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ANTILINEARITY IN BIPARTITE QUANTUM SYSTEMS
AND IMPERFECT QUANTUM TELEPORTATION

ARMIN UHLMANN

Institute for Theoretical Physics, University of Leipzig
E-mail armin.uhlmann@itp.uni-leipzig. de

Antilinearity is quite natural in bipartite quantum systems: There is a one-to-one
correspondence between vectors and certain antilinear maps, here called EPR-
maps. Some of their properties and uses, including the factorization of quantum
teleportation maps, is explained. There is an elementary link to twisted Kronecker
products and to the modular objects of Tomita and Takesaki.

Introduction

In this paper I consider some assorted antilinear operations and operators in
bipartite quantum systems, an application to quantum teleportation, and
a link to Tomita and Takasaki’s theory via twisted direct products. The
idea is in exploring the natural antilinearity which is inherent to vectors in
direct products of Hilbert spaces. The reason for the appearance of certain
antilinear maps, here called EPR-maps, is explained in the first section,
together with some basic equations. The acronym EPR stands for the
problem, raised by Einstein, Podolski, and Rosen!, see also Peres3, Nielsen
and Chuang.*

Antlinearity in the EPR-problem has been explicitly noticed by Fivel.5
Here I follow a more general line.% 7 Of course, the exposition in the first
section (and in the third one) are mathematically near to almost every
treatment in which purification and related topics play there role. Anti-
linearity is often masked by introducing distinguished basis in the parts
of the bipartite system. An interesting different approach is by Ohya and
Belavkin,® ® and by Ohya’s idea!® of compound states.

In section 2 I present an application to imperfect (unfaithful) quantum
teleportation: Linear teleportation maps allow for a unique decomposition
into pairs of EPR-maps. Uniqueness would be lost by requiring linearity
due to an ambiguity in phases.
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Two norm estimates are derived. The case of Liiders measurements
with projections of any rank is considered. An example with distributed
measurements is presented, showing the use of antilinear EPR-maps in a
multipartite system.

The polar decompositions of EPR-maps are considered in section 3, a
rather straightforward task. In these decompositions the positive parts are
the square roots of the density operators seen in the two subsystems. The
phase operators must be antilinear partial isometries between the two parts
of the direct Hilbert space product. As explained in section 4, this feature
allows to perform twisted direct products. They will be compared with
an elementary case of well known operators known from Tomita-Takesaki
theory.

In view of applications to quantum information theory, and to underline
the difference to classical intuition, one often assumes a macroscopic dis-
tance between the two systems. Though this is reflected in the formalism
only rudimentarily, it provides a nice heuristics: The subsystems can be
distinguished classically, their owners, Alice and Bob, can exchange classi-
cal information (using, say a telephon), and they are independent one from
another. If they like to perform quantum operations, they have access just
to their parts. Notice that a macroscopic spatial distance between them
is sufficient for the observables of Alice to belong to the commutant of
Bob’s observables. Of course, parts of a composed quantum system can be
independent one from another without sitting in spatially different regions.

Remarks on notation: In this paper the Hermitian adjoint of a map or
of an operator A is denoted by A*. The scalar product in Hilbert spaces is
assumed linear in its second argument. Sometimes the symbol o is used to
see more clearly how maps are composed.

1. Some basic facts

Our bipartite quantum systems lives on the direct product H := H, @ Hj of
two Hilbert spaces, H, and Hp, with any dimensions. (A nice little exercise
is to follow the formalism in case of a 1-dimensional Hj.) It is a well known
fact that H is canonically isomorphic to the space of Hilbert-Schmidt maps
from ‘H, into the dual H; of Hp.

