
Vol. 45 (2000) REPORTS ON MATHEMATICAL PHYSICS No. 3 

ON “PARTIAL” FIDELITIES 

ARMIN UHLMANN 

Institut f. Theoretische Physik, Universitlt Leipzig, 

Augustusplatz 1011 1, D-041 09 Leipzig, Germany 

(e-mail: uhlmann@itp.uni-leipzig.de) 

(Received December 21. 1999 - Re\?sed March 20, 2000) 

For pairs w, p of density operators on a finite-dimensional Hilbert space of dimension 

u’ I call k-fidelity the d -k smallest eigenvalues of I&&I. Representations of k-fidelities 

are given showing their joint concavity in w, p. For k = 0 the known properties of fidelities 

and transition probabilities are reproduced. Partial fidelities characterize equivalence classes 

of pairs of density operators which are partially ordered in a natural way. 

1. Introduction 

Let us start with a short introduction to transition probability [I]. 
For two unit vectors, @ and cp, of a Hilbert space the quantity I(+, cp) I7 is their 

transition probability. It is the squared modulus of their transition amplitude. (I/J. cp). 
Assume the state of the quantum system is I+) (@ 1. A von Neumann’s measurement, 
designed to decide whether the quantum system is in the state 1~) (~1, prepares this 
state with probability I (I/Y, cp) I*. Notice further that two pairs of unit vectors are 
unitarily equivalent iff they have equal transition probabilities. 

All that becomes more complex if two density operators, pi and p?, are con- 
sidered on a Hilbert space 3-1, and the quantum system is in a state, say, pI. The 
algebra of operators on l-t will be called f?. One can choose vectors $j in the direct 
product ‘Ft @ 8 such that 

TrApi = (@j, (A 8 lJ@j), A E f?, j = 1.2. (1) 

The transition probability between I,!J~ and I+!Q is not determined by the pair ~1, ,o?. 
But running through all the possible arrangements (I), the numbers I(I&. $,)I’ fill 
completely an interval [0, p] of real numbers. The largest one, the upper bound of 
this interval. is called transition probability between p1 and p2 and is denoted by 
P(p), ~2). Thus a von Neumann’s measurement in X 63 X can cause a transition 
pI H p2 with a probability bounded by P(p,, ~2). The bound can be reached by 
suitable measurements in the larger system. 

Now I call attention to possibilities to characterize P intrinsically, i.e., without 
leaving the quantum system in question. The first one comes rather directly from 

[4071 
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(1). Let us call transition functionaE from p1 to p2 every linear functional on a of 
the form 

A ---+ Tr uA := (@2, (A @ l)$r~) (2) 

which arises from a setting (1). The operators u may be called transition operators 
from p1 to p2. Generally, v is not hermitian: Exchanging the roles of @t and @2 
the operator u becomes its hermitian adjoint, u*. Now (2) is a transition functional 
if and only if 

lTrA~uA;l~ 5 (TrAlplAT)(TrA2p2A;), Ai E B, 

and it follows from the definition of P that 

P(p2,pl) =maxITru12, (4) 

where one takes the maximum over all transition operators from pi to p2. Calculating 
the maximum in (4) is a standard exercise with a well-known outcome. Before 
writing it down I would like to explain the following. 

The transition probability is separately concave in every one of its arguments. 
However, taking the root of P, the concavity properties become dramatically en- 

hanced: 0 is jointly concave [2]. In the following the square root of the transition 
probability will be called fidelity and will be denoted by F, essentially following a 
proposal of Richard Jozsa’. Thus 

F(w, p) := Jp(w,p) = Tr(p1’2~~“2)1’2. (5) 

The assertion that F is jointly concave is seen from 

F(w, p) = i inf(Tr,Aw + Tr A-‘p), A > 0, A-’ E t3, (6) 

which is the finite-dimensional version of a representation of +,@ = F as an infimum 
of linear functionals, valid for pairs of states on von Neumann and on C*-algebras, 
see [3]. The representation is related to another one of equal generality estimating 
P(o, p) from above by the product of TroA and TrpA-‘, with A an invertible 
positive operator, see [4] for a partial result and [S] for the C*-case in full generality. 
For finite dimensions these well-know results are reproduced by setting k = 0 in 
Eqs. (13) and (14) below. 

