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Some features of the theory of observables are explained,
arising in connectioen with the axiomatic approach to quantum
field theory.

a, Hilbert space ¢

The states of a quantal system will be described by the vectors
of Hilbert space H ., The scalar product of H 1is by convention
linear in the “ket®

(W, xw') 2 & (W, W)

is H is separable,
Thie statement has two aspeects. Fist, if H is inseparable,
there will be no countable set of measurements which is complete.
Second, if one considers quantum fields in terms of operator
valued distributions, the algebra of test functions has a nuclear
topology. Therefors, every cyclic representstion of this algebra

is separable.

let/be the Poicaré group and | the Lorentz group /=group of
all inhomogeneous Lorentiz transformations, which are continuously

connected with the identity/. The centre of [ consists of two
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elements, the identity of I and an element 3 with =1 ,
There is a natural mapping /compatible with the group multipli-
cation/ M= T with the centre of I as kernel.

2¢ According to the Lorentz symmetry of nature there is a

unitary representation ¢—+W(s) of ' actingon H,

b, Observables,

If A denotes a measurable physical quantity, there is exactly
one self-adjoint operator /which will be designed with the same
letter/ having the measured expectation velues 8s expectation
values,

A self-adjoint operator has a unique spectral decomposition

A= {admn)

If f(x) is a/e.g. continuous/ function, the operator f(A)
is defined by

ta) = {0 dT(a)

3: Let A be en observable, f(x)a function and f(A) self-
-adjoint, £(A) is an observable.

A von Neumann algebra is an algebra of bound operators, closed
under weak convergence of operators, containing with B also

B¥ y end containing the unit opreator.

Let R be a von Neumann algebra end A a self-adjoint opera-
tor, We call a affiliated to R if and only if R contains
every bound operator of the form f(A).

If A 1is a bound self-adjoint operator, A is affiliated to
R 4if and only if Ac¢R .,

Let ) be a set of self-adjoint operators and R a von



Neumsnn algebra, R 1is generated by 2 If and only if R
is the smallest von Neumsnn algebra. with the preperty: every
A€ is affilisted to R .

Definitions The von Neumann slgebra generated by the set of
all observables will de denoted by O .,
We do not know, wether every self-adjoint operator of O is

an observable itself,

lat R be a von Neumann algebra. The sét of all bound operators
B which commute with every A ¢ R is called R’,
R’ is a von Neumann-algebra, We have

R = Rl' = Rtl" = ses

RO = R"': R""': .cvs

T™e von Neumann slgebra R~ R’ is the centre of R /and of R’/
and will be denoted by 2R . ZR is , of course, a commutative

algedra,
4: Z0 1is not empty.

If an observable A 1is affilisted to 20 , A will be called
central /"essential® according to Yauch/. 4. tells us that there
exist non trivial central observables: Because of experimental
experience, the observables electrical charge snd barion number
are central. This is becsuse no measurement produces atates,
which are superpositions of states having difPerent charges,
barion numbers, From theoreticel considerations, one has for the

element

5: U() ¢ 20 o

Now, observe that all known central obser®ables have a discrete



spectrum, i.e. they have a complete system of eigenvectors in
H . Therefore, there is an orthogonal decomposition

H = 2 H,

of H 1in subspaces H, with

AC«J“= XQ(A)C«J“ ; C\’KGH(,A&ZO

If X7 we have an A€ 20 with AL (A) # As(A)
This is due to the commutativity and the discreteness of ZO .

The H. are called the goherent subspaces of H ., Two vectors
of H are called coherent, if for a suitable x both are in H .

In any ather case they are incoherent.

A necessary condition for a vector <« ¢ H to be a physically
realizable state is to be in a coherent subspace. As no other
restrictions are known one considers this condition to be suf-
ficient, too.

There exists in nature no state,which is a superposition of sta~
tes belonging to different coherent spaces, -and there are no
transitions between those spaces. I.e., every operator A

affiliated to 20 induces a so called “superselection rule".

6: Every self-adjoint operator affiliated to 20 has s

discrete spectrum,

6a: There exists a unique decomposition of H 4n coherent
subspaces H. , which are the maximal subspaces of H

containing only simultaneous eigenvectors of all A ¢ 20 .

