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We prove some properties of fideligransition probability and concurrence, the latter defined by a straight-
forward extension of Wootters’ notation. Choose a conjugation and consider the dependence of fidelity or of
concurrence on conjugated pairs of density operator. These functions turn out to be concave or convex roofs.
Optimal decompositions are constructed. Some applications to two and tripartite systems illustrate the general
theorems.

PACS numbegps): 03.67—a, 03.65.Bz, 89.76:c

[. INTRODUCTION as defined in Sec. Il, turns out to be a concave roof. Optimal
decompositions can be gained similarly.

In physics antilinearity is well known from symmetries ~ The main proofs are in Secs. Ill and IV. Section V is
with time reversal operatiorfd], from second quantization, devoted to the roof concep?], an interesting tool if com-
and from representation theory of groups and algebradined with convexity or concavity. The last section contains
Quantum information theory offers several interesting appli-some applications, mainly & concurrences. There are con-
cations of antilinearity. In the present paper we are conjugations in multipartite systems such that a noneroon-
cerned with one of them. Antilinear operators are intrinsi-currence indicates inseparability. It is illustrated for bipartite
cally nonlocal: One cannot tensor them consistently with thdexample 1 and for the three-qubit systentesxample 3. In a
identity operator. They do not share the privilege of linear2xXn bipartite system there is the possibility to bound en-
operators[2] to allow execution in one part of a bipartite tanglement of formation from below by the aid ©f concur-
system while “doing nothing” in the other one. It seems, rences(example 2. After extending the method slightly
therefore, quite natural to use antilinear operators to describéheorem % to a larger class of antilinear operators, example
or to estimate effects of entanglement. Indeed, Hill and4 treats® fidelity and concurrence on some two-dimensional
Wootters in Ref[3] and Wootters in Ref4] used a particu- subspaces of the two-qubit system. Though the result is es-
lar conjugation, theHill-Wootters conjugationin order to  sentially known for the concurrend8] it explains a part of
get an explicit expression for trentanglement of formation the method.
for two qubits. Their papers are the very starting point for the Now | shortly call attention to some notations and rules,
present contribution. | tried to distill a general method out ofconnected with antilinearity, to prepare what follows below.
their proofs, and to construct explicitly the relevant optimal An antilinear operatord acting on an Hilbert spac# sat-
decompositions. The entanglement of formation concept issfies by definition
due to Bennetet al. [5]. Also a peculiar basis, theagic
basis with which one can define the Hill-Wootters conjuga- Hayi+asy,)=aj g +alg,.
tion, is already in that important paper.

In the two-qubit case the entanglement of formation is df ¢ is an eigenvector o with eigenvalue\, ey is an
function of just one other quantity, callégre)concurrence, eigenvector with eigenvalue 2\ for all unimodular num-

[4] and the same optimal decomposition of a state into purderse. The fact that the eigenvalues of an antilinear operator
ones can be used to calculate its entanglement of formatiofill some circles in the complex plain will be used in the
and its concurrence. In this form the statement becomesstimations of Sec. Ill. The product of two antilinear opera-
wrong for general states of a bipartite system different frontors becomes linear, the product of an of antilinear operator
the 2x 2 case. But for density operators of rank two similarand a linear one remains antilinear. The adjgort Hermit-
results seem not out of range. ian adjoin} 9" of an antilinear operatot is determined by

However, concurrence seems to be an interesting quantityne relation
in its own. It can be defined in higher-dimensional Hilbert
spaces and with respect to any conjugaitdiy an explicit (p,9T0)={p,0¢)
expressior(Sec. |) which will be called® concurrence. It is
a convex function on the state spd&ec. Il)), and itis aroof for all ¢,¢eH. Notice ©®"T=9. The standard rule
(see Sec. Y Optimal decompositions can be obtain&ec. (AB)'=B'AT for linear operators remains valid if one or
IV) in a constructive manner, adding some news even for thboth operators are replaced by antilinear ones. In particular,
two-qubit case. Generally, the length of an optimal decomwith a complex numbea and antilineard one gets 9)"
positions will be the smallest power of two which exceeds=d"a*=ad", i.e., taking the adjoint is a linear procedure
the dimension of the Hilbert space. for antilinear operators. It follows that the set of operators