H = Ha ® Hp = L2(Ha, HE) = L2(Hp, H2)

H3 is antilinearly (or conjugate linearly) isomorphic to Hj, a fact which
is on the heart of Dirac’s bra- ket-formalism |z) < (z|. Composing the
bra-ket morphism with the Hilbert-Schmidt maps from H,, into H} we get
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the space of antilinear Hilbert-Schmidt maps from H, into Hp. Indicating
the antilinearity by an index anti, we have the natural isomorphisms

Ha @ Hp ~ ‘Cznti(Hm He) =~ [3§nu(7'lb, Ha) (1)

Let us look at these morphisms in more detail, and let us start with an
arbitrary vector 9 from H. There are decompositions

V=) 4O, M, gl e 2)
converging in norm. Choosing one of them arbitrarily, we set
sy =) (4% ¢8) oh (3)

Every member of the sum is a map from H, into Hp. Their 2-norms are
the same as the norm of the corresponding term in the decomposition (2).
Hence, (3) defines an antilinear Hilbert-Schmidt map from H, into Hp. Its
adjoint, a map from H,, into H,, is defined by the relation

(#°,846%) = (8% (s5)"¢") (4)
for all ¢* and ¢°. By an evident calculation one gets
(50" =D (¢" &) ¢} (5)

and we denote this map in accordance with (3) by s;”.

In the next step we explicitly see the independence of the constructions
from the chosen decomposition (2) of . It provides the contact to a famous
problem of Einstein, Rosen, and Podolski.! Assume the state of the bipartite
system is defined by ¥ € H. If Alice does a measurement with one of her
observables, A € B(H,), her activity is a measurement in every larger
quantum system which contains Alice’s system. In particular, this is the
case in the bipartite system based on H. Here the relevant observable reads
A®1b.

We now choose Alice’s observable to be the rank one projection P =
[#%)(¢*|, ¢* € H, being a unit vector. In doing so, the measurement
terminates in showing randomly the eigenvalue 1 or 0 of P. In case it
shows the eigenvalue 1, the state vector of the bipartite system system has
switched from ¥ to (P ® 1%)y. A new state vector has been prepared.

Our aim, to show the independence of (3) from the chosen decomposition
(2) of 9, is reached by proving

(I$°)8°| ® 1)y = ¢° @ s39%, Vg € Ho (6)
To show (6) for a given decomposition of 1, one first remarks the linear
dependence of (3) from the terms of the sum (2). Thus, one has to check
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(6) just for product vectors, a simple task. Remark that a similar relation
holds for an appropriate action of Bob.

In conclusion we have seen that every ¢ € H uniquely determines anti-
linear Hilbert-Schmidt maps according to (3) and (5). Let us call them the
EPR-maps belonging to 1. They are antilinear equivalents of 1 obeying

(si) =83, (s9)" =sy’ (7
In rewriting (4) and (7), we can add a conclusion seen from (6): It holds
(8°,55°0%) = (¢°,53¢") = (¢" ®¢",¥) (®)

for all ¢* € Hq, ¢® € Hp, and 9 € H. Now we proceed as follows: Because
every ¢ € H can be written as a sum of product vectors, we try to calculate
its scalar product with 1 by the help of (8). A more or less straightforward
calculation will show the validity of

(p,¢) = Trasibsi’a“ = Trbsffs‘;b 9)
the right hand term of which are, in view of (7), antilinear versions of the
von Neumann scalar product. Let me add that one can derive (8) from (9)
by choosing ¢ = ¢* ® ¢°.

What remains for a first account is the reconstruction of ¢ from one of
its EPR-maps. The task can be done with the help of any decomposition
of the unit operator 1¢ of, say, Alice. More generally, let A € B(H,) be a
positive operator and

A=) len) ekl (10)
a rank one decomposition of A. Then
A=) ¢t @sel (11)

1) is returned with Alice’s unit operator, A = 1.
The reduced density operator, wy, can be defined by
Tro Awg, = ($,(A® 1°)y), A€ B(Ha)
Similar one gets wf;, by letting play Bob the role of Alice. What one can
learn from (6) and (7) is
wg = siPsti, Wl =sisy (12)

Finally we consider two vectors which are related by

o= (A B)Y (13)
In terms of EPR-maps the relation converts to
sb* = BslPA®, si’ = Asy’B* (14)
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2. Imperfect quantum teleportation