As a matter of fact, the equality of F (or of P) for two pairs of density oper- 
ators does not imply their unitary equivalence. This pleasant feature, valid for pure 
states, is missing for the mixed ones. Looking at (6) one may wonder whether it 
is not possible to get a whole series of concave invariants by taking other suitable 
sets of operators than the invertible positive operators in Eq. (6). To give an affir- 

1 Jozsa introduced the word fidelity for the transition probability. Its present usage is not unique. 

I think the peculiar properties of fi need an extra notation anyway. 
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mative answer belongs to the results the present paper. By the partial fidelities one 
gets a reasonable classification of pairs of density operators, coarser than unitary 
equivalence would give. 

All what follows remains in finite dimensions. By modifying certain settings and 
by adding new arguments, Peter M. Alberti [6] was able to extend essential parts 
of what follows to von Neumann algebras. His results are particularly satisfactory 
for the type 111. 

2. k-Fidelities 

Let R be a finite-dimensional Hilbert space and d = dim X. The spectrum, 
spec(A), of an operator A is the family of roots of the polynomial det(A - hl) 
counted with their correct multiplicities. If the spectrum is real we assume the 
set spec(A) decreasingly ordered. This convention applies to every diagonalizable 
operator with real eigenvalues and in particular to every hermitian operator. Consider 
now 

spec((&p&)1/2) = spec((&X0fi)‘12) = {hi 2 h2 > . . 2 h,i ) (7) 

so that, according to (5), the sum of the lambdas is the fidelity. The spectrum (7) 
is equal to the ordered singular numbers of Fiji and of fi&. 

I define partial fidelities simply by summing up parts of the spectrum (7). 

DEFINITION. For 0 5 k ( d - 1 

4(w,p):=x&, k=O,l,..., d-l. 
j>k 

(8) 

If k > d then Fk = 0. For the time being Fk will be called k-th partial jidelity, or 
simply k-jidelity of the pair w and p. 

An important point is that: I do not necessarily require that p and o have trace 
one. Indeed, on a finite-dimensional Hilbert space (8) is naturally defined for pairs 
from the cone of positive operators and 

,f&(w, p) = Fk(cw, P) = Fk(w, w). c > 0, (9) 

for positive real numbers c. Notice the properties: 

a) Fk is symmetric in its arguments, 
b) Fo is just the fidelity F, 
c) for pairs of pure density operators it is Fk = 0 for k > 0, 
d) if Fk # 0 then rank(w) > k and rank(p) > k necessarily, 
e) Fk is unitarily invariant, i.e. invariant by the simultaneous transformation p -+ 

upu*, w + uwu*. 

However, a deeper justification for the definition above is given by the following 
theorem. 



410 A.UHLMANN 

THEOREM 1. The partial jdelities are concave functions of the pairs {w, p), 

(10) 

for any probability vector ~1, ~2, . . . and arbitrary pairs {wi, pi}. 

The theorem is a consequence of a new relation representing Fk as an infimum of 
linear functionals quite similar to (6). It estimates partial fidelities linearly as close 
as possible from above. To get the announced representation I am going to define 
the set PAIRS which consists of all pairs {A, B} of positive hermitian operators, 
A, B, such that 

ABA = A, BAB = B. (11) 

Let {A, B} be such a pair. It follows immediately that (A B)2 = A B. Because 
Q = A B is a product of two positive operators it is diagonalizable. On the other 
hand, we see that Q2 = Q, so its spectrum consists of zeros and ones. Therefore, 
the trace of Q is equal to the rank of Q. Now (11) says that QA = A and 
BQ = B implying that the ranks of A and B cannot be larger than the rank of Q. 
Now Q = AB shows that neither the rank of A nor the rank of B can be smaller 
than that of Q. Altogether we have the following result. 