The idea, pointing to the definition d concurrences, which are antilinearly Hermitiafantilinearly self-adjoint
can be extended to another interesting quantity, to the fidel¥= 9", is a linear space of dimensiai{d+1)/2 if dimH
ity, the square root of the transition probabili]. ® fidelity =~ =d. Indeed,9 is antilinearly Hermitian iff(¢, 9¢) is sym-
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metric. With respect to a basis the condition restricts the [P(0,w)=F(0,w)=tr(\JwoJw)"2 (3)
off-diagonal entries only. Complex diagonal entries are al-
lowed. Let H? be an ancillary Hilbert space. For any two vectors,

One calls9 antilinearly unitary or simply antiunitary if ¢, e H®H?, which reduce taw andw,
9T=9"1. Basic knowledge about antiunitary operators is
due to Wigner{1]. A conjugation® is an antiunitary satis- o=TrioXe|, w=Tra¥){y,
fying ®?=1. Writing ®=0"1=0" shows the hermiticity
(self-adjointnessof conjugations. Well studied examples are the transition amplitude is bounded from above by the fidel-
time reversal operatois] for Bose particles and for quan- ity [{¢,#)|<F(@,). Indeed,F(0,®) is the least number
tum systems with total integer angular momentum . which fulfills this condition. Equivalently, a52=P, a suit-

A conjugation® distinguishes ir{ a real subspacg , ably chosen von Neumann measurement in an ancillary sys-
consisting of all®-invariant vectors, i.e., of all eigenvectors tem can cause a transitign— » with probability P(¢,w). A
of ® with eigenvalue 1. No real subspacefnis properly larger transition probability, however, is not possif&.
larger thanMe . Due to Hermiticity, @ y=¢ and ®p=¢  The joined concavity of the fidelity can be seen from
result in

F(e,w)=infy 3[tr(X@) +tr(X )], 4

(b, 0)=(e.1h)

) . whereX runs through all positive and invertible operatets
so that the scalar product becomes real if restricte®d0 A proof for finite-dimensional Hilbert spaces is as follows:
In other words,Hg is not only a real subspace, it isreal  pppreviate bya andb the traces oveXe andX~Lw, respec-
Hilbert subspace. On the other hard, can be gained_ as tively. From Ref.[9] one knowsF?<ab. But 2\ab<a-+b,
complex conjugation ireverybasis contained ifHg . This aé]d the right hand side of E¢#) cannot be smaller than the

establ[shes a one-fo-one coerSpoqdence between maxiMatt one. If the density operators are invertible then there is a
real Hilbert subspaces and conjugations. unique positive solutior of

In a one-qubit space, i.e., dildi=2, a conjugation in-
duces a reflection of the Bloch sphere at a certain plane XoX=w, X=p Yyp¥2ypl?)p-12
through its center. Selecting the 1-2 plane, the plane perpen-
dicular to the three-axis, as invariant plane, the effect of theyith this solution we gea=b anda=F, and Eq.(4) is
conjugation to the Hermitian operator saturated. Now we use continuity to extend the proof to all
pairs of density operators. See also Ré&D].

It is useful to extend Eqg¥3),(4), and similar ones to all
. ~ positive operators with finite trace. The simple scaling prop-
thatis,e—>0=0¢0, reads erties ofP, F, and related quantities make this is an easy
task. Of course, the physical interpretationfias a prob-
ability is bound to normalized density operators.