Now, we describe some considerations about 0‘, all having

as a clue

7: 0% < 20 Tresp. 0 = Z0 resp, O0°’< 0 .
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The equivalence of these three relations is rether trivial:
Any of them is valid if and only if 0°< 0~ 0°’< O°

We may look at 7 in the following way: Every operator commuting
with all observables is a "function® of the observabkes and is
in /affiliated to/ O . Further, the existence of completes mea-
surements is given by 7, i.e, 0 contains maximel commutative

subalgebras,

Tat Let 0, be a meximal commutative von Neumann algebra,
0y« O {if end only if ZOsO, o

From the maximality we have 07 = O, . If 0y < O then 0%0,,
and 0°is commutative end in O . This meous 0’= ZO < 0y »

On the other hend, if 20 < 0, = 0, and 20 = 05 we get

O‘ < 0’ = 0,

We see that 20 = O0° if and only if £ contains a maximal
commutative algebra,

Now, let R be a von Neumann algebra,
Two veetors <, . ¢H are called gggigelent with respect to
R and we write

Wy a w mod R

2

if and only ir
(@p, Awy) = (wy,Ae,)
for all A ¢ R,
In short, v o, have the sems expeetation values for the opera~
tors of R.
The equivalence mod R 48 an equivalence relation /reflectie
vity, symmetry, transitivity is valid/.
Let U ¢ R’ be a unitary operator., For all A < R we have



(W, Aw) 2 (Uw, UAw) - (Uw, Alw)

end therefore w 2 Uw mod. R
We apply the concept of equivalence to the algebra O of the
observables. For shortness of notation only we call a vector
w proper if end only if from w=cwmod O it follows that «w'= e
If w is proper, Ue 0’ and is unitary, we have w= Ww and
therefore Uw>2Aw , It follows that <o is an eigenvector for
all operators of 0’ if «w is proper.
On the other hend, if w 4is a simultaneous eigenvector of all
B e 0° we consider the projection operator T on the atates  w .,
We have BT -2A(B)T for Be O and if B = B” we get BT = TH
This means T € 0O . Now, let & be equivalent to w mod O .
We have (w,w)z (&, D) and (&, TG)a(w,Tew) = (w,w), Fromthe pro-
jection properties and (@, Td): (&, &) we conclude TS = &
and 3= Aw .
Result: <o 4is proper if and only if it is a simultaneous
eigenvector of all Be 0°, Consequences:
8: Every propre « 1lies in a coherent subspace.
9: If « 1liées in a coherent subspace, w 1is proper.
10: There exists a total set of proper vectors.
If 0° = 20 we find that < is proper if and only if w
is an eigenvector of 20 and 8 and 9 are true.
On the other hand, from 10 follows for 0’ the exitence of a
set of simultaneous eigenvectors which is total in H . But this
is possible only if 0’ is commutative and has a discrete
spectrum,
We see: If ©6° 20 or 20 is not discrete, there is a

vector w € H, w#¢ which is orthogonal to all



proper vectorse.

If this case occurs in nature, one should describe
the states not by vectors but by equivalence clas-
ses mod O.

Connection of statements

b3
g\o/ e\(}
o
g e 10
c. lorentz symmetry.
-1
If A 1is an observable, se I , U(e)AU(s) 1is an observabdble,

Hence,

1: WO W) if o el
U (¢) is an automorphism of O , that is the content of 11,

It follows, that U(s) is an automophism of O° and ZO .
Therefore, if «w is an eigenvector of Z® , the same is true
for U(@)w . If 20 1is discrete, U(cs) permutes the ¢oherent
subspaces. Let w ¢ H« , If Ue)w¢H,, we have Us)w L Ha

If o, > | /identity of I / in the topology of ' , we have
U()—= | /unit operator/ weakly and (w, U(ow)w) = (ww), If(w«)>0,
only a finite number of the veectors U(s.) co is allowed to be
orthogonal to H« , resp. to « ., The conclusion is,that for
a full neighbourhood of the identity of [ : U(s) Hy = Hg

But [ is connected, and so U(c) Hy = H« , always. That is
U(s) commutes with 20 . Further, U(s)€ (20)°. If Z0 = 0°,
we get U(s)e 0,

12: U(c), s¢ I commutes with all A< Z0 .,

13: UG)e 0 for all ce [ .

