2)(J) which is a member of both the U~chain
and the physical chain. Thus we arrive at a further reduction for=
mula (On the right hand side of the equations the first number

in the products denotes the dimension of the spin rep., the second
one is the multiplicity of I-epin.):

{a}+ {N]

1 x 20 = 4 x 4 + 2x 2 =
2x40 = 4x3 + 2x3 + 2x1 ={SS]{A]

- — (6*2)
3x 4 = 4 x 2 + 2 x 2 = {;; }'*f,;;i

4x 1 = 4 x 1 = {!2}

From (6-2) the decomposition with respect of SU(2)(J) x SU(3)

may be derived: The J = 1/2 particles transform as SU(3) octet

and the J = 3/2 ones as decuplet. Therefore "particles" with
respect to the U«chain are "particles" with respect to the P~chain,

too.

Let us write simply (136) for a state of the 56-plet if it

corresponds to the Young notation {1]3]6] . We give the (not

normalized) state vectors of the different partiocles assuming that
they are in the highest possible spin state.

A= (1), AT 112), A° = (122), A = (222),
p = (124) ~ (115), n = (224) = (125),
S* (113) T ®%= (123), S*- (223)
St (134) ~ (116), T %= (234) + (135) - 2(126), 3 "= (235)-(226)
I\ = (238) - (13%)
omwte (133), TIX0 = (233)
=T e (334) - [136), T 9= (335) - (236)
“Q: = (333)



This shows the quark oontent of the barions. The action of
generators of SU(6) on the barion states is now easily to be

seen. Let us calculate,F33 P = F33(124) - F33(112)¢ The eigenvalues
of the quarks 9419594, 8re 1/2, ~1/2, ~1/2, Therefore

F33(124) = ~1/2(124), F33(1ﬁ2) = 1/2(4412) and the result is
«1/2(124)+1/2(112). Let n,m,k be three different numbers. Than

the squared norms of (mmk), (nnm), (nnn) are proportionmal to

18 2 ¢ 6,

b. Mags formula (according to strong interaction).

There are many attempts to generalize the SU(3) mass formula to,
su(e) .1,2,3,16,19 . The most general one assumes that the mass
cperator transforms like the I = Y = J = O memberd of the self
conjugate representations (i.e. the rep., 1, 35, 189, 405, 2695%,..).
A slmple approach is the following, If the symmetry breaking is

due to the different mass of the quarks, the mass should be in=
variant under S-spin and N~spin and Y. Assume now S~J and N-J coup~
ling pnly (i.e. the J«J ooupling is broken with respect to

J =S + N in first order). Then first order.perturbation theory

leads to
-5 - >
M-a+sYeySTENT, (6+3)
Now
- > - > 2 >
N J + 8J = J J = J@@+1)
and

-

> -
N Jd « 8 J = NN +1) ~8(8+14).
Fcr the 56 there is an identity |
ICI + 1) ~ ¥4 Y2 = N(N + 1) ~ 8(8 + 1)= Y ~3/4 (6-4)



Hence

2
M =M, + aY+b(I(1+1)~§-)+oJ(J+1) (6=5)

c. Blectromagnetic mass_ corrections

There 18 agaln a varlety of methods to derive e.m. mass correc~
tions [ZQ] ¢ We may consider the e.m. mass term as a linear ccm-
bination of L = Q = J ~ members (I denotes U«spin) of self con-
Jugate representations. On the other hand we have seen that the
electric ocurrent transform as member of the adjoint representation
(the 35 plet). But in first order the e.m. energy will bz quadra-
tic in the charge. Hence we compare 56 x 56 with the direct produs:
35 x 35 and look for the sommon irreducible (and symmetrical in

the factors) self conjugate representations in both direct products
So we get a reasonable subset of self conjugate representatilons
(Sakita),

Other methods apply the U-spin concept more explicitsly, especially
to derive the so=-called trapez laws (Mattews a.o.). Here we formu-
late the simple electromagnetic analogue of the N-J and 3«J coup-
1ing with the help of the two SU(2) subgroups

A
R-spin R~spin
o © o
(6-6)
o O - v}

. > -3 A 2> -
The substitution Y= «Q; S o ﬁ, N - Ry J = J 1is nothing else then
-
the usual SU(3) substitution T — Ly, Y — «Q. Now (643) goes cver in

to
2 =

AM-aQ+BR - TrpR 7 (67
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Hence A 4
AM - «'Q +/8'I(J+7)*J/'{R(R*7)-72/7\%“/)] ,
(6-8)

MM - a78 B T(Ter)e pfLitan)-Lf

The last expression is obtained with the aid of (6-4) after the
substitution Y “'> "‘Q, ° ¢ € *
Finally we have

| a*
iT _v? {Z [+1 -—-ffe-T{WJ
M:/"/ofa}/"'b(i/[*’);- {+CQ+d ( } # (6"9)
Applying (6--9) or rather (6-8) as an example to the 2\ and the
nucleon; we get the mass relations

p-mn =4 -4°% AT+ 3AT A= 0.

d. Maggégic moments

Let us remember (4-19) and (4-20). If the particle is in the

highest J3~state, we have

</Ry-3 TJ 1>
< | >

/M Mo

(6-10)

Let us calculate the expectation value (6-10) for some particle

states up to the factor /uoz
%% ¢ , 3°%: ¥6 . ST:ov2 .
From this it follows one of the spectacular results of SU(6):

(6-11)

/LP//"‘M' 6*—237 / /M’AA«"Z/“A

——
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The expectation value of the correcting term due to the quark
mass splitting (i.q. Q's,) is zero for n, p and - Effor the A

Hence
AN = T () (o2

In the same way we can calculate transition magne tic moments,

1.8, <'A+//"/P> , in terms of /"P .