Given a conjugation and a state vectsrwe shall con- - Let ® be a conjugation in an Hilbert spag¢é and abbre-

sider the absolute value of the transition amplitude betweeMiate ¢:=0¢0. It is evident from Eq/(4) that

¢ and ® ¢ or, what is the same, the square root of the tran- -

sition probability between them. The quantity in question Fe(0):=F(e,0) 5
[{,0 4| is well defined for pure states. The problem ad- ) ) ) o
dressed in the paper is to extend it to all states in a canonicit concave irp [11]. Equation(5) will be called® fidelity of
way. In other words, we look for functions on the state spaceé- )

which are completely determined by their pure state behav- [N order to introduce thépre)concurrence5,4] we need
ior. This can be done by relying on the convex nature of théhe ordered singular numbexs=\,=- - - of Vo Jo, that s,
set of all density operatorstate$ which reflects the process

of performing Gibbsian mixtures, i.e., of convex sums. There {Ai=\,= -} =spectrum of (Vowe)"2  (6)
is one and only one largest convex function coinciding at ) , o )

pure states with( ¢, )|, and, following Wootters, I call it Having in mind Wootters’ explicit expression for the en-

concurrence. And there is exactly one smallest concaviAnglement of formation it is tempting to define for any two
function within all functions which are concave extensionsd€nsity operatoréwhether normalized or npthe function

from the chosen values for pure states to all density opera-
tors. That function | call® fidelity. C(Q,w):zmaX(O,)\l— > )\j] (7)
i>1

0=73 (Xol+X;01+ X0+ X3073), (1)

0=3 (Xo1+ X101+ X205—X3073). (2

Il. FIDELITY AND CONCURRENCE .
and to call it concurrence @@ and w.

Let o andw be two density operators in an Hilbert space A useful relation can be obtained if the rank @& does
H. Their transition probability is denoted B(¢,w), their  not exceed two. Adding®=F? to C? the cross terms in the
fidelity, the square root of the transition probability, is calledtwo nonvanishing eigenvalues cancel. But the sum of the
F(o,w). It holds squared eigenvalug$) is equal to the trace of w. Hence

032307-2



FIDELITY AND CONCURRENCE OF CONJUGATED STATES PHYSICAL REVIEW 82 032307

C(o,w)?+F(0,0)?=2Trlpw) ifrank (ow)<2. Choosing optimal decompositions 8 () andCg(w),
(8)  their union is a decomposition fa€g (@ + ), though not
necessarily an optimal one. Hen€g (@) + Cg(w) is an up-
Finally, given a conjugatio®, we call® congruence op per bound forCgq (@ + w). Similar reasoning can be done for

the concurrence betweenand its conjugate, the O fidelity. Thus
~ ~ Cop(otw)=Cq(0)+Cq(w),
Co(0):=C(0.,0), 0=000. 9) ¢ © °
Fo(e+w)=Fp(0)+Fg(w) (19

In contrast to the higher-dimensional cases it is not hard _ o o
to get explicit expressions if difk=2. With ¢ given by Eq.  showing subadditivity o concurrence and superadditivity

(1) and a conjugation acting as in E@) one obtains of ® fid(_ality. Because of 'its homogeneit4) we conclude
that Cq is convex and~g is concave.
F®(Q)=~/x02—x3z, Col0)= /x71+x22. (10) Now we can go a step further, again without using argu-

ments from the preceding section. L@tbe the state space,

The next issue is to prove tht, is a concave an@q is a  I-€., the convex set of normalized density operatorg. i in
convex roof for every conjugatio® in every finite dimen-  this set, a decompositiofi2) can be rewritten as a convex

sional Hilbert space. For the time being the finite dimension0mbination

ality of the Hilbert space is essential due to some unexam- | i) (bl
ined mathematical problems in the case of infinite Q=2 Pk, K= T (16
dimensions. Thus, in all what follows, dift=d<c. (Dl b
Assuming that our decompositioii6) is optimal for, say,
ll. PROPERTIES OF © FIDELITY the ® concurrence, we can write

AND ® CONCURRENCE

In this section we derive some implications from and be- C(”)(Q):E PCelm).

gin the proof of Theorem 1.

Theorem 1Let ® be a conjugation. Then We conclude the following7]. Let C' be another convex

function onQ) coinciding withC at the pure states. Then we
have

Co(e)=min2, [{$ O],
C'(@)<> pC'(m)=2 PkCol(my).

Fo(@)=max>, (O], (11 But for a an optimal decomposition which of tiée concur-
rence the right hand sides coincides wi@ly (o). A similar
where the min and max has to run through all ensembleproof is forFg . It results in Theorem 2.
{$1,¢,, ...} such that Theorem 2Cg is the largest convex function arie, is
the smallest concave function on the state space coinciding
with [( @] )| at the pure states.