LEMMA 1. For all {A, B} E PAIRS, 

rank(A) = rank(B) = rank(AB) = Tr AB (12) 

is an integer called rank of the pair {A, B}. 

DEFINITION. PAIRS, consists of all pairs from PAIRS of rank m. 

The promised representation of the k-th fidelities is in the following theorem. 

THEOREM 2. Let m + k = dim ‘FI. Then 

Fk(w, p) = 5 inf(Tr Aw + Tr BP), {A, B) E PAIRS,. 

One can deduce from (13) the following inequality: 

(13) 

Fk(w, ,o)2 = inf(TrAw)(Tr BP), (A, B} E PAIRS,. (14) 

The point is that with {A, B} also (AA, h-‘B} is contained in PAIRS, for k > 0. 
After this trivial substitution, the right-hand side of (13) is of the form ha + 
h-lb. Taking the infimum over h results in 2&, and (14) is derived from (13). 
Eq. (14), suitably reformulated, is known for C*-algebras if k = 0, see [5]. 

Theorem 1 is a consequence of Theorem 2. We shall prove Theorem 2 in the 
next section, at first assuming p invertible (which would be sufficient for Theorem 
1). Then, by continuity arguments, we can allow for all w and p. However, before 
going into the proof, we have to look at a “hidden” symmetry of the k-fidelities. 



ON "PARTIAL" FIDELITIES 411 

3. The symmetry group of the k-fidelities 

Let us denote by r the multiplicative group of all invertible operators acting on 
3-t. With X E r we define the X-transform of a pair (w, p} by 

(0, plX := {xwx*, (x-‘)*px-‘J. (15) 

The transformations create orbits of r in the set of pairs. Two pairs, (CO, pl 
and {w’, p’}, are called r-equivalent iff there is X E r such that (CO’. p’} is the 
X-transform of {w, p}, 

LEMMA 2. The k-fidelities of r-equivalent pairs are equal for ever? k. 

Fk(w, p> = Fk(o’, p’> if b’, ~‘1 = b, ~1’ 

Proqf: For the proof we start with the identity 

(xwx*)(x-‘)*px-’ = xwpx-’ 

(16) 

saying that the spectrum of wp is an invariant for r-equivalent pairs. It suffices to 
show that 

spec(op) = spec(pw) = { At, AZ, . . . , A: } (17) 

follows from (7). By fi(wp)(fi)-’ = &k&5 this is true for invertible p. The 
assumption of invertibility can be removed by continuity. 0 

Substituting in (15) p = X* tX we may rewrite (16) as 

Fk(W, X*tX) = F&(xwx*, s) (18) 

In (18), by continuity, also X need not be invertible. 
Only for the purpose of the following proof we abbreviate the right-hand-side 

of (13) by Gk(o,p), 

G~(w, p) := i inf(Tr Aw + Tr Bp). (A, BJ E PAIRS,, . 

We observe that also Gk allows for the r-invariance. Indeed, with a pair (A, B) 
its transform 

{A, BJx := {X*AX, X-‘B(X-‘)*} (19) 

is also in PAIRS,, and we get the trace identities 

TrwA = Trw’A’, TrpB = Trp’B’. 

whenever 

Therefore, 

{A’, B’] = {A, B}x, (cd, p’) = (co. pjx. 

Gk(m, p) = G&O’, p’) if {co’, ~‘1 = I@, ~1’. (a) 
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Proof of Theorem 2: As we have just seen, both sides of (13) do not change 
along a F-orbit of X-transforms (15). 

Step 1 in the proof is to show Fk 5 Gk. To this end we first take a pair {w, p) 
with an invertible p. We transform the given pair according to (15) by X = ,,@. 
The new pair is {w’, 1) with w’ = fiw@. By (a) and Lemma 2 it suffices to 
prove Fk 5 Gk for the new pair, i.e. we estimate Gk(W’, 1) from below. 

