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Abstracgt: In the framework of axiomatic quantum field theory
we give a simple definition of "number" operators which
coincldes for free flelds with the usual ones.



1. Definition
For sake of simplicity we restrict ourselves to the case of two

scalar neutral (and hence hermitian) quantum fields «.(x), ¢x(x).
With f, 9. we denote the test functions of the tempered
distributions and write symbolically

@; (f) = f‘PJ (x) ; (<) e'x J = A2 &)

We assume the existence of a common domain of the operators (1)
containing the vacuum vector £, (= lorentz invariant vector)

and all vectors which can be reached by apllying polynomipals Lp
in (1) on Q. .

A monomipal /

‘Pu (fn) (P.'L[f;_) . ‘P.'" (‘fu) / ":" = A2 (2)

1s called to have degree (r,s), if r indices are ¥qual one and /.
s indices are equal two,

Let A be a polynomigal in the operators (1). Ve write /

IAl & (3)

if A 1s a sum of momomifals (2), the degrees (r*,s*') of them L
fullfill r* < r and s* < s.
It is

| AL Ayl & ("“44'1\1'4"{-41) if ,A'k, é('\ﬁ“'!k) (3)

Applying all polynomidals A 4in the operators (1) with IMcws) [

to the vacuum state Q. , we get a linear manifold D™ of



vectors. D°° oconsists of the vectors A Qo .,

We have

DL DT it 4T 48

N
&)

(4)

and

THA S DT =1

4.0 D™ € D onp) DV €

(5)

L
Provideg that (o 1s a cyclic vestor of the ring of polynomifals 7
of the operators (1), the union Y D™ 1is dense in the Hilbert
space H .

D"* 4s a lorentz invariant manifold: Transforming with the
unitary representation of the lorentz group, the monomipals (2) /
go not change their degree and Q, 1s lorentz invariant. Ld
Now we define H'* to be the closure of D™ , We interpret H®’
to be the space of states having not wore than r tparticles of
sort ¥ " and not more than s "particles of sort . ".

Let us denote with 7"* the projection operator on H™ ., Ve

rewrite equ. (4) and (5) in terms of the projectors:

-,nf,4 . J-ng‘S- = Jiﬁ‘s it (4) & (;'3) , (43)

(A -3"") @) a0 | (A-3%%") @u(¢) 77 =0

(5a)

The last equation makes sense only in the domain of definition
of the fields of course.
Dhe to (4a) the strong limits
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") - lim 2°%" (6)
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exis;é, defining two 1ncr¢§sing sequences of projection operators.L
We interpret J°G) to be the projector of the states having dea
not more than n "particles of sort ¢, ".
Now defining

7, () = 7°0)

() < J°G)-IT°G)

B G) - A7) - A7) (7

'
)

we get two orthogonal decompositions of the Hilbert space H
Ve associate with them two self-adjoint operators, which may be

considered as "number®™ operators:

N; = 2 e J,0) , AR (8)

2. Properties of N;

First we see from the lorentz invariance of D"* that all
defined projection operators commute with the representation

of the lorentz group. Therefore the same do N, and N, .
Especially N; commutes with the operators of energy, linear
and angular momentum.

The next considerations are not complete: We do not discuss some
difficult questions about the domain of definition of the

operators (1). Especially one should assume in Jn(j)-H a dense
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set of vectors belonging to the domain of definition of all
operators (1). Having this in mind, we procedd as following:
From (5a) we get

@ () T7G) = T™G) @) T7G) (9)

@alt) BTR) = W) alh) (10a)

" = "( . (F) .
¢ (f) n7(1) Jgra) @ (f (10b)

(10) shows the commutativity of «. with all 5"(x) . Hence

L-CP»\(H) N?.,] = [‘PJ.(H/'\/'IJ =0 (11)

Equation (9) is valid for any test function f . With help of

@) € ¢if)*  Wwe get

5°G) @ () = TG) @i (f) a™() (9a)

Al

lNiow we calculate the operator B = (TMu +Jn+ Tma) e (f) 7,

Vie get first

B= (DT"M——' J.in-i.) "P (‘J.“n_ﬁ'n—d)

From (9) it follows (mote 5™ 3" - ¥ )

L}

.ﬁnmcp an - Ji'"Mcp ﬂ'«"’ o 1"~ ¢ JT'n-4 |
fﬂ n-2 (P 9-'-"1__ ﬂM‘L(‘P JT'“" = .ﬂ’“‘k(? 5.’%'43{11 _ (fﬂ‘n-4 JTM'4) -0
Hence we get finally

('PC{) Jrn = (Ajmm + Jin + ﬂﬂm) cp({») T

(12)
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I.e. «{) causes transitions m->m-1, Mrm; M- mtd of
the n-particle states oanly.
Defining
@LCE) = 2 Toa G) CH) An (i)
¢%(f) = 3 Tm(§) @i (f) A (§) €13)
G5 (F) = Z TuaG) i (f) TmCi)
we have due to (12) with J = 1,2
GCE) = @5U) + @7 (F) + @7 (1), (14)
[, ¢5o] = @5Ch)
[N, 5] = o (45)
[N ei0)] = - (F)
and finally
¢ (+*) € @%D™ ;¢TI )T ¢16)

3« Remarks,

a) The operators N; obviously contain some information on the
structure of the quantum flelds ¢;(x) , Going to the Haag rings
of bounded functions of the ¢ , we lonse the graduatlion of the
ring of the p?ynomir@ls in the field operators (1) and so we loose
the informations included in the existence of the operators NJ\Z 0(’,'

i
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b) Though one cam prove ¢; (1)Q.=%) ¢5(1) Q=0  and the faoct,
that for the ring of polynomif;ls in the operators «% (f) I
the vacuum state is cyclic, we have not found a definite connection
with the momentum representations of «;(f) + One should suggest

°

for instance, that ¢ is connected with the space llike momenta
of the fourier transform of ¢ .
¢) The construction of §1 may be extended in different ways by
restricting the basic monomiéals (2). We get different "npumber |/
1like" operators, which are assoclated with the field operators.
For instance:
ca) Use only test funotions with carrier in a given open set of
Minkowskl space.
cb) Demand that the carriers of fi,.--if» in each monomi#al s
are space like onme to another. (The carriers of test functions
belonging to different monomi#als need not ful#fili this [
condition.)
c¢) Demand that for each monomiﬁal separately the carrier of J
f.a is in the forward (alternmatively backward) cone, which
is attached to the carrier of f« .
d) The generalisation of the construction given in §1 to more
fields may be done in the following way:

Let the field operators ¢., Dbe labviled in a suitable mannerf%é

Call a monomiéal I~
Potaps () oo Prppnlfn) (¥)
to be of degree ( n.,mim,... ) if in (x) a factor of the
form @u,g (3=M2...) OCCUrs I, = times. Apply all monomiﬁgis I
Lot
the degree of which d¢ not exceed (mym: ... ) to the vacuum

state and denote with H{™'™™»)  the Hilbert subspace

generated by these vectors. These subspaces are the generalisaf#
1=




tions of the spaces H™® of §1 and one may now proceed as it
was done in §1. Of course 1f the set w«p) [~ A2 d¢ mot ,
generate the same spaces as their hermitian conjugates, equ.

(12) and its conclusions will become more complicate.
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