QZE | b1 (12 To show that the right hand sides of Ed.1) coincide
with the definitions used in Sec. Il, optimal decompositions
is valid. will be gained in the next section.
The proof of the theorem will terminate in the next sec-
tion. Up to that point we considéd1) as a definition of its IV. OPTIMAL DECOMPOSITIONS

left-hand-sides, and we shall draw conclusions without using
Egs.(5) and(9) of the preceding section.

Consider first the case=|#){y|. Clearly, every decom-
position(12) is gained byg, = a, ¢ with numbersa, satisfy-
ing =|a,|?=1. Hence

Colln)(u)=Felle) (¢ =[(4O]H)]. 13

A simple consequence of E¢L1) is homogeneity. For posi-

In building optimal decompositions for o@ fidelity and

® concurrence the properties of antilinear operators play a
decisive role. Fix a density operatgrand define an antilin-
ear operatory by

9=19,:=\00p. (17)

Because® '=0,9 is antilinearly Hermitian. Hence

tive reals (@, 9)=(¢, V).
B B Substitutingg = 9 proves all the expectation values 6f
Co(ne)=uCo(Q), Folue)=muFo(e), V"‘Z?'M) real and not negative. Thu$? is a linear positive operator

and the same is with/92. Let us abbreviat@ =000, so

Being in finite dimension the minimurfmaximum in Eq.  that 92 can be writtenJo @ /0. Remark, just to see what is
(11) will be attained by certain decompositiofs2). They  going on, how the eigenvalues of the positive square root of
are called optimal decompositions. 92 have been used in Sec. Il to expréss andCg .

032307-3



ARMIN UHLMANN PHYSICAL REVIEW A 62 032307

Our next aim is to prove the existence of a conjugation,

d
0., depending orp, with which we can polar decompose > \j= (25
=1

d
€ 2\ >max{o,>\l—2 Njf-
i=2

9=00\9?=\9?0,, 9°=1eee. (18) Proof. (@) The sum of the\; is an upper boundtriangle
inequality and it is reached W|thr 2=1 for all j. The sim-
plest choice is;=1 for allj. (b) If the N4 is not smaller than
the sum of the remaining lambdas, a lower bound is
le1 2Ny — x| where x is the maximum absolute value of
€, N+ €3°N3+---. Hence we get the asserted lower
bound. The bound is attained fer =1 and ej’l:i for |

>1. (c) It remains to prove that if the assumption (@ is

Jot valid, the lower bound 0 should be reachable. In this case

Let A2A>0 be an eigenvalue o> and H* the Hilbert
subspace of the corresponding eigenvectors. Withso 3 ¢
belongs toH . Define onH ™ the action®yy:=\"19. On
H™ the operato®, is a conjugation which commutes with
9. If one eigenvalue o? is zero,0, should induce ori °

an arbitrarily chosen conjugation. NoW is decomposed as
a direct orthogonal sum of Hilbert spaces of the formt
and® is given as an operator on every one of them. But thi

defines®, uniquely as a conjugation oH, and Eq.(18) is d d
proved. Choosing in everit* a ® y-invariant basis, we get a 2 NSNS N 2 \.
common eigenbasigfy , i, . ..}, such that e R — S
= VU= Neth,  Oothe= e (199 The first inequality is the assumption, the second follows
because otherwisg,;<<\, in contradiction to the assumed
with ordered eigenvalugs; ,=\,,= - -. ordering of thek,. We like to conclude the existence of a

The vectors constituting an opt|mal decomposition will berepresentation
obtained by the help of real Hadamard matrices. They can be
inductively gained by

Q.

