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Abstract

For pairs of density operators on finite dimensional Hilbert spaces we define
partial fidelities. We establish their concavity properties and prove a defin-
ing inequality. The partial fidelities define equivalence classes allowing partial
ordering.

Let g, w be two positive operators in a finite dimensional Hilbert space H. We
consider them as not necessarily normalized density operators. Their fidelity, i.e. the
square root of their transition probability [1], can be expressed by

F(w,p):= V P(w,0) = t'r(\/“_-’g\/"‘_))l/2 . (1)

For normalized density operators a suitably chosen von Neumann measurement in
a larger system can cause a transition w — p with probability P(w,p). A larger
transition probability, however, is not possible.

We denote by spec(A) the spectrum of an operator A, i.e. the roots of the poly-
nomial det(A4 — A1) counted with their correct multiplicities. If the spectrum is real
we assume the set spec(A) decreasingly ordered. This convention applies to every
diagonalizable operator with real eigenvalues and in particular to every Hermitian
one. We need

spec(vwovw)'/? = spec(y/owy /)2 = { A > Ay > ...} (2)

and for dimH < j we set \; = 0. Now we define partial fidelities by

Fi(w,0) =3 ) 3)

>k
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We see from (1) and (2) that Fo = F, while F; sums all the A; of (2) up to the first,

and so on.

Theorem 1
The partial fidelities are concave functions of the pairs {w, o}

> piFelwi, 0) 2 Fe(3opiws, D pios) 4)

for any probability vector py,ps,... .

The theorem is a consequence of a new inequality which represents F} as in in-
fimum of linear forms. It needs some preparatory explanations. The first issue con-
cerns relations between spectrum and singular numbers of different operators. The
set of singular numbers of an operator B, abbreviated by sing(B), is the spectrum of
v B*B, B* denoting the Hermitian conjugate of B. We assume sing(B) decreasingly
ordered with the correct multiplicities. Thus

sing B = specvV B*B = specvV BB* = sing B* .

For the purpose of the present paper we call two pairs of positive (density) operators
equivalent, and we write then {w, o} ~ {W',0'}, iff Fi(w,0) = Fi(w',¢) for k =
1,2,...,dimH. Because the singular numbers of \/w,/2 coincide with the spectrum
(2) it holds

{w,0} ~ {0} & sing(v@y/a) = sing(Vi'/¢') - (5)

The singular numbers of an operator and of its Hermitian conjugate coincide. Hence

{w, 0} ~ {o,w} - (6)

Now we are going to estimate partial fidelities from above. To this end we define the
set PAIRS which consists of all pairs {A, B} of positive Hermitian operators, A, B,
such that

ABA=A, BAB=B, (7

and hence (AB)? = AB is satisfied. Because Q@ = AB is a product of two positive
operators it is diagonalizable. But @ is idempotent so that its spectrum consists of
zeros and ones. Thus the trace of Q is equal to the rank of Q. (7) says QA = A
and BQ = B and the ranks of A and B cannot be larger than the rank of Q. Now
Q = AB shows that neither the rank of A nor the rank of B can be less than that of
Q. Altogether we have: For all {A, B} € PAIRS

rank(A) = rank(B) = rank(AB) = Tr AB (8)

is an integer called rank of the pair {A, B}.
Definition: PAIRS,, consists of all pairs of PAIRS with rank m.
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Theorem 2

1
Fk(w,g)=§inf(trAw+tng), {A,B} € PAIRS,,, m+k=dimH. (9)

Remark: If k =0, m = dimH then AB = 1 and (9) is equivalent with
F = inf = tr( A tr(A™!
(w,0) = inf o (tr(Aw) + tx(47"0) )

where A runs through all invertible positive operators. This particular case extends to
the positive linear functionals of unital C*-algebras [2] and is a sharpening of similar
statements for transition probabilities [3]: For k = 0 we obtain the finite dimensional
subcase of a rather strong and general theorem.

