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Abstract: Mainly with help of translation invariance,
spectrality, uniqueness of the vacuum and the
field property we consider some of the role
of the translation invariant subspaces in the
theory of Haag rings. In general we 4o not
assume the completeness axlom to be satisfied:
We imagine the rings to be built with respect
to a subset of the set of all fields arising
in a theory.



1. Haag fields

Let H be a separable Hilbert space.
We introduce the concept of a Haag field as following (17
To every open set 4 of the Minkowski space M it is given

a von Neumann ring F(2)

A F(B) ,  agM,; Acfe (1)

with the following "field property" [i]:
If the union of the system {A«} of open sets 4, 1s the
set A

« / (22)

the ring F(a) is generated by the rings F(4,) . With other
wofds

=(8)0 - N Fa)
F () / ) . (20)

We remark first F(5,)< F(5,) Af &,€5, . Secondly it is
known, that any point set & of Minkowski space is equal to
the intersection of all open sets containing 4 . (This is
true in every topological space: If the point x 1s not in A
we conclude the complement of {x/ to be open, to contain A
but not » .)

Therefore we may define von Neumann rings associated to

arbitrary subsets of the Minkowski space (3] :

~

F(a)- NF(B), asd & spm (3)



If A 1is open this definition leads to the original rings (1.
Trivially

FU84) € Fla,) if o,€8; . (4)

Now we consider the following symmetric subring of [ (A} !
A€ Fs(5) 4f and only if there is a compact subset A of A
with A€ F(&),

(- (0) consists of those elements of F(a) having compact
carrier X<a . Generally , ' (®) is not closed under weak

convergence and only this preveants Fo(8) to be a von Neumann ring.

Lemma 1% If & is an open set, F(®) is the strong closure
of F‘,(A),

Beeause A(0) is a symmetric subring one has only to show that

F.(c) generates [X2) , Now we choose an open covering (o}

of A with the property: The closure Z.< of A« is compact

and in A& . Therefore [((B)<€ F(& )< Fea),

On the other hand the ring *(s) 1s generated by the rings

F(o,) because of the field property (2).

Next we make use of the following kmown fact: Let 4,242 4.2 -

be a deéreasing sequence of compact sets with intersection 4 .

e

If A<A and & 1s an open set, there exists an integer S
Jo  with 54'52 for ;. 2J., o Therefore from A& < A, A
open, we see N F(A».) < F(ZS). From the definition (3) we find
that )\ F(4:) 1s contained in F () , On the other hand

F(A) € F(p,). So we have proved:

Lemma 23 From A28, 2 .. with compact »&; 1t follows

A Fa) = Flns) ()



2. Iranslation invariance and spectrality.

In what follows we assume inm H the existence of a unitary
represcutation

a — Ul(a) (6a)

of the translation group
x! “"’X"f— c»,/' resp, x 9 x+a, <6b)

If & 1is a subset of iinkowski space we denote with A°

the set of points ~+a with «x¢& &,
The representation (6) is called admissible with respect to the
Haag field (1) if and only if

F(0°) = Ua) F(D) U(=2) (7)

for all open sets. We consider admissible representations only,
which fulfil the well known spectrality comdition.

From the definition (2) we conclude at once the validity of (7)
for all sets of iinkowski space.

As is well known, from spectrality follows that the function
g(a) = (w, Ul=)w,) is the contineous boundary value of an
analytic function in the fori%ard tube. If therefore g(q
vanished8 on an open set of vectors a ,this function vanishes
identically. |

We denote with lalz ¢ a neighbourhood of the zero four vector.

Lemma 3: Let be D a subset of H and for every w el

there exists a neighbourhood !af < &(w) with

Ule)w €D for ol ¢ eCw)

Under these conditions the Hllbert subspace generated

by D 1is translation invariant.
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To prove this, we show that with w' also U(a)«' for all

o 1s an element of the orthogonal complement D of D .

But 1f «@' €9 and wed 4t is (i Ub)w ) = 0 por

tal < €C=)  Honce ( @/, U(a) w) =0 identically, which shows

the translation invariance of D* .

2. Iranslation invariant subspaces,

Let be A an open set of M and H, a translation invariant
subspace of H .

We consider the subspace . of | which is gemerated by all
A with PeF(s) and co et, o With help of lemma 1 we see
that H. 1s generated by the set 1% (2)- H, also. Now if

A€ Fo(B) there exists a compact subset A& cao with
AeFo( D), Because A 1s open, &  compaot we can f£ind a neigh-
bourhood (al¢ ¢ of the zero four vector with A °<A for all
ial ¢ ¢,

Therefore equation (7) shows U(e) A U(-eo) € F(2) for this
neighbourhood. Now we reminde'the translation invariance of +/,
and see: The vector set f.(4)'H, fulfilsthe condition of Lemma 3
and H, 1s translation invariant. We recall U (s) /1, & Fla

for all o and by definition F (o) Hqy < F, Hence

U(a) FCA)U(-a) Hy €+, and H, 4s invariant with respect to
all rings F(2°) , Now the sets A® cover the Minkowski space
and as a consequence of the fleld property F(™) is generated
by the F(A") , The conclusion is F(M) /.S H, and the weaker

FB)He £ FCM)Hy € kL.
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Theorem 13 Let Ho pe/a translation invariant subspace
and & an open set of world points.
Then the closure of F(2) ' H, is translation

invariant and equal to the closure of FC(HM) ‘I, .