An infinitesimal generator of the representation o U(s)is

a self-adjoint operator P with
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exp (12 P)= U(¢) for certain o= o(2)
The infinitesimal generators form a linear set of rank 10,
A linear independ base is given by the observables8 energy,
linear momentum, engular momentum, centre of mass quantity
in a given Lorentz frame.
14: The infinitesimal operators of o—~U(s), o € "
are observables.

Therefore, they are affiliated to O .

14 —= 13 — |2 — ]

‘\_,.(7\\46

We write U(a), if the Loretz transformation is a translation:
Xi—"xi + ai,.

If Pk denotes the energy-momentum vector, we have

B, = ‘% Lm Ura)- L

220 A

- The component P0 is the enrgy operator relative to the chosen
Lorentz frame, Hence, Po has a non-negative spectrum, i.e. Po

is positive semi-definite. More generasal:

15: If the vector a is not space-like and forward directed,
ai Pi is positive semi-definite.

From 15 follows, that (w, U(2) w,) 1s the continuous boundary

value of a function analytic /holomorph/ in the forward cone.

Therefore, if this function vanishes in' a neighbourhood of

the vector a = o , the function vanishes identiéally.

We derive from this & lemma, which will be used later.

Denote neighbouehoods of the zero vector symbolcally with

Jal < €
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Lemmas Let S be a set of vectors of H . Assume that
for every w€ S there exists a neighbourhood
lal<é(w) with U(a)we § for allla| < &(w)

The subspace of H generated by the set S is
invariant under translations.

To show this we prove that the orthogonal complement S of

S 1is translation invariant. Indeed, if «,¢ S and we¢ S

the function (»«,U(a) w, ) vanishes in a neighbourhood of

the zero vector and, therefore, identically. But this means

U(a)w,€ S*  for all a ,

We call vacuum vector every trenslation invariant vector.

For simplicity, we assume:

16 There is up to & phase factor one and only one vacuum

state &, , (W, 0.)=|

d, Localizable observables.

Any actual measurement takes place in a finite space-time re-
gion of the Minkiwski space M . Measurements, for which infi-
nite regions are necessary /f.e. linear momentum, energy -
because of the uncertainty relations/, we can perform only
approximatly . Now, we assume the existenze of "sufficiently
many"” observables, the measurement of them can be performed in
a finite space-time region.
Let A be observable and A an open set of Minkowski space.
If A can be measured for every state in the space-time region
A , A is called measurable in A .
The same observable is allowed to be measurable in different

space-time regions.
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Definition: The von Neumann algebra generated by the set of
all observables measurable in the open spre-time
region A 1is called O(A) .

I.e. an observeble A 1is measurable in A if and only if A

is affiliated to 0(a).

Of course. O(M) = 0 .

There are various basic properties of the algebras 0(a),
partialla assumed because of heuristic considerations, partially
proved especially with help of quantum field theory. For instance
let Y;(x) be quantum fields, g ;(x) complex valued test func-
tions, Now, assume an observable A to be in 0(s), if and

only if A is a "function™ of operators

) 910x) 9 (x) ()

with 4;(x)#0O only on & closed set inside of A .

Especially with the help of decompositions of test functions

in sums, one should be convinced to postilate:

17: Let A be the union of the open space-time regions A,
In this case 0(A) is the smallest von Neumann algebra
containing all 0(4s).

Note that it follows

0@aY = ) Oas)

and

QAy) < Q(AL) o A s 4,

Now, we are able to define O(A) if A is any set of world
points. Namely, the intersection of all open sets containing

a given set A is equal to A , Hence we may define
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O(a) = QA,O(A') , A open
/ / Remark: An important class of point sets A is selected
by the following condition: There are sountable many open sets
A <CA¢y  with the properties: 1/ A 4s the intersection of
a1l A, . 2/ For every open set A with A < A" there is an
index k , with A, ¢ A
sets are in this class, In this class we can perform the union

and intersection of a finite number of sets./ /

« All open sets end all conpact

Clearly, O(2,) < O(A)1f 4, <4,

Now let ¢l 8and ¢—+3  be related Lorentz transforma-
tion, If A 1s a set of world points, A° denotes the set
of a1l X with x<c¢A ,

Now,the Lorentz symmetry is expressed wikh help of

18: 4 o) U(s) = 0(a”) .