We shall show that Fj is bounded from above by (9). The proof that the bound

is strict will be given if at least one of the density operators is invertible, or, more
generally, if the support of one operator contains the support of the other one.
The proof of (9) proceeds in several steps. At first we assume ¢ = 1 in (9) and choose
A and B to be a pair in PAIRS,,. Let ¢y, ¢, ... be an eigenbasis of A with eigenvalues
@y 2 az > .... The rank condition ensures a; # 0 iff j < m. The relation ABA = A,
sandwiched between the first m eigenvectors of A, gives to us

(¢j, B ¢:) = ijat .
With these settings the right hand expression after the inf command becomes

Do ai(d5wd) + D a5t + Y (¢4, B .

j<m j<m i>m
Let us vary the eigenvalues a; to get the minimum. We obtain
232 (#5wds) + (40, Bo) -
j<m i>m

Now it is evident that this expression cannot be smaller than Fj (w,1). Next we choose
the ¢; to be the eigenvectors of w with increasingly ordered eigenvalues. Then there is
B with the same eigenvectors so that {A, B} is an allowed pair. It is straightforward
to see that F(w,1) is reached with this choice of A and B. Hence

Fuw,1) = Y Vi, spec(w) = {m 2 p > ..} . (10)
i>k
Using certain transformation properties we intend to get the general statement from
(10). We denote by T' the multiplicative group of invertible operators acting on M.
With X € I' we define

{w’ Q}X = {XWX*’(X_I)*QX_I} . (11)
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The transformations create orbits of I' in the set of pairs. Their merit is in
{w, 0} ~ {w, 0}, XeT (12)
for positive operator pairs. To prove (12) we start with an identity.
(XwX") (X X! = XweX™' .

Therefore, the spectrum of wg remains constant along every I'-orbit. If g is invertible
the operators wp and /pwp(,/2)”" come with the same spectrum, and the latter one
equals (2). Hence (12) is proved if at least one of the operators of the pair is invertible.
Fixing X and varying the pair w, g, we see by continuity that (12) is valid generally.

Fy(w,0) = Fi(w', ¢) if {&',0'} = {w, 0}* (13)

can now be deduced from (12). It should be noticed that an equivalence class with
respect to ~ as defined in (5) consists of a family of T'-orbits. The equivalence class
of a pair coincides with a T-orbit if and only if both of its density operators are
invertible.

Our next observation concerns the I-invariance of PAIRS,,. Namely, we transform the
pair of operators {4, B} by X € I' with the result {X*AX, X"*B(X~")*}. (Notice
the difference to (11).) After choosing X € T the transformed pairs run through
PAIRS,, if the untransformed do so. We may substitute the transformed pairs of
PAIRS,, into (9), and remember k + m = dim™. Because of well known trace
properties we see: The right hand side of (9) is invariant as a function of w and o
against an exchange (11). It follows that the infimum in (9) remains constant along
T-orbits: If one of the two density operators is invertible, say p, then \/g € T and

{w,0}%X = {Vowv/e,1}, X =./o.

Now we are done, almost. The pairs of invertible density operators are the inner
elements of the convex cone of all pairs. (9) is true for them. Thus Fj is concave on
this open set. But F} is continuous and hence concave on the closure of the set of
inner elements. This proves Theorem 1.
We also proved the validity of (9) if at least one member of the pair of density
operators is invertible. Again by continuity we see that the right hand side of (9) can
never be smaller than the left hand side, i.e. than F;. We extend the validity of (9)
a bit further by the following observation:
If ' C H and if w and p are supported by H’, one can evaluate Fj already on H'.
Hence it suffices to assume that the support of w is equal or larger than the support
of w (or vice versa).

Let us return shortly to the ~equivalence classes. Writing {w', ¢’} < {w, o} if
w—w' and g — o’ are positive we may state

{wa Q} Z {w’7 gl} = Fk(w, @) 2 Fk(w’7 Ql) (14)
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for all k. If, in addition, the fidelities of the two pairs are equal then all their partial
fidelities must be pairwise equal.

Proposition: If F(w,0) = F(u',¢) and {w,0} > {u’,¢'} is true, then {w, 0} ~
{v',0'}.

Given w, g, Alberti [4] has shown, even in the C*-category, that there is one and
only one pair {wo, g0} with the same fidelity (transition probability), F(wo,00) =
F(w, 0), which is minimal with respect to the relation >. This minimal pair satisfies

{wo, 00} < {w', ¢'}

whenever
{0} <{w,0}, F(',0) = F(w,o0)
is valid. Two ~equivalence classes coincide iff they contain the same minimal pairs.
These minimal pairs are organized in I'-orbits. Let us call them minimal T-orbits.
Conjecture: It seems there is just one minimal I-orbit in every ~equivalence class.
Let {w1, 01} and {ws, 02} be two pairs of positive (density) operators and let us
provisionally call the second one F-dominated by the first pair iff

Fi(wy,01) > Fr(wz,02), k=0,1,2,...

We know from Theorem 1 that the above takes place if {w1, 01} is contained in the
convex hull of the ~equivalence class of {ws, 02}. We thus get a new partial ordering
(or majorization tool) for pairs of positive (density) operators which seems worthwhile
to investigate.
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