We assume now the existence of one and only one translation

invariant vector 9, in H (up to multiplicative complex numbers).

Theorem 2: If L, is a cyclic vector of FCM) , then every
noz'-zero translation invariant subspace /. is a
cyclic subspace of 'Fm) s provided & contains
inner pointis.

We have to prove that the closure of F (&) "o 1is equal to *I

5 G o et
By theorem 1 it suffers to show, that < (M) M. 4is dense in M ,

Let ‘%l;/]bé the projection operator on the closure of ~(N/-/4,,
It is 7Te F(M)' and T  trapslation invariant.

ast
By the last fact and the uniqpness of the vacuum we get

Qo = AR, o« Now Q, is oyclic vector of /F(r7) and hence
a separating vector of Fcm)! . Hence 77 =214 , Because
Ho #0 we have T+0 and 7 4is a projector if and only if

A=4 , Pherefore <=1 ,

Corrolar 13 If +o - {Ae,}, theorem 2 reduces to a well known
theorem of Reeh and Schlieder (6],

Now assuming Q. not to be cyclic, we denote with "o the

projector of the closure of ~(M) Q, o« With the notation

used above, we get o = F(M)(n-x4) 2, and (17-2)7, =0

Only the possibilities A- 97 remain:



Corrolor 2: 1f H.%© 1is a translation invariant subspace

and & an open set, we have

either F(A) H, 2 F(M)Q, (8)
or F(a)H, L F( M),

(The sign + denotes orthogonality, the bar the operation "closure")

4, Einstein causality.

If & is any set of world points, we denote with 4’ the set of
all points spacelike to & , We write AO.~ 02 if A€ A/
'(the same 1s ;<& ),

Due to the continuity of the world metric (x-%')°  and with
help of standard arguments the following can be proved:

Lemma 43 a) If & is compact, »' is open -
b) I£f 2«42 and A, &2 compact, there exist
AN A A
open sets &, , 4, with A,~2: and

el
AL E D, By £8;

We now assume causality in the following form:

2 (L}‘) (=3 l:(Dz)/ "{ A4~ Oy aroedf L\4'L\2 O (9)

emma 53 From O.~05: it foliows o (84 £ Fo(42) '

Let be 5, S A« with compact D . Lemma 4 b shows the
existence oi open sets A,. 22 which contain respectively g,
and 24 and fulfil 2\4 ~ Zgz . Therefore the rings F ( 2»}

and F(2,) commute and so do their subrings F (5, ).

Now the definition of /(42«) leads at once to the assertion.

Next we prove
2o (b') < I:(L\)/

(10



/

N / ~Ar
Let b¢e A ca | O conpact. e see (lemma 4a) that At

~/
is an open set and A €& . Lemna 5 gives

E(D) = Fo () < Fc(/}/}/: FCAYD!

The last equality is due to lemma 1., Now 2 < A’ 4nduces

~0l . mran ] . -
F(n) e F(2) . Hence F(&)<7ca)! gor all compact subsets

oz n' , which proves (10).

From (10) we get fo (") CFce)’  and because AL ~" we find

F, (p) s F(2)’ and finally

1:(43') S /—;(A)l . (11)

From lemma 1 and (10) and (11) we find

F(al) e FCa)l ig Aec &f 45 o (12)

S. Remarks on comaubative subrings,

At first we consider the ring Fo (™M) (41, We denote with

the closure of (M) a,,

Lemma 63 From /4Qeso, A€l r~t) /48l £ollows
AH, = A*H, = 0.

[
-

This is! because A has compact carrier and there existg due to
locality an open set & with A €F@) , nence ALQ, =0 implies
4 =0 on the closure of the set F(a) Q, that equals H,
UV

by virtue of theorem 1. Now we 1 é 3;0: prove only Ao =0,

Phe szme concidecrations as above show the equivalence of this



statement with (3Q., A"2.) =0 for all B e Fca) ., But
(Ba. | ATRe)= (A8 Qe Q) < (81 2,2,) =0,

The lemma provides the uniqueness of the following constiruction:
Let be Q=4<., A€ (G(N) | Then define
«Q*r = AT,

The map
o =027

(13)

is an antilinear map, delined on the demse subset 7 (M),
of H, (&1,
From (7) ané M° -~ as well as (Wau™")"- UA*u " one sees at

once

(Ue) )™ - ) ar. (14)

