THE CLOSURE OF MINKOWSKI SPACE

BY ARMIN UHLMANN

Theoretisch-Physikalisches Institut, Karl-Marx-Universität, Leipzig

(Received July 2, 1963)

Recently Penrose [1] has proposed to close space-time by world points at infinity. The closure of space-time provides some progress in studying asymptotic proporties and proporties "in the large". As a rule, the metric is singular at infinity and the structure of these singularities will be a characteristic of the asymptotic behaviour of the metric and related quantities. Of course the closure of space-time by world points at infinity is not unique. Therefore for the singularities the same is true.

In the following a suitable closure \(\tilde{M} \) of Minkowski space \(M \) is given, which may be used to study asymptotical flat metrics [2]. Minkowskian coordinates are (algebraical) singular at infinity. The introduction of coordinates, regular at infinity, is a first step in resolving the mentioned singularities of the field quantities.

The closure of Minkowski space gives a compact real-analytic manifold, which is closely connected with the structure of the future tube [3]. The world points at infinity constitute a closed "light cone". The conformal group acts as a regular transitive group on the closed space-time.

To construct \(\tilde{M} \) we choose an orthochronous Lorentz frame \(\{x^i\}, x^0 = ct \), (the signature of \(M \) is \(+---+)\) and consider first the transformation

\[
\{x^i\} \rightarrow x^0 E + x^1 \sigma_1 + x^2 \sigma_2 + x^3 \sigma_3 = H
\]

(1)

Here \(E \) is the unity matrix and the \(\sigma_\alpha \) are the Pauli matrices. We consider the matrix elements of \(H \) as new coordinates of the world points. Every world point is in one-to-one correspondence to a Hermitian matrix \(H \). Note the well known relation

\[
ds^2 = g_{\alpha\beta} dx^\alpha dx^\beta = |dH|.
\]

(2)

Now we change coordinates once more by a Cayley transformation:

\[
H \rightarrow (H - iE)(H + iE)^{-1} = U.
\]

(3)

Now we identify \(\tilde{M} \), which is the closure of \(M \), with the manifold of all \(2 \times 2 \) unitary matrices, which is a (real-algebraic) manifold. As (1) and (3) give a one-to-one map of \(M \) into the set of unitary matrices, we identify \(M \) with the set of those \(U \), which are pictures of world points.
of the Minkowski space. In this way \(M \) is represented by the unitary matrices with \(|E - U| \neq 0 \) while the world points at infinity are given by \(|E - U| = 0 \). With the aid of (2) and (3) we conclude

\[
ds^2 = -4|E - U|^{-2} - 2|dU|.
\] (4)

As \(|dU| \) is a (non real) regular metric on \(\bar{M} \), \(ds^2 \) is conformally equivalent to an everywhere regular metric and has a pole of order two at infinity\(^1\). Therefore \(g^R \) is a tensor in \(\bar{M} \) vanishing at the world points at infinity. Remark that \(|E - U| = -4(\bar{x} \cdot \bar{x} - 1 + 2ix^0) \). We consider now the mappings \(U \rightarrow (AU + B)(CU + D)^{-1} \) with \(AA^* - CC^* = DD^* - BB^* = E \) and \(AB^* = CD^* \). They define a connected 15-parametric group \(\Gamma \), found by E. Cartan \(^4\), transitive on the \(2 \times 2 \) unitary matrices and this means on \(\bar{M} \). A simple calculation shows that \(\Gamma \) consists of the conformal transformations of the metric \(|dU| \) and therefore (see Eq. 4) \(\Gamma \) is the connected component of the conformal group of the Minkowski line-element, and

acts on \(\bar{M} \) as a group of homeomorphisms without singularities\(^2\). We conclude that \(|U - E| = = 0 \) is congruent to a light-cone (with origin \(E \)). To see something about the structure of a closed light-cone, we consider the simpler cases \(x^2 = x^3 = 0 \) and \(x^2 = 0 \). In case one (only \(x^0 \) and \(x^1 \) are considered) \(\bar{M} \) is topological a torus and a closed light-cone is a system of two canonical cuts, which cross at the origin of the "cone". If \(x^3 \) is considered to be zero, things are more complicated and we construct a topological equivalent of the light-cone in the following way: We take a Klein's bottle, choose an equator on it and consider this equator to be one point (origin of the cone).

Finally we remark: a) Let \(\Gamma^\prime \) be the group of the proper Lorentz transformations and of the scalar transformations \(x^i \rightarrow \lambda x^i \). An element of \(\Gamma \) lies in \(\Gamma^\prime \) if and only if \(U = E \) is a fixed-point of it. Therefore there exists a natural homeomorphism \(\bar{M} \leftrightarrow \Gamma^\prime \) = space of right cosets from \(\Gamma \) to \(\Gamma^\prime \).

b) The transformations which are not connected with the identity are represented by \(U \rightarrow U^\ast, U, U^\prime (= U \) transposed).

REFERENCES

\(^{1}\) On the only singular point \(U = E \) of the hypersurface \(|E - U| = 0 \), the pole is of order four.

\(^{2}\) To see this more transparently by an analogy: If Gaussian plane is completed by "the point at infinity", the transformations \(x^i = (ax + b)(cx + d)^{-1} \) become a group of homeomorphisms.