=2 €2\

1 1 An m
A= ] Aem= _ (20) as then the lower bound zero can be reached: We have to
1 -1 A, —An ,
prove the same assertion as above, but now the length of the
sum isd—1. Hence the proof is done if EQ25) is true for

for m=2,4,8 .. .. Let usdenote bya; the matrix elements , )
of A,,,. These entries are either 1 erl. They fulfill sums of length less thad. Starting withd=2, the proof
terminates by induction to the length of the sum to be esti-
m mated.
E awa,;=ms;, a;=1Vj. (21) Given \q,\5, ..., we choose unimodular numbers
k= €1,€5, ..., Saturating, respectively, the upper bound or the
o ' ' lower bound of Eq.(25). With this choice the vector&3)
Conel . ne1 (to indicate the use of the lower boundespectively. From
m=2"""% 2'<dimH=2""" (220 the construction it follows that the insertion of
With an arbitrary selection ofl unimodular numbergphase —_ = +_ + =
factors, €;,€,, ..., wedefine with a basi$19) the vectors P \/E(Pk - \/E(Pk  k=l...m (29

into Eq. (12) estimates Eq(11) as follows:

¢k=2 g€y, k=12,...m. (23 d
- Co<ma

0N — D Aj], Fo= \.
i=2

By the help of Egs(23) and (21) it is straightforward to

prove the following, essentially known identities These inequalities must be equalities. For the proof we use
an arbitrary decompositiobh= 2| x,){ xi| of the unity, insert
m d , d=vex« into Eq. (11), and convert the sum to be esti-
kg]_ |(,Dk><(pk| = m|:21 |lﬁ|><lﬂ||:ml<§0k|ﬂ|§0k>:21 Ej_ )\J . mated with the help of qug) into
(24)

d
a=>, (k.0 dy) :; 121

. N (O vl
The remarkable deviation from most uses of Hadamard ma-
trices is in the appearance of the phase factors produced l?a\\/ ) ) ,

the antilinearity of9. They provide sufficient flexibility in At first we estimate concurrence by choosing the phases of

adjusting the expectation values 8f By varying thee; in ¥ such that(x1,#) becomes real and positive. We get

the second equation arbitrarily, the absolute values of the d
numbers{ | 3| ¢\ fill completely the following interval of a=n.—bl. b= . 2
real numbers: INy—b], JZZ ‘; ()]
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for the sum in question. Ifb| is larger than\; we already
obtaineda=0 with ¢,=¢ . In the other case¢b| cannot G| X pjmj| =2 pG(m)). (29
exceed\,+ A3+ -+, i.e.,a—|b|<Cq.

Concerning the® fidelity the Schwarz inequality will be It is not necessary to check conditid®9) for all possible
applied to the positive Hermitian forfp, V9%¢'). Respect-  convex linear combinations in casg is either convex or

ing Egs.(18) and(19) one gets concave:
Lemma R-1Let G be convex or concave. If
(i 200 < (i N O i)
Thereforea cannot be larger than the trace ¢8. The latter e= 2 qjm, Q>0 (30

is equal toF g and we arrive ab<Fg. [J
We have not only proved theorem 1 but aSorollary 3: is a decomposition ofp into pure density operators
Let dimH=d and 2'<d<2"*1. For everyg there exist m,m3, ..., and if
optimal decompositions for th® concurrence the length of
. n l .
}/ivdhélci?ydoes not exceed"2!. The same is true for th® G(Q)=E q;G(m)) (31)
Remarks (a) Can the bounds for the optimal length be- . _ ) _
come more stringent for certain dimensions of dmThe is valid thenG is convexly linear on the convex hull of
construction above seems to deny it. But a proof is missing™1:72» - - - - i i )
(b) If d=4=2x2, thenn=2 and there are optimal decom- . Proof. A;sumeG is convex. Giveng, there is convexly
positions of maximal length four as shown by Wootters. Sedinéar functionl satisfying G=I on {2, and G(e)=I(e).
also[12] for the optimal length problem. Together with Eq(31) we get