Lemmz 7: Let R  be a symmetric commutative subring of fL(1v),
not neccessarilér closed under weak convergence.
If the closui'e H, of RQ, is translation invariant,

<2, jis an elgenvector of all A€R,

Phe first part of the proof remembers the well known fact £97

that (13) induces an antiunitary operator on H, o+ Namely if

Q)2 € R, we have
(a, <, ) (A1Qo, Aee) ~ (370 M'Ro) <(Q:7, 0.7 ),
Therefore (13) can be extended on the closure Ho of R, with

conserving the antiunitary property. Because Ho is treancslation

invariant, equation (14) remaiys true also in /.
’ / .
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To come to the second part of the proof, we mentlon the existence
of 2 dense subset D <+, which belongd to the domain of definition
of the energy-momentum operators P. and which 1is invariant

under the magmg13) becausc of (14) and the antlunitary property.
The reason for this fact is the invariance of /o with respect

te all  Uce),

From
(xs) -1
! A30 A
and (14) we see
(Pea )’ = - P aucpn (19)

if QeD . Let {a*f} be a timelike and forward directed four-

vector. From spectrality it follows

0 < (Q,05P, 2)= (6P Q)" Q%)== Piera)co (16)

Hencec the expectation values (16) are zero and £2 hagy. to be

translation invariant. Then the uniqueness of the vacuun state

implies Q <AQ. , But D 4s demse in F, . We see f/, ={,xQ,}

and the lemmaz 1s proved.

With exactly the same arguments we see

Lemma 8: If <@, 1s a separating vector of the centre of F(r)
F()  is a factor.

0f course, if A 1s an element of the centre of /7(17) so dpes «

Ule) 1+ Yi-a) Pherefore the closure of the vectors 4AQ; with
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central A is translation invariant. Because <(2¢ 1s separating

for central elements one can introduce the operation (13) and the

proof runs as above.

Theorem 3: Let be A an open set and 3, a cyclic vector of the
von Neumann ring generated by F(4) and /~(a) /s
Then the centre of /%(4) comsists only of multiples
of the ldentity.
Let ACF (i)/ﬂ_be a central element of /% (4) . It exists a
neighbourhood fef €€ cf the zero fourvector with U () All(~s)c R (a)

and heace

[ Ulo) /1 U(~a), #] = O

for lalzg,

Transforming this with W(6) we see the existence of &  with

[cat) 4 U(-a'), UG A Y(-a)] =0

for lal| “& and e ¢ ¢,
The more: If R  is the ring of poyndmiﬂals in the operators

UCs) AU (~a) with l¢) ¢ €&, R 1is commutative and for every
B <R  there is an 4 €(B) with

% (s) RU(C-4) € R if lal < e(g) .

Lence R Q, is translation invariant.( See lemma 3).
Now if A has been choosen hermitian, R 1is symmetrice.
As a consequence we are allowed to apply lemma 7, which shows,

that @, 1s an eigenvector of A o But <, 1is separating for
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A € F(Lﬁ,ﬂ P(a)’ and hence A A1, The proof of the theoren
is finished by the remarlk that the centre of /% (s) is generated

by its hermitian elements., (liote li(ld’*fYA)’because leama 1)

Sorry we have not been successfuliﬁin proving F(a) to be a

N

factor. the difficultes arise from the boundary {707 : Indeed,

let ALJpe a central element of [(s). Ve have proved A -A-1

ey

if the carrier of A 1is compact and inside A .

footnotes:
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{1] :+ This notation we take over from R;F.Strﬁéter, Introduction
to the Theory of Localized Observables, held at Zcole de
Physique, Gendve (1964).

r2] + Hedvaki, J.of Hath.Phys. 5 (1964) 1. Further axioms will be
introduced later. ¥e do not postulate the completcness ci
the Haag [ield: We think it deiined from a subset of the
set of all guantum fields of a gi&én theory.
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: This definition differs from the one given in (2].

[4]: To say " A has its carrier in A" is equal to A € F(n)
by definition.
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If ~xedy, x §A we choose a limit point < of (=« )
xeAC A Therefore a full neighbourhood of x is =
in X in contradiction to x, ¢ &,

(6] : Sce for instuuce [2] or

H.Rteeh, S.Schlieder, Nuovo Cim. 22 (1961) 1051,
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The closure of F () by morm convergence is the ring of
quasilocal operators, associated with the Haag Ticld

0f course this operator is badly singular in general,
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Jd. Dixnmier, Les algébres d'operateurs dons l'espace
hilbertien, Poris 1957.
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oo into accountlaxioms to prove the factor property
of Fa) , the same sort of difficulties arises. See
R. Haag, B.Schroer, J.of Math.Phys. 3 (1962) 248,
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