Bennett et al.'! invented a protocol, the BBCJPW-protocol, allowing for
faithful teleportation of vectors and of general states between Hilbert spaces
of finite and equal dimensions d. It consists of one classical information
channel and d? quantum channels. The latter are randomly triggered by
a Bell-like von Neumann measurement. The information, which quantum
channel has been activated, is carried by the classical channel. It serves to
reconstruct, by a unitary move, the desired state at the destination. The
protocol has been programmed as a quantum circuit by Brassard.!2

A general and self-consistent discussion of all perfect teleportation
schemes and their relation to dense coding has been given recently by
Werner.13

All these tasks and protocols need reference frames (computational ba-
sis) in order to define whether the original and the teleported vectors (or
general states) should be considered as equal ones or not. Notice: the prob-
lem is not to tell which of the quantum channels is triggered nor to identify
its output. It is the question how to relate the input to the output. Usually
the problem is solved by distinguished reference basis, one in the input and
one in the output space. Every reference base determines a conjugation.
These conjugations, composed with the canonical antilinear maps, mask
the natural antilinearity in all these protocols.

Now I am going to describe the way antilinearity enters in the handling
of general, possibly imperfect, unfaithful teleportation channels. Let H be
a tripartite Hilbert space

Ha.bc = Ha ® Hb ® Hc (15)

The input is an unknown vector ¢* € H,. One further needs a resource
which provides the so-called entanglement? between the b- and the c-system.
The resource is given by an ancilla, mathematically just a known vector @b,
chosen from H;, ® H.. (More involved, but also tractable, is the case of an
ancilla in a mixed state.) Thus, the teleportation protocol starts with a
vector

(pabc = ¢a ® ‘Pbc € Ha,bc (16)

It is triggered by a measurement within the ab-system. We need a mea-
surement which is also preparing. There should exist an apparatus doing
it. But a single apparatus can only distinguish between finitely many val-
ues. The conclusion is: We have to trigger the protocol by measuring an
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observable,
A=) "a;P;, Y P=1% (17)
j=1

in the ab-system which is a finite sum with mutually different values a;. The
P; are projection operators, orthogonal one to another, and decomposing
the unit operator of Hap. The measurement itself selects randomly one of
these projectors with a well defined probability. If this projection is Pj,
then the measuring device points onto the value a;, thus indicating which
projection is preparing the new state. The duty of the classical channel is
to inform the owner of the c-system which projection has been processing.
For the discussion of the preparing we assume that P = P° is one of
the projectors P; appearing in (17). A measurement in the ab-subsystem
is simultaneously a measurement in the larger abc-system, and there the
projection operator reads P ® 1°. Thus, the preparing becomes

$° @ " — (P®1°)(¢" ® ¢™) (18)

We now impose a restrictive assumption in (18): P should be of rank one.
Thus, P has to test whether the ab-system is in a certain vector state, say
¥ = 1%, or not. As the main merit of the assumption, the prepared state
gets the special form

(192 (¥*] ® 1°)(¢° ® ™) = ¥** ® ¢, (19)
determining ¢° € H.. Varying ¢* we now define the map t3}, by
ty.,9" = ¢° (20)
The teleportation map t3 ,, or t* for short, can be computed® by
2, =P oSy (21)

This is the factorization property, valid for every (imperfect) teleportation
channel under the condition that the preparing projection operator is of
rank one. There is no restriction otherwise, neither on the dimensions of
the Hilbert spaces, nor on the ancillary vector ¢ or on the vector .

The proof is mainly an exercise in algebraic manipulations, while the
convergence problems are rather harmless due to the Hilbert-Schmidt prop-
erty of the two maps involved. With a basis #%,¢5, ..., of Hy we write,
according to (11)

<pabc — Z¢a ® ¢? ® Sfob(pa
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Next, this expression inserted into (19) yields
,wa.b ® ¢c — Z I’l/)ab)<'l/)ab,¢a ® ¢?) ® S;b(bg
(8) allows to rewrite the scalar product and to get
1‘bab ® ¢¢ = Z(Slbﬁaqsa’ ¢g>¢ab ® S:;b¢_?
The antilinearity of the EPR-map converts the right hand side into
D ¥ @s8h), sien) ek = vt @ 5P oslige
which is the assertion.
Before looking at some applications of the factorization theorem, I men-

tion that Alberio and Fei'* derived a condition for a generally imperfect
channel to become faithful.