{e Some other Results.

a. The mescns.

Let us denote with fik the state of the adjoint representation

that transforms like Fik.
The SU(2)(J) x SU(3) content consists of two ootets of spin O
and 1 and of an unitary singlet of spin 1:

£.°, k = 1,2,...,8,

£ k

octet, J = 0

fi

Octet, J = 4 1,.00’8; n = 1,2,3.

li

singlet,dJ 1

fon, n = 41,2,3,

We see that there is space for the pseudoscalar meson octet and
the vector meson nonet.

However, there is a mixing between the singlet and the I =Y = 0
member of the vector octet fan, n=1,2,3. The mixing is dictated
by the U-chain: The physical particle states should belong to an
irreducible SU(2)(S) x SU(4)(W) x Y representation. A glance at
the generators (4-~7) and (4-8) of S- and N-spin shows that they
are linear combinations of FOn and an. Of course, the same com-

binatiohs are the appropriate ones for the particle mixing:
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w ! f: f; + iZ;. f}y , (= va )
b E A IT A (25,

The mass formula 1s much more complicated for the mesons and not

yet séttled with full satisfaction (see [16} ).

(7=1)

Electromagnetic properties (mass corrections, magnetic moments)
may be obtained in the same manner as for the S6=plet.

Zwelg [3} considered representations of the form q x ¢ x @ X q
1.e. 35 x 35 1in order to assign other mesons (including the
f°-meson) within it.

b. The 70-plet.

The 70-plet was examined first by Pais (11], [?1]

It is possible that /\ (1405) as singlet and A (1520) and
N(1512) as rudiment of an octet will fit into the 70. Then it
should exist a = (1660) with J = 3%/2 ,

c. Effective Yukawa coupling.

In 56 x 56 the 35=plet occurs only once. Therefore the identity
representation is one and only one time in the product 35 x 56% x %6,
Hence in the 8U(6) limit we have only one free coupling conatant

in the direct meson~barion-antibarion coupling. This removes the
ambiguity of the SU(3) approach: For the vector mesons the cdup&
ling to the octet is of pure F-~type for the pseudoscalar octet

one gets F/D = 2/3.

Further it was pointed out that the strong transition rates

‘decuplet octet are determined by the Yukawa ocoupling constant

and the mean masses of the 35-mesons and the 56~barion states.

This 1s true for transitions like ¢ -— 27T aisoe.
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Table 1: Quantum numbers of quarks,
Q.‘f Qs q? Q4 q5 dg
I 1/2 1/2 1/2 -1/2 ~1/2 -1/2
Isospin I 1/2 1/2 0 1/2 1/2 0
Iy 1/2 -1/2 0 1/2 ~1/? 0
Q 2/3 -1/3 ~1/3 2/3 /3 -1/3
1/3 i/3 ~2/3 1/3 /3 ~2/3
1/3 1/3 1/3 1/3 1/3 1/3
Ly 0 /2 w12 0 /2 -1/2
Ky 1/2 0 ~1/2 1/2 0 ~1/2
S3 0 0] 1/2 0 D ~1/2
Ny 1/2 1/2 0 ~1/2 1/2 0
F.’ WEE B B s
Fy° 1/2 -1/2 0 1/2 “1/2 0
Fg’ /203 /203 1 4F H/2fF 1/2fF /3
F33 1/2 -1/2 0 -1/2 1/2 0
3 . : ‘ =
Fg’ 17203 /7 o /Y3 1 F S
Table 2: Non vanishing fijk with 1 ¢ j « k.
(A3k) = (123) ¢+ 1
(L3k) = (147) = (246) = (257) = (345) : 1/2
(13k) = (156) = (367) : 172
(1Jk) = (458) = (678) : {f3/2



Dirao matrices

o
Y

O

) ; (V-Z?fn?)

YNNI W

0o 0O,
A

OV/) i (v-133)

1 (6} 0 ) L (v=2 3
v 0 -ovv !



Table 41

breaking .

SU{6)

su(2)(s) x 8524)(w) x Y

Chains of subgroups correspcnding to symmetry

.

o~

i

8U(2)(R) x SU(4)(V) x Q

SU(3) x SU(2)(J)

[ suca)(s8) x

SJC2)(W) % SU(RY(I) x ¥

\

U~chain

"unphysical® chain due

to semi~stror:
mass splittiry; of the
quarks; decouyling of

quark spins

119/60/65

SU(2)(I) x Y x

8U(2)(J)

SU{2)(L)xQxsU(2)(J)

[T x su(2)(a)

P=chain
*physical" chain

’/////,,//””"

gewchain
Yunphysical" chain
due to electromagne-
tic mass splitting
of the quarks" de-
coupling of quark

spins.