V. ROOFS l(e)=G(e)=2 q;G(m)=2, qjl(m)).

We now call attention to some peculiarities of convex or . .
concave function on the state space which admit optimaPecause the right hand termlige), the = symbol must be
decompositions. These functions are quite different fronf €duality sign. BUuG=I now enforced (m;)=G(;) for
unitarily invariant ones such as, for instance, von Neumanfl® pure states _mvolved in E¢31). By the help of this
entropy. The latter do not at all discriminate between purédualities we estimat®(w), w=pymy+ -, by
states, they just estimate how strongly a state is mixed.
Roofs, as defined below, and in particular convex or concave |(w)sG(w)s2 pPG(m) =l(w)
ones, draw all their information from their values at pure

states. They _try to interpolate be_tvyeen t_hose values as Iih}':ind the inequality must be an equaliffhe first inequality
early as possible. Let us see how it is achieved by two smplgign is due td <G, the second due to the convexity Gf)

examples. . : L This proves the lemma for convéx Because- G is convex
) In two dimensions® _fidelity and © .concuzrren;:e 621re if G is concave, the lemma remains true for concave func-
given by \/1—x32 and \/le.erz2 on the umt ballx]+ x5+ X3 tions. Another proof is in Ref.13].
<1, see Eq.(10. The first one remains constant on the gy gefinition, G is a roof if O can be covered by convex
planesx;=const, the second one does so along the ies |eaves such thaG is convexly linear on every leaf of the
=C1, Xp=C,. The intersections of a plane or of a straight coyering. The covering is said to be a convex covering be-
line with the unit ball are not only convex: The intersections|onging to or compatible witlG.
can be gained as the convex hulls of the pure states they There is a simple geometric picture beyond. Assume a
contain. real numberg=g() is given for every pure state. The
In turning to the general case we denote(byhe convex jgea is to think of a wall, made of straight lines starting from
set of all normalized density operators on a finite- . g terminating ag(w). The demand is, to cover the
dimensional Hilbert space and 6}""*the set of its extremal  giate spac€) by a roof, founded upon the wall, which is as
points, i.e.,_ the set of pure density operatc_)rs. A convex subsglyt a5 possible. To satisfy the demand one joins every two
Qg of O will be called a convex leaf of) if points on the wall by a straight line, every three points by a
triangle, and so on. If the dimension of the polyhedra be-
Qo=convex hull of (QoNAOP™). @7 comgs large enough, (di)? in our case, the sgt 0{‘ polyhe-
dra coverd) (an application of Caratheodory’s theoreamd
we stop. To get a roof we have to select a onefold covering
of Q) from our huge set of polyhedra: There should be a
function w— G(w) such thatx=G(w) whenevexw is con-
tained in one of the polyhedra of the selected covering. If it

Let G=G(p) be a function o) and(}, a convex leaf of
Q). G is called convexly lineafor, equivalently, affine or
flat) on Q if for all probability vectorsp,,p,, ... and for
all choices of pure states

T, T, . .. € QoNOPUE (28) occurs, G(w)w is a convex combination of thg(m;)m;
which generate the polyhedron. Taking the trace yields a
G satisfies the relation representation
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m is a convex roof for every conjugation in every Hilbert space.
G(w)zE pja(j), m= (dimH)2. However,only if the Hilbert space is four dimensional, and
=1 O the Hill-Wootters conjugation, Eq33) is equal to the

S . . entanglement of formation. In bipartitex2n systems(33)
From the bewﬂdermg_mamfold of roofs we select the hlghestcam only be a lower bound to the entanglement of formation
(or the lowest one: Givenw we look for a polyhedron con-

. ! . . for appropriately chosef (see the next sectipn
taining xw with the largest(or with the smallestpossible Thpepfoﬁowing statements copy facts known in two-qubit
real numbex. Let us call this numbeG* (w), respectively,

. . i systems to a more general frame. The maximuntgfis
G (w). There is such a polyedron @ is continuous, be- y g 8

one, andFg=1 is the equation of a convex leaf fét, by
cause then the set of all polyhedra based on a bounded num- ) _ _
ber of edges is compact, 'Bmma R-2. IfFg(0)=1 then®o®=p by (5), andp has a

Some generalities can be abstracted from the constructio%aSis of®-invariant eigenvectors. The minimum e Is
above, see Ref§14.7]. They are summarized in the follow- ero. The set of all states with vanishifdgconcurrence is a

. convex leaf with respect t€¢ . If ¢ is ® invariant,® 0®
ing lemma.

