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Spectral Integral for the Representation of the Space-Time
Translation Group in Relativistic Quantum Theory
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Institute of Theoretical Physics, Jena University, Jena, Germany*

The structure of the representation of the space-time translation group in
relativistic quantum theory is examined by means of an operator spectral
integral. There is one and only one operator-valued function on the complex
forward cone which is an analytic continuation of that representation.

1. INTRODUCTION

In order to examine the representation of the translation group, Wigner (1)
and Wightman (2) used the concept of direct integral of Hilbert spaces. There
is, however, a more transparent way to study this problem: Naimark (3) has
first given a direct generalization of Stone’s spectral formula for one-parameter
groups of unitary operators to arbitrary commutative, local bicompact groups.
Using this we derive analytical properties of the representation of the transla-
tion group. A simple application gives the analytic behavior of some expectation
values, discovered by Wightman (4). In the paper we work in the Heisenberg
picture and use the Minkowskian line element in its real form and with signature
(+———). We write a = 0 (0is the zero vector) if a is a (real and constant)
vector in the forward cone. Thus a is timelike or lightlike if a = 0. If @ = 0
and timelike, we write @ > 0.

Let P be the vector of the energy momentum operators. The requirements for
spectrality can be described as

<aPpPpP=z=0 if a=0 (1)

for every state |> of the simultaneous domain of definition of the vector-operator
P. This domain is dense in the Hilbert-space. Therefore the operator a-P is
positive semidefinite if @ = 0. In fact, the left side of Eq. (1) is continuous in
a and therefore it is sufficient to consider only vectors with @ > 0. Then there
is a proper Lorentz frame (2°, not —2°, is proper time) with a; = AE A > 0.
Thus we get a- P = APq and P, denotes the positive semidefinite energy operator
belonging to the chosen Lorentz frame.
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Next let @ be an arbitrary (real and constant) vector. a defines a translation
of Minkowskian space-time by the relation

2 — a2t 4 a’ (2)

for every Lorentz frame {2'}. We may therefore speak of “the translation” a.
Now the states of a relativistic quantal system constitute a unitary representa-
tion of the group of space-time translations:

a— U(a) (3)
with
U(a+ b) = U(a)-U(b), U) =1, (3a)

and we assume, that this representation is continuous with respect to a.

Next P is the vector of infinitesimal operations of the representation (3) in
the following sense: Denote by a an arbitrary (real and constant) vector and
let \ be a real parameter. Then we have

U(a) = 1+ i\a-P — \'/2(a-P)* --- .

A more satisfactory formulation is

(4)
In the domain of definition of a-P this is a norm-convergent limit.

2. THE SPECTRAL-INTEGRAL FOR U (a)

Naimark (3) has proved first that every unitary continuous representation
of a local bicompact commutative group is given by a certain integral on its
character group (see also (4), (6)). In order to apply this to the representation
(3) we note first that the group of space-time translations is isomorphic to its
own character group and that every character is of the form

a— exp (ia-k).

(k denotes a real and constant vector.) The group of translations forms a finite
dimensional real vector space. We shall denote this vector space with 7. We
now explain the concept of spectral measure on T. An operator E is said to be a
projector if and only if

E =E* K =E.
Now let us associate to every Borel set Ty of T' a projector E(T,)

Ty — E(T,). (5)
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This correspondence defines a spectral measure on T if for every state |>
To— u(To) = <| B(To) |5 (6)
defines a measure du on T and if
E(T) = 1. (7)
Every spectral measure satisfies
E(TinT,) = E(Th)-E(Ty),

8
E(T1 U 7’2) + E(Tlﬂ TQ) = E(TI) + E(Tz) ( )

for any two Borel subsets T; and T, of T. Given a spectral measure on T it is
convenient to write

E(Ty) = f dE (k) (9)

and to speak of the spectral measure dE or dE (k). Now let dE be a spectral
measure and f(k) a function on T. Then we can perform an operator-Stieltjes-
integral which defines an operator F':

P = /Tf(k)dE(k). (10)

We note two important properties of the integral (10):
(a) For every ¢ > 0 there exists a finite number of disjoined Borel sets 7',
with
| F — 2 f(k)E(T,) || < e withany &, € T,. (11)

s

Here the sign || - - - || denotes the operator norm.
(b) Let |> be any state. Then