We choose a pair {A, B} from PAIR& arbitrarily. Let @I,&, . . be an eigenba- 
sis of A and al,az,... the corresponding eigenvalues. By sandwiching ABA = A 
between these eigenvectors of A one gets 

(f&j, @kk) = ai’8;k for i, k > m. 

Now we can write 

With positive reals a and x it holds ax + a-’ > 2&. Using this inequality to 
estimate the first two sums from below and neglecting the last term, we arrive at 

TrAw’+TrB ?22,/-. 

The square root is concave. Hence, see [lo], Eq. l-46, 

The last inequality sign is an estimation of the m smallest eigenvalues (due to Fan 
and Horn) and respects Fk(w’, 1) = F,(w, p). It results in 

i inf(Tr Aw + Tr Bp) > Fk(o, p) (20) 

at first for the pairs (o’, 1) and then, by F-invariance, for all pairs (0, p} with 
invertible p. However, both sides of (20) are continuous in w and p. Thus step one 
terminates in the validity of (20) for all o and all p. The inequality is equivalent 
t0 Gk 2 Fk. 

In step 2 we show Gk 5 Fk at first for invertible p. As above we reduce the 
problem by F-invariance to that of a pair consisting of w’ and 1. We now choose 
$I,..., & to be eigenvectors of w’ belonging to the m smallest eigenvectors of 
w’. The latter are hi,,, . . . , IL~+~ by Lemma 2. Define 
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and consider 

Tr A’w’ + Tr B’ = ~ mjh:+k + 2 a,~‘. 
j=l I 

If h,+n > 0 we choose aj = hJTik. Otherwise we set aj = c-’ > 0 arbitrarily. If n 

of the m eigenvalues hj+k are zero, then our convention implies 

Tr A’@’ i- Tr B’ = 2 xij+_k + nc = 2Fk(w’. 1) + n(‘. 
j=l 

and hence GE, ( Fk + nc. Since c can be made arbitrarily small we arrive at 
the required inequality Gk 5 Fk. Now, relying on r-invariance (16) and (a), the 
inequality is shown true for all pairs of invertible density operators. 

Combining steps one and two we see: Fk(w, p) = Gk(W, p) if both ZtrgUmentS 

are invertible. Hence Fk is concave for these pairs. But Fk is a continuous function 
of w and p by (8). Therefore, Fk is jointly concave and Theorem 1 is valid. 

But one knows that a concave function is semi-continuous from below, see [7], 
Theorem 10.2, where semi-continuity from above is stated for convex functions. 
Because FL is continuous and concave it dominates every function which is concave 
and coincides for convexly inner points with FL. This means Fk 2 Gk always. Now 
step one of the proof provides Fk = Gk. 0 

4. Equivalence and partial order 

It is tempting to collect pairs of positive (density) operators into equivalence 
classes according to their partial fidelities. For the purpose of the present paper we 
call two pairs equivalent, and we write 

{W P] - (w’, P’], (31) 

iff their k-fidelities are equal, Fk(w. p) = Fk(w’, p’) for k = 0. 1, . . . d - 1. The 
relation - is an equivalence relation. Notice that (w, p} - (p , w, }. Generally, an 
equivalence class contains a lot of IT-orbits. But there is an important exception: 

LEMMA 3. If both operators, o and p, are invertible, the equivalence class oj 
(CO, p} consists exactly of all pairs (w, p}‘, X E F. 0 