2.1. Estimates

The high symmetry provided by maximally entangled vector states used in
faithful teleportation schemes!! 1® is broken in imperfect teleportation. As
a result, some of the vectors in H, are more efficiently transported than
others. Therefore, the highest possible transport probability is of some
interest.

Let ¢*, v, ¢ be unit vectors. The probability for the process ¢* — ¢¢
is

(¢C, ¢C) — (tca¢a’ tca¢a)

Because v and ¢ are vectors of two bipartite systems, and H, is a part of

both systems, we may compare their reductions to the b-system. One can
prove, see (40) and (41) below,

(8% 6% < I(wp) M 2wl (wh) " ?|oo (22)

for all unit vectors in ¢¢ € H,. The norm used at the right hand side is the
operator norm. The norm of a positive operator is its largest eigenvalue.

Being of trace class, one would like to estimate the effectivity of the
single teleportation map by the trace norm. Interesting enough, the trace
norm of t°@ is the square root of the transition probability (fidelity) between
wé and wi,

|61 = F(wy, wg) = Tr ((w) 2wk (w)1/2)1/? (23)

The estimates are in line with the question how to optimize quantum tele-
portation. Depending on specific demands, the problem has been addressed
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by Horodecki et al.!5, Trump et al.!®, Banaczek!”, Rehacek et al.'® and
others.

2.2. Liders measurements

It is a strong assumption, to suppose Alice could perform rank one mea-
surements. With raising magnitude of degrees of freedom the task become
more and more difficult. In the realm of relativistic quantum field theo-
ries local measurements with projections of infinite rank are most natural.
(Though these systems contain lots of finite dimensional subsystems, one
has to find some with sufficiently exposed sets of quantum levels.) Thus,
the projection P in the preparing step (18) may be of any rank. Let

P=7) [ )i (24)

be an orthogonal decomposition of P into rank one projection operators.
Associating EPR-maps

P s (25)
to every vector appearing in (24), (18) becomes

(P ® 1(:) ¢a ® (pbc Z 1/) ca a, tk — Scb k (26)

We have to decouple the degrees of freedom coming from the b-system. To

do so, we first convert the maps between vectors in those between (not

necessarily normalized) density operators. Then we reduce the right hand

side of (26) to the ¢ system. Abbreviating (t°*)* by t¢, the result is the
map

0% (¢ — Dt (1o° ) e Dtk (27)

We estimate (26): The norm of the left is smaller than product of the norms

off ¢* and ¢?¢. On the right side orthogonality of the 1, allows to calculate
the norm. We get

a C a acgca ja 1/2
oo - 1ot 1> (O (e tctiog™)
Being valid for all vectors from H, we conclude
1) teetitloo <l ™ |l (28)

The boundedness of the operator allows to extend (27) to a map from the
trace class operators on H, to those of H.. The extension reads

Tca u — Scb Zszayaszb (29)
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with v an arbitrary trace class operator. Estimating the trace of T by
(28) one sees

T2y < (o, ) (30)

More general, positive operator valued measurements have been examined
by Mor and Horodecki!® and others.

2.3. Distributed measurements

In a multipartite system with an even number of subsystems one can dis-
tribute the measurements and the entanglement resources over some pairs
of subsystems. Let us see this with five subsystems,

H=He @Hs ®Hc @ Ha ® He (31)

The input is an unknown vector ¢® € ‘H,, the ancillarian vectors are selected
from the be- and the de-system,

©* € Hie, ¢ € Hae
and the vector of the total system we are starting with is
0= (Pabcde — ¢a ® Sobc ® (pde (32)

The channel is triggered by measurements in the ab- and in the cd-system.
To see what is going on it suffices to treat rank one measurements. Suppose
these measurements prepare, if successful, the vectors