Now, we derive some conclusions. Let H; be a tranlation
invarient subspace and let 2\ be an open set of M , We prove
Hy , the closure of O(a) H, , to be translation invarient.
I ACA is a compact set, there exists a neighboughood
lal < & of the zero vector with 4™ < A for alllalcE ,
Therefore,

U(a)O(d) U(a) Hy = U(a) O(3) H; € H, .
By the lemma of ¢/ there exists therefore a translational
invariant subspace H3 with
H, = O(A)K, 2 Hy 2 AH,

for all those A€ O0(A) which are in an algebra O(4) with

A~

compact subset A of A .
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On the other hend, every point of A is contained in an open
set A, with compact closure end A,cA . Therefore, the
elements A mentioned above have, because of 17, the proper-
ty: Every operator of O (A) is the strong limit of some of
them. Hence, H2 = H3 « Now, H, i8 jnvariant under all U(a)
and under O0(A) . This laads us to the invariance of H,
under U(a) 0(A) U(~a) wich 1s 0(4%). But the sets A™
cover all M and with help of 17 we ses that H, is invariant
under O(M).

19: Let HT be a translation ineariant subspace of H .
Ir A ¢ M contains an open set of world points,
the closure of 0(A)-Hy; is translation invariant and

wqual to the closure of O'H" .

Remark 1: If H, consists only of a vacuum state /multiplied.
by numbers/, 19 is an analogue of a theorem of
Reeh and Schlieder,

Remark 2: The proof of 19 rests only on 17 sand 18 end
spectrality. The corresponding von Neumann algebras
of the bound functions of field operators have, as
a further property, the eyclieity of the vacuum
state. Therefrom one can show that every transla-

tion invariant subspace in eyclic.

Now, we apply the concept of equivalent states to the 2lgebra
0(4) .

Two states c<,, w,; are celled equivalent in A
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if there is no observable in 0(Aa) which distii.guishes bet®en
them, that is if and only if
(@i, A0,) = (w,,Aw,)  all Ae Q(a);

respe: W, * W, mod O(4)
A special case of equivalence i& the concept of strict Zoczii-
zation: w 1is strict localized gutside A if w=2&, tn A
L, denotes the vacuum state. |

Then, by no observation inside A it is possible to distin-

guish ¢« from the vacuum,

Now let be «,2cw,; in A &and suppose T, to be the projection

operator on the set 0(a)w,., Define the operator ¥ which

carries over the set O0(2) w, +(1 -TT,)H into the set O(a)w,
by W1 -T)= QO and

WAw, = Ao, , A€ 0(a).
This definition is unique: From Ac,= O it follows A"Aw, =0
end hence O = (u,, #"A ) = (e, A¥A o, ) that 18 Aw,- O

¥ 4s a linear operator and because of

I Wh co I* = (Whoy, Wheo,) = (Acy, Aw,) = (R, Aw,): Thc 0?

we have

IWwl 2o if we(l-T)H, IWwl=Twl f we 0(4)cw,

We can therefore extend W to a bound operator also called W.
We have seen that W' W = T, . If A‘,Az € 0(a) we get first
A,("T)H ¢ (-T)H and second

AR w0, = A,W(A1w4)= WA4(A,_cu4)

This means, W commutes with 0(4).
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Now, eh.nging the role of w, and w, we definme another bound

operator V € O(A) in the same way. By direct calculation

one shows I = VI o

2032

Remark:

Remark:

Let w, .2 €H and let 7,7, be the projection operators
on the closure of 0(4)«; resp. 038« .

W, =w, in A if end only if there exists an operator
W ¢ 0(4) with

w w/( =‘02 f‘ .]i‘/{ ' 'd‘ =jl-:z e

It follows that WWW = W end WWW = W ,

W is a partial isometric operator,

We have made no use of the special properties of the
von Meumsnn algebra O(A) . The result is valid rela-

tiv to any von Neumann algebra.