Proof: The assumption is valid if and only if 0 does not belong to the eigen- 
values (7). This takes place if the smallest one is different from zero, hence iff 
F,,_, # 0. Thus, if the assumption of the lemma is valid for one member of an 
equivalence class, then it is true for all members. Let {or, ~1) be in the equivalence 
class of (w, p). Transforming the latter by X = fi and the former by Xr = fi 
by the recipe (15) results accordingly in r-equivalent pairs (w’, 1) and {o’, , 1). Be- 
ing in the same equivalence class, (0’ and w’, have to have equal eigenvalues and 
they are even unitarily equivalent. Thus all the pairs considered belong to the same 
r-orbit. 0 
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Let us write {o’, p’) 5 {w, p) if both, w - o’ and p - p’, are positive operators. 
A simple example is as follows: Write o = w’ + wa, p = p’ + pa, and assume 
orthogonality between o’ and pa and between p’ and 00, i.e. wop’ = 0, paw’ = 0. 
Then {o, p) and (w’, p’) belong to the same equivalence class. To see what we can 
learn from {w’, p’) 5 {w, p) generally, we proceed in two steps, {o’, p’) ( {w, p’) 
and {w, p’) 5 {w, p). Consider the second one. It implies fip’fi ( z/;;p& and, 
because taking the square root does not destroy the inequality, 

The sums of its m smallest eigenvalues, which are the partial fidelities, obey the 
same inequality. Further, if the traces of both positive operators happen to be equal, 
the operators themselves have to be equal 
for the first step and combining both, we 

LEMMA 4. If 

IWPI 2 

then 

Fk(o.4 P) ? F/J@‘, P’), 

If in addition to (22) F(o, p) = F(o’, p’) 
equal in pairs, and the two pairs belong 
Iw’, P’). 

one to another. Repeating the arguments 
arrive at the lemma. 

]W’? P’) (22) 

k=O,l,..., d-l. (23) 

is true, then all partial jidelitit?s must be 
to the same equivalence class: {w, p) - 

cl 

Given w, p, Alberti [8] has shown, even in the C*-category, that there is one and 
only one pair {oa, ~0) which has the same transition probability (and, therefore, the 
same fidelity), and which is minimal with respect to 2. This minimal pair satisfies 

Iwo, PO1 5 Iw’t P’) 

whenever 

is valid. 

{w’, P’) I IO, P) and F(w’, p’) = F(w, p) 

We see that every equivalence class contains a minimal pair and, therefore, a 
r-orbit of minimal pairs. It is tempting to believe that there is only one mini- 
mal r-orbit in every equivalence class of pairs. But I do not know whether this 
conjecture is true. 

Now one may go a step further, anticipating the ideas of majorization [9], or 
those of partially ordering orbits belonging to certain classes of transformations 
[lo]. To do so, let us call {oi, pi) F-dominated by (02, ~2) iff 

F/cbl, PI> I hb2, ~21, k = 0, 1,2,. . . (24) 

From Theorem 1 we get the following corollary 



ON “PARTIAL” FIDELITIES 415 

COROLLARY. If {wz, ~2) is contained in the convex hull of the -equivalence class 
of {WI, p1 } then (24) takes place. 0 

We thus get a new partial ordering (or majorization tool) for pairs of positive 
(density) operators which seems worthwhile to investigate. There is a link, indeed 
a morphism, to singular number majorization. Denote by sing(B) the decreasingly 
ordered singular numbers of the operator B, that is 

sing(B) = spec(JB*B) = spec(2/BB*) = sing(B*). 

and by sing[B] the set of all operators C with sing(C) = sing(B), the singular 
number class of B. In particular, 

spec((&p&)‘/2) = sing(fi&). 

There are many useful rules governing the partial order of the singular number 
classes (see [9], 9.E and [lo], 2.4 (Theorem 23, 2.5). With them one easily 
proves lemma. 

LEMMA 5. The following items are mutually equivalent: 

a) (WI, ~1) is F-dominated by (~2, ,o2}, 
b) &.Jp2 is contained in the convex hull of sing[fi&], 
C) there are finitely many operators Ai, Bi, all with operator norms not exceeding 1, 

such that 

5. More about PAIRS 

It is our aim to get some insight into the structure of PAIRS. Let {A, B} E 
PAIRS,,, with 0 < m 5 d = dim7-1. k is defined by k + m = d. Let us write A. 
B as block matrices with respect to an eigenvector basis of A as in the proof of 
Theorem 2. Then, with a positive m x m matrix A1 1. 