Lemma R-2Let g=g() be a real and continuous func- _ <" thenCe(e)=0 if and only if no eigenvalue o ex-

tion on the set of pure states. ceeds 1/2. . .
(a) There is exactly one convex ro@~ and exactly one The entanglement of formation vanishes, as known from

. T . Ref. [5], exactly for separable, i.e., classically correlated
concave roofG™ on Q which coincides orf2P“"® with g. ’ S ’ -
(b) G* is the smallest concave function a@i isg the stated16,17]. Separability in a two-qubit-system can equally

. ) o well be characterized by the vanishing®©§, © the Hill-
largest convex function which coincides at the pure statey ootters conjugation. Again, just for two-qubite=1 is
with g. ' ; O

© Itis the equation for the convex hull of the maximally entangled
pure states.

G*(e)=maxY, p;g(m;), VI. EXAMPLES

This section considers some possible applications of the
general theorems. By looking at examples we ask wheher
concurrences can be used to decide separability problems in
bipartite and multipartite systems. In a two-qubit system a
where the variations have to run through all convex decomeensity operator is separable if and only if its concurrence
positions ofg with pure states. vanishes. Could one suppose similar statements in a higher

Starting the discussion above from(m)=|(#,®¢)|, dimensional or in a multiqubit system? Certainly not with
where=|)(y| and® is a conjugation, we arrive &  just one functional. But with sufficiently many it can work.
=Fg andG™ =Cgq . Within the pure states belonging to one Before treating the examples we have to return to a further
of the optimal decompositions of the preceding section théssue in antilinearity.

G (g)=minY, p;g(m)),

valuesg(w) remain constant. Henc8 " and G~ are con- All conjugations of an Hilbert space are unitarily equiva-

stant on the convex leaf they generate the following. lent. From Eq.(6) and the definitions of fidelity and concur-
Corollary 4: The ® concurrencerespectively the® fi- rence one gets

delity) allows for a convex foliation such th&g (respec-

tively, Fg) is constant over every of its leaves. Fo/(0)=Fg(UoU'), Cg(0)=Ce(UoUT)

As an immediate consequence— f(Cg(@)) and p ) R . _
—f(Fg(p)) are roofs over) for every functionf(x) de- with @' =U'O®U and every unitary operatdt. However, in

fined on the unit interval. In general the roofs so obtained? PiPartite or multipartite system,

cease to be convex or concave. But there are some rules _a b c

guaranteeing convexityconcavity in some cases. To pre- H=H oH ®@®H" -, (34
serve convexity it suffices thdtis convex and increasing. ,nq considers two conjugations equivalent iff there iscal
Concavity is guaranteed withconcave and decreasings]. unitary U such tha®’ =UT@®U. Some of these equivalence

S H H S
Examples areCg with real 1<s is a convex roofFg  classes consist of tensor products of antiunitary operators
with 0<s<<1 is a concave roof. An important convex and

increasing function, used by Hill and Wootters in R4f3] 0=0,80,0---. (35)
and[4] to get an expression for the entanglement of forma-
tion [5] reads To obtain a conjugation, the square of each factor must be a

multiple of the appropriate identity, for examplef\: c, 1%

1+1-x2 1-1-x2 According to Wigner there are only two possibilitieg=
faw(x)=:s 2 ts 2 B2 11 Therefore, a factor in Eq35) is either a conjugation or
it is an antiunitary satisfyingg?=—1. The number of the
wheres(y) abbreviates-y Iny. Thus latter cases must be even to obtain a conjugation by(E).
For the purpose of the present paper an antiunitasyat-
o—fuw(Cele)) (33  isfying #°=—1is called a skew conjugation. While skew
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conjugations are mostly discussed in connection with time n
reversal of fermions, we need them as building blocks for (z/;|®|1//>=22 gz 1. (39
conjugations in multipartite quantum systems. =1

A skew conjugation fulfills§~*=— ¢" and . ) ) .
The sum on the right-hand-side can vanish only if all the

(h,00")+(d",04)=0. (36)  Schmidt coefficientse; vanish with the exception of the
largest one. Henc¢s must be a product state.