¢ab € Hab, ’de S Hcd

The we get the relation

() (¥ @ [Ye) (¥ ® 19)y = ¥ @ P ® ¢° (33)

and the vector ¢* is mapped onto ¢® = t**¢*. Introducing the EPR-maps

corresponding to the used vectors
wab N Sba ,

b ,

<,0bc N Scb de N Sdc, L
the factorization property becomes

tee = Sed o sdc o Scb o Sba (34)
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3. Polar decompositions

Coming back to the bipartite case w € Ha ® Hp, we shall explore the polar
decompositions of the EPR-maps be and s%b
As we already know by (12), the positive factors in the polar decompo-
sitions must be the square roots of the reduced density operators, w, and
w¢, of 1. Their phase operators are antiunitary partial isometries between
the two parts of the bipartite Hilbert space. We call these maps J % and
. The first of these antilinear operations maps H, into Hp, the second
’Hb into H,. Standard technique yields the polar decompositions

sy = (W) 25 = 3wy, (35)
z’b — ( 1¢z)1/2j1labb =j:,1bb(wcl;:)l/2

Just as in the linear case, one requires
bsb sbasab b
Wiy =Qy, iy =Qy (36)
where Qy, respectively Qw, denotes the projection operator onto the sup-

port space of wj and wfl respectively. The unicity of the polar decomposi-
tion and (7) yields

(Jba) —Jq; ) w.p —J?pawfz.l%b (37)
One can relate the expectation values of the reduced density operators.

Let us prove it as an exercise in antilinearity. We choose A € B(H,) and
B € B(Hs) such that

B'jy =iy A (38)
Then, neglecting the index v,
Trw®A = Trw“j“bjb“A — rI\I,wajabB*jba

The trace of the products two antilinear operators, ¥;92, is conjugate com-
plex to the trace of 929;. Hence, the expression under consideration is the
complex conjugate of

Tr j**w®j* B* = Trw®B*
In conclusion it follows
Trw$A4 = Trw}B (39)
from (38).
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Another useful observation: Let H/, C H, be the supporting subspace
of a given density operator w®. The set of all purifications ¢ of w® is in
one-to-one correspondence to the set of antilinear isometries from H., into
Hp.

Let us further have a look at some relations from which the norm es-
timates of the teleporting maps will follow. To this end we consider two
arbitrary vectors, ¢ and 9, from H = H, ®Hj,. Their polar decompositions,
(35), yield

a : sab
sf’p s&b = JZ“, JweVwyjg (40)
Therefore, the singular values of the operators
oSy, sysy,  (\/wBwy/@E)/? (41)

are equal one to another. The singular values of a Hilbert-Schmidt operator
€ are the eigenvalues of the square root of &*¢. That way one proves (23)
and (22). Notice that for all B € B(H,)

Trsy'sy’B = (¢, (1° ® B)p) = Tr (Vwgwy /wg) 21 Bik)  (42)
As an application let us prove a key statement of the important paper on
the mixed state cloning problem by Barnum et al.2° It asserts
F(wg,wy) = Flwg,wp) — wiw? = wiws (43)
(See (23) for the definition of F.) It is well know, and easily derived from
(42), that the assumption of (43) is satisfied 1 and @ if and only if
sg“szb >0, sf;bsf’,,“ >0 (44)
To say something new, we shall weaken this assumption in requiring only
hermiticity instead of positivity. By (7) it means

ba_ab _ _ba_ab ab_ba __ _ab_ba
Sy Sy =8y'S,, Sy’sy =sy’s; (45)

In the following, starting with (12), we systematically reorder the appearing
factors by the the help of (45):
Wy = sifsisilels = salrssls

ab_ba _ab_ba ab_ba _ab_ba ab_ba _ab_ba
)

Swsws,ws =Svs,wsws,w =S¢S¢S¢S¢

and, again by (12), we are done.
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4. From vectors to Operators on H, ® Hs

With one or two vectors, drawn from the Hilbert space H of our bipartite
system, one can associate operators on it. There are at least two, quite
different ways to do so. The first uses the twisted direct product (the
twisted Kronecker product) of the EPR maps. In the second one relies
on ideas from representation theory, and on an applications of Tomita and
Takesaki’s theory. All the matter is quite elementary as long as we are
within type I factors.