AF ] = f J(R) du with w(Ty) = <| E(Ty) >, (12)
T
Now we turn to the unitary representation (3) of the group of translations and
apply Naimark’s theorem.
TuaeoreM 1 (Naimark): There exists one and only one spectral measure dIJ on

T with

Ula) = / exp(ia-k) dE (k). (13)
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This unique spectral measure is called the spectral measure of the representation
U(a). Next we calculate a- P with the aid of Eqs. (4) and (13). We obtain

aP = f a-kdE (k). (14)

Now we denote with 7', the set of all vectors k2 with 2 = 0.

THEOREM 2: Let dE be the spectral measure of the representation U(a). In order
that the spectrality requirement [Eq. (1)] be satisfied it is necessary and sufficient
that E(To) = O if the intersection Ty n Ty 1is empty.

Theorem 2 means that the spectral measure is carried by the set T .

To prove this we consider a Borel set T, with empty intersection Ton T’ .
It E(T,) ## 0, there exists a state |> with <| E(T,) |> ¢ 0. Denote by du the
measure induced by |> according to Eq. (6). Then u(T;) > 0. Therefore we can
find a vector ky € T, with the property that every neighborhood V of k, has
positive measure u(V) > 0. Now it is possible to choose @ > 0 and a neighbor-
hood V of ky with a-k < 0 for every &2 € V. Next consider the state | 1> =
E(V) |>. Equation (8) shows that E(T’) | 1> = 0 for empty 7’ n V. Therefore

AlaP|1> = [ aka|dE (k)| 15,
14

But a-k < 0 on V and the measure does not vanish on V. Therefore the integral
is negative. This contradicts Eq. (1). Hence the condition of Theorem 2 is
necessary. On the other hand, if £(Ts) = 0 whenever Ty n T, is empty, we can
write :

a-P = f a-kdE (k). (14a)
Ty
If a = 0 then a-k = 0 because kB = 0. Therefore, if a = 0, the operator a- P is
positive semidefinite. Hence the condition of Theorem 2 is sufficient. In virtue
of Theorem 2 we can write

Ula) = [ explia-k) dE (). (15)
Ty
Let f(k) be a measurable function on 7. According to the theory of self-adjoint
operators in Hilbert-space, there is a well-defined operator f(P); for [P, , P,] = 0.
One can prove that

j8) = [ gk ar (w). (16)

Of course, if the function f(k) of Eq. (16) is zero on T, up to a set of measure
zero, we obtain f(P) = 0. This statement is equivalent with the spectrality re-
quirement (Eq. (1)).
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As an example for Eq. (16) we consider the rest mass operator

M = +(P-P)"". (17a)
This operator is given by
M= [+ (kR)"dE (k) = [ xam (0 (17b)
T, 0
with
k=Ng
[ TiEw = | dE (k). (17¢)
k=A\1 ME(k|ISN

dE () is a spectral measure on the nonnegative real numbers, i.e., a so-called
decomposition of unity.

3. LORENTZ INVARIANCE

Denote by ¢ a Lorentz transformation belonging to the connected component
of the identity and let a be a vector. Then oa is a well-defined vector. Let ¢ —
U(o) be the (two-valued) representation of the proper Lorentz group. We have

U(o)U(a)U™N(o) = U(oa). (18)
Next we change in Eq. (15) the variable of integration by k& — ok and get

U(cra) = f exp(iaa-ak) dE (ak) = / exp(ia~k) dE (ak),

for a-k = ga-ok. Now there exists one and only one spectral measure of U(a)
and therefore we have (because of Eq. (18)):

TueorREM 3: Let dE be the spectral measure of U(a) and o a proper Lorentz
transformation. It follows

E(eTy) = U(e)E(To)U (o). (19)
Ty denotes the set of all vectors ca with a € T .

4. ANALYTICAL PROPERTIES

We consider the set T + 4T of complex (constant) vectors. Let us write
D = T 4 <T, . D is the closure of the interior D of D: A vector z = x + iy
belongs to D if and only if y > 0 and to D if and only if y = 0. Being an open
subset of the complex vector space T + <7, D is equipped in a natural way
with a complex analytic structure and the concept of analyticity on D is well
defined.