All eXpectation values of a skew Conjugation vanish. There Can we Sk|p in the last statement the punty requirement?
is a consequence for vectogs= H which are separable with |t seems unlikely with the exception of the two-qubit case.
respect to the first factor in E434), say = ¢?®¢. If the  Thus we are faced with the problem to characterize the set of
first antiunitary,6,, is a skew conjugation, the expectation states with vanishing concurrences for all conjugations
value(,® ) must vanish. In other words: L& be a con-  from F. Let us call the set of all these stat&. As an
jugation (35 and assume its first factor is a skew conjuga-intersection of convex leaves it is convex, but not necessarily
tion. If (4,0 ¢) is not zero|¢)( | cannot be ® separable. 3 leaf. It contains all separable states. Moreover, a pure state

A skew conjugationg, allows for a representatidr] is in Q¢ if and only if it is separable. But not all extremal
B B points of Q¢ might be pure and, then, it will contain density
0= thaj—1,  Oth2j—1=~ V2, (37) operators which are not separable.
1<j=n, with a certain basis/,, ¢, . . ., called a@ basis. Example 2We proceed with the setting of example 1 and

By Eq. (37) the Hilbert space decomposes into a direct SurT{equireHEl to be two-dimensional. The requirement allows
of two-dimensional, ¢ invariant Hilbert subspaces. Of to bound the entanglement of formation from below for any

course, any basis df can serve as @ basis for a certain even dimensional second factb{rb_ in the bipartite system.
skew conjugatiord To do so we use E(39) to establish

In one-qubit spaces there is, up to a phase, just one skew
conjugation ¢ that may be defined by0)—i|1), |1)— 2\detp=sup|(¥,0y)|, OeF. (40)
—i|0). (The imaginary unit in the definition is by conven- )
tion.) On the state space it induces the well known spin flip.Herep dbenotes the partial trace o)(4)| over the second
With that definitiond® 6 is the Hill-Wootters conjugation of factor 7. It then follows a lower bound for the entangle-

a two-qubit space. ment of formationE().
Example 1 Consider in Eq.(34) a direct productH
=H2®H" of two even-dimensional Hilbert spaces. We dis- E(0)=supyfuw(Ce(0))=frw(supCe()), (41)

tinguish a special clasg of conjugations® e F if the con- . _ o
jugation can be written as the produdt= 6@ 6 of two ~ Wherefyy is ex_pl_auned by Eq(32)_. The equal_lty sign is due
skew conjugations. Notice that, up to a phageonsists of 0 the monotonicity o',y . The right-hand side of Eq41)
one conjugation in the two-qubit case, the Hill-Wootters onelS convex as a sup of convex functions of ty{388). For pure
We have already seen from E(B6) that for this class States it coincides by E@40) with the ent_ang'lement of for-
(4]©])=0 if i is a product vector. ThuEq(7)=0 for ~ mation. But 'ghe entanglement of for'matlon is a convex roof
every pure product state and for evéy 7. But, as seen at Y its definition, see Ref5] and point(c) of lemma R-2.
the end of the preceding section, the equat@g(o)=0  Hence the left-hand side is the largest possible convex func-
defines a convex leaf, i.eCo vanishes for all separable ton with the described values for pure states.
density operators. One may rephrase the statement by saying EX@mple 3Now we try a similar procedure as in example
if o is a state in a bipartite system and if we can fidd 1 for a three-qubit-system. As already mentioned there is,
e F such thatCe >0, theng cannot be separable. We now &ftér fixing a phase, only one skew conjugation, gayn a
complement the last statement: Letbe pure. [fCg(ar)  WO-dimensional Hilbert space. Every conjugation in dimen-

=0 is true for all® e F then is a product state, i.e., sepa- SION WO is of the formU ¢ with unitary U.
rable. H in Eq. (34) is now the direct product of three

For the proof we consider an arbitrary unit vectoe H 2-dimensional Hilbert spaces. Consider the conjugations

and assume dift 2=2n<dimH"°. We use the Schmidt de-

composition U