(25) 

Here B,, is m x m, B12 is m x k, and B22 is k x k. The equation ABA = A results 
in BI, = A,‘. Having this in mind, one gets from BAB = B, 

BII = ALI’, B22 = B~IAIIBI~, B;2 = B21. (26) 

Notice that BIZ can be chosen arbitrarily: Given the first member, A, of the pair, 
B depends freely on km complex parameters. 

There is a further representation of the pairs in PAIRS,. Call 2m vectors, 
$1.&>...,$,,,, cpl~~p2~...~%~ a bi-orthogonal system of length m if 

(l+bi,~j)=S,j, i,j==l,2 ,..., m. (A) 
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Together with m positive numbers, ai, a2, . . . , a,, we obtain from (A) a pair of 
operators 

A = ~W)Wl, B = &%Ml, (B) 

for which ABA = A and BA B = B can be checked. Let us prove that every pair 
from PAIRS,, can be gained by this procedure. 

Let (A, B) E PAIRS,,, . Because AB is diagonalizable with eigenvalues 0 and 1, 
there is X E I such that XABX-’ is a hermitian projection operator. Hence the 
operators 

A1 = XAX*, B1 = (X-‘)*BX-’ 

commute. Therefore there is a representation 

with m orthonormal vectors $1, . . . , &. But 

*i = X-‘$i, pi = X*#i 

is bi-orthogonal with length m. Transforming Al and B1 back to A and B gives 
the desired representation of the pair. 

The bi-orthonormal system (A) of (B) can be chosen balanced, 

($i~~i)=(~i~4Di)~ i=l,...,m. cc> 

Indeed, the necessary changes in the norms can be compensated by adjusting the 
ai. Now we insert (B) into the right-hand side of (13) and observe that 

By varying the free parameters aj we arrive at the theorem. 

THEOREM 3. Let m + k = dim ti. Then 

~~(o,p)=inf~~(~i,w~i)(~i,p~i). (27) 
i=l 

where the injimum runs through all balanced bi-orthogonal systems of length m. 0 

Finally, assume that the infimum in (13) is attained by {A, B} E PAIRS,, 

Fk(w,p) = i(Tr Aw+Tr Bp), m+k=dim’Ft. (28) 

If we vary the minimizing pair, the first variation must vanish, 

c(s) = 0, c(s) = (Tr A,w + Tr B,p), 
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where, with X, = exp s Y and any operator Y, 

As = X:AX.\, B, = X,;'B(X;)-' 

We take the first derivative and obtain 

A, = Y*A + AY, B, = -YB - BY*. 

After inserting in C(0) = 0 and a rearrangement it results in 

Tr Y(Ap - wB)* + Tr Y*(Ap - wB) = 0. 

As Y could be chosen arbitrarily, we arrive at 

Ap=oB (29) 

as a necessary condition for the validity of (28). 
Is there any {A, B} E PAIRS, fulfilling (28) and minimizing (13)? If we can 

F-transform o, p to the form r, t, then the answer is positive. Indeed, we then can 
choose a projection operator P,, onto the m smallest eigenvalues of t and we get 

Fk(r, r) = Tr P,,t. (Pm, P,,,} E PAIRS,, 

i.e. the problem is solved in that case. Now, if w and p are both invertible, there 
is a unique positive X such that 

xwx = x-‘px-’ := t, x > 0, (.30) 

The choice (30) ensures (28) with A = XP,X, B = X-’ P,X-‘. To get X one has 
to solve X2wX2 = p. There is a unique positive solution X which is the square 
root of the geometric mean [ 111 between p and w-i, 

x2 = o-l/2((,rl/2pw’12)‘~2~-l/2 

as one can convince oneself by inserting into X2wX2 = p. 
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