4.1. Twisted direct products
The starting point for the following definition are two maps,
£ Ho - Hp, 1°°: Hp— Ha, (46)

both either linear or antilinear. The twisted direct product, n®*®¢®*, (with
the twisted cross ®), is defined by the linear or antilinear extension of

¢a ® ¢b — (nabégba)((ba ® d)b) = nabd)b ®§ba¢a (47)
The extension has to be linear if both factors are linear maps, and antilinear
if both maps are antilinear. Other cases, one map linear and one antilinear,
are ill defined. In the admissible cases the Hermitian adjoint can be gained
by
(7 &€>)* = (£")*®(n™*)* (48)
Useful is also
(N3P ®Er) o (n°@e8®) = (mi*€8*) ® (£1°n3°) (49)
Now let ¢, € Ha ® Hp an ordered pair of vectors. Essentially, there are
four twisted products to perform:
~<p,¢ = jcp@swv F«p,w = Sso@jt/n (50)
Apy i=5,88y, Jou 1 =Jo®lu (51)
The notations are ad hoc ones, with the exception of the last (see below).
Because of (48) the Hermitian adjoints of these operators are gained by
exchanging the roles of ¥ and ¢.
As before, we denote reduced density operators by w and their support-

ing projections by @, decorated, however, with the appropriate indices. To
arrive at the polar decompositions we first notice

Aw“péwﬂp = w,‘z ® wf:,, Jw,cp'LpﬂlJ = Q% ® Q?F (52)
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Reminding the definition (47) and the polar decomposition of the EPR-
maps one computes the polar decompositions of the antilinear operators
defined above.

Admp = (“’:Z ® w$)1/2J¢,¢ = J«b,w(w; ® “’3)1/2 (53)
Sy = (wg, ® Qg)lﬂ‘]wnﬁ = Jy,0(Q; ® “-"3;)1/2
Fyp = (Qi ® WZ)I/ZJLPM = Jd),cp(wg ® Q?p)lﬂ (54)

4.2. Contact with representation theory

There is a representation of B(H,) with representation space H, ® Hp
associated with the embedding

B(Ha) — B(Ha) ® 1° € B(H, @ Hb)

Assume that 1 is a cyclic and separating vector, i.e. a GNS-vector for the
representation. Equivalently one requires Qy = 1% and pr = 1% In the
spirit of Schrédinger? one also calls 9 completely entangled.

With a given second vector, ¢, the antilinear S is defined by

Seu(A®1%)Y = (A" ®1°)p (55)

for all A € H,. (55) is a fundamental construct in the theory of Tomita and
Takesaki, though, as we are concerned with type I factors, an elementary
one: In our case it is not difficult to prove closability of S. We denote
the closure of S again by S and write the polar decomposition in standard
notation

1/2 -
S%L/J = J‘P"Z’Atp/,ib’ Acpﬂl’ = wff, ® (wibb) 1 (56)

see Haag?! for an introduction. Having already defined J in (51) as a
twisted Kronecker product, we have to show that it coincides with the
modular antiunitary operator defined in the theory of Tomita and Takesaki
for GNS-vectors 9. The most important case is the modular conjugation
Jy,y = Jy. Remark that (51) is slightly more general than (55): In the
former equation 3 can be any vector in any bipartite Hilbert space.

To prove the assertion we start with a decomposition of unity

1% =Y o) (el
to get, by the help of (10), (11)
(A8 1)) = 3 Agf @ sirgh = (1 ® \ b)) (Adt ® jire),
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(A*@1%)p =D ¢f @ st Ad® = (judl,)(y/wg ® 1°)(Adk ® i ¢7)

and, finally,
Tp.Spu(/ws ®1%) = (1° ® /wy) (57)

Because our starting assumption implies invertibility of wy,, we may rewrite
(57) as asserted in (56).
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