If w,~ (2, is the vacuum state and A contains an open
set, we get with help of 19 that J {s translation
inverient snd projects H on the closure of 0, .
This is exact the coherent subspace containing the

vacuum, /This conclusion is valid if 0’ = Z0 ./

There are some further considerations, especially about com-
mutativé subalgejras of O(A) if this algebra is of "“type III"
We will omit this topie.

e/ Causalit °

Let 4,,4, be two sets of the Minkowski space. We write 4,=4,

if fop every pair of world points x€A; , Xx'e¢ 4, we have

(x- x“)2 ) x°) ("4 "A)z ("1 x5 "-”\ <0

C)



We write A ~A, , if in (+) the equality sign is excluded,
Now, if 4; 1is an open set, 4,0, coincides with a,~a, ,
and furthermore A4nAz:=¢ « /Of course, 3,~4; follows
from A, ~A, /.

Let x'eA,. ' X“éAz end (x'- x")zxo o Because A: 1is open
there is an open neighbourhood v of x" with v <A,

Hence, there exists x «U <4, with (x'- x") >0 . Due to the
assumption 4,~ A4, this is impossible, and there are no points
x" with (x-x"% 0.

Resumé: »H, ~ 4, coincides with 4,~4, if A or 4, is open,

. .
Now, let 4 be a set of M , Denote with 4 the set of all
space~-time points x having the property {X}ﬂd .

4 is the maximal set with d=a

Let ye a4 o The set {g’}' is cloaod. But,
a =0 {yf

lj‘d
and therefore A y a8 an intersection of closad sets, is a
closed set,
The so-called Einstein causality reads:
2t Let A, A, be open sets with 4A,~4, , Then,

oa) < ofa) eama 0(s) < o).

To refine that statment, consider an open set A , We then

have A~A', Now, consider an open set A, with compact clo-
sure andZ“cé\. Theg set of points which is space-like to a
compact set is an open set and Z; 24", Hence, there exists
an open set Ax with Ad~Z,< and A cAy Thua,O(Zx) commutes

with 0(A«) . But there are open sets Ax with compact
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A send U Aai<A. With help of 17 we see that 0 (2)
commutes with (" Q{Z:o(} . But 0(4) < O(Z.} .

21as If A is open, 0(4') < 0(a) and ofa) < o0(a"

for the von Neumann algebras F{A) of bound functions of field
operators there is a proposal due to Hasg that F(A')= F»(A}e ,
the so called “duality theorem” , applying the duality theorem
twice, we get the “dismond theorem” F(4) = F( A").

The duality in its original representation is not good for the
algebra of observables. The reason is that 20 < O(A)qand the
fack that, for instance, charge cannot be measured in erbitrary
emall space~time regions, On the contraty, one will find it

more convinging to demand:

223 If 2" is not equal M , there is no central observable

in 0(1).

I.e. we cammot measure /for every state/ a central observabie
in a spatial incomplete region,

Assuming O0(A} to the intersection of F(4) with 0 one
finds some conclusions from the duslity theorem. We g0 another

ways The following assumption is rather restrictive.

23¢ Let A be an open set and W, = w, mod 0(A) as wel:
es ;=2w, mod o0(4').
Then,

Wy = W, mod O .
Let us combine this assrtion with 0°= %0 .
If the unitary operator U 1lies as well in C)(A‘)Q as in O(A')q
we get Uw =W mod 0. Ifw lies in a coherent subspace
of H we find «w to be an eigenvector of U and therefore

U € ZO . The conclusion is O(A)v > Z0 1is trivial:
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243 0(8) a o(a) = 2o
O is generated by the algebras 0(4) end 0(a) .

Combining this with the second relation of 21a, we see that
the intersection of 0(4) and 0(A)' 1is contained in ZO.
This intersection is however empty, if A 1is not complete by

virtue of 22. Result:

253 If A 1is not complete, that is M # a' y the von

Neumann algebras O (4) end 0(4) are factors /a

is assumed to be open/,
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