An operator-valued function A(z) on D is said to be analytic (i.e., holo-
morphic and one-valued) on D if and only if for every state |> the function
<| A(z) |> is analytic on D. The definition implies that A (z) is a bound operator
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for every z € D. Furthermore, let z° € D be an arbitrary vector. Then there
exists in a neighborhood of z° a norm-convergent power series

A(z2) = ZA0.0(2° — 2)7(20 — 2)°% - (2 — 2,)""

with bound operators A4;,...;, .

TaEOREM 4: There is one and only one continuation of the representation U(a)
into the domain D with the fcllowing properties: (a) U(z) is continuous on D.
(b) U(z) s analytic on D. U(z) is given by

U2) = [ expliz-k) dE (k). (20)
Ty
First we note that |exp (iz-k) | < 1, for z € D and k € T, . Next we choose

¢ > 0 and select a compact subset To of T, with || £(Ts) — 1] < e. Then we
have for every state |> and every z € D

!<| Uz)p — fTU exp(iz-k)<| dE (k) ]>‘

=< f exp(iz-k)<| dE (R) > | < e-<>.
T,—To

Now e > 0 is arbitrary and
[ expliz-k)<| dE () |
Ty

is analytic on T 4 ¢T (for T is compact and exp (4z-k) analytic) and there-
fore <| U(z) |> is an equicontinuous limit of continuous and on D analytic
functions. We conclude, that <| U(z) |> is continuous on D and analytic on D.

Now let U’(z) be a second continuation of U(a) with properties (a) and (b)
of Theorem 4. Then the function <| U(z) — U’(z) |> = ¢(z) is continuous on
D and analytic on D for every state |>. Moreover, g(z) is zero on the part T,
of the boundary: g(a) = 0. One can prove the fact that such a function vanishes
on whole D (see Appendix). Hence it is U(z) = U’(z).

Now we derive an in-equality for U(z). By Eq. (20)

UG | = fT lexp(iz-k) | <| dE (k) |> =fT exp(—y-k)<| dE (k) |>.

(> is any state and z = x + 2y.) It is

1%

yhzlyllk], for yz0 k20
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Therefore we have
U@ PIs [ ep(=ly | kDB () >
+

= (| /ow exp(—sx-ly|) dE() |>.

The measure dE(x) is defined by Eq. (17¢). Equation (17b) shows that

S1) = fow FG0) dE ()

(f measurable). Hence we get the following result:
THEOREM 5: For every state |> the inequality

<[ U@) | = <exp (—[y|-M)]> (21)
holds with z = x + 1y.
5. ANALYTICAL PROPERTIES OF EXPECTATION VALUES

Wightman (4) has proved, that one can. extend the vacuum expectation
values

fE, o X)) = <a(®) - oaa(Xeia) o (22)

analytically into the domain z, = X,;; — X, 4+ 4y, with y. = 0. Various authors

have examined these functions; see, for instance, Refs. j, 7-11).
If o(x) is any Heisenberg operator, we have

o(y) = Ul@e(x)U (@), y—x=a. (23)
Therefore we can write
fE, oy X)) = <U(Z)ei(0) U (£ U(Re)2(0) -+ (22a)

Now U(a) |> = |> if |> denotes the vacuum state. Setting x, = %4, — %, we
have
f(il y Ty is+1) = <<p1(0) U(x1)<p2(0) EEED T (22b)

Now the result of Wightman mentioned above follows easily from Theorem 4.
For every operator U(x.) may be continued analytically into a domain D, ,
given by z, = x, + 1y, with y, = 0. Moreover, we see that for every state [>,

any operators A, ---, A, the function
| AU (x)AU(x2) -+ U(x)Agis > (24)

is analytical on Dy X Dy X --- X D, and continuous on its closure. The func-
tions f(X;, -+, X,41) belong to this class: We have only to assume that 4, =
¢-(0) and |> = |> . This means, the analyticity of the representation of the
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translation group induces the analyticity of the Wightman vacuum expectation
values. Let us consider in more detail the singular function

<p(X1)e(X2)>0 = <e(0)U(x)p(0)> = iA(+)l("x), x=%—%. (25

Inserting expression (20) for U(x) in this definition, we get
@O U0 = [ explix-k)(0) dE (W)e(0.  (26)
+

If 7 is a proper Lorentz transformation with fixed point 0 we get with the aid
of Theorem 3

<p(0) dE (1h)¢(0)% = <p(0) dE (k)¢(0)>, (27)

for (23) holds and U(7) |[> = |> . Now we compare this formula with an ex-
pression of Lehmann (7) to get the connection between (20) and Lehmann’s
spectral function p(x*). With our conventions we find in Ref. 7 the formula

(0)u(x)0(0)3, = (2_;)_3 / o(B) explix-k) d'k. (28)

Therefore it is

1

<p(0) dE (k)e(0)>, = (2m)?

p(K') d'k (29)
Hence it follows:

THEOREM 6: Let dE be the spectral measure of U(a) and let k = 0 be any vec-
tor. We choose a sequence of neighborhoods T; of k, which contracts to k if © — =.
Then we have

@0V E(T)e(0)%
T

v(T;) denotes the 4-volume of T and p is the spectral function of Lehmann.

ReMARK: It is easy to see, that similar statements hold for the general “weight
functions” of Hall and Wightman (8, 10) which are connected with the general
expectation values (Eq. 22). Of course the considerations of this last section
have only a symbolic meaning, for the field operators ¢(x) are singular, i.e.,
only the unbounded operators

= (2m) " p(K). (30)

20 = [ Wiy - x) dy (31)

act on the Hilbert-space with suitable test functions h. However, considering
the Wightman expectation values, one has only to substitute in Eq. (24)

A, = [ o)y = 20 (32)
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in order to get an appropriate rigorous result. (One should assume that repeated
application of the @,(x) on the vacuum state is allowed, defining a domain of
definition which is dense in Hilbert-space.)

On the other hand, if we want to compare our results rigorously with the
Lehmann-Kéllén theorem, the meaning of Eq. (30) and its proof demand further
attention. According to the author’s knowledge no precise proof of the Lehmann-
Kiillén spectral representation has been given up to now. But this is the premise re-
quired to give to Eq. (30) a mathematically exact and unambiguous meaning.
The reader should think of the last part of this section (Eqs. 25-30) as a pre-
liminary connection of the methods given in this paper with the rather powerful
technique to handle vacuum expectation values developed by Lehmann, Killén,
Wightman, and many others.

APPENDIX

Let g(z) be holomorph on D and continuous on D = T + T, . If g(z)
vanishes on 7, g(z) is zero everywhere on D.

Proof:

(a) If z € D we can find a Lorentz frame with z, = z; = 0: we choose first a
Lorentz frame with x; = x; = 23 = 0 (2; = Re 2;) and change this, if necessary
by a pure rotation so that y» = y;3 = 0 (y; = Im 2,).

(b) Now g(z) is holomorph on the subspace

zy =2 =0, Yo > 0, Yo> || z0.
Define zy/, z’ by
2 + 2 = Nz + 21), 2 — 2z =Nz — ) (A1)
with A real and positive. Then the subspace is also given by
' > o, w' >y’ >0, 2 =2 = 0.
On

’

21 =22=23=0

the function ¢(z) is a holomorphic function of one variable 2z, in the domain
¥’ > 0 and vanishes for i’ = 0. According to well-known theorems, g(z) there-
fore vanishes identically on 2" = 2, = 23 = 0, i.e. (see Eq. (A.1)), on

Mzo+2) =N 20— 2z), 2=2=0. (A.2)

(¢) On the subspace 22 = 2; = 0 Eq. (A.2) defines a manifold of dimension
three, for \ is a free parameter. g(z) is zero on this manifold. Considering ¢(z)
on the subspace zz = z; = 0, g(z) is a holomorphic function of two variables
2z and z; . Therefore it can only vanish on a 3-manifold if it vanishes everywhere.
This means ¢g(z) = Oon 2z, = z; = 0.
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But we have seen, that we can find a Lorentz frame with 2z, = 2z; = 0 for

every z € D. Therefore g(z) = 0 on D and also—for g(z) is continuous on D—
on D.

According to the proved theorem, the 4-dimensional set T' (i.e., Im z = 0)
is a “manifold of definition” for the 8-dimensional domain D = T + T, .

REcEIvED: July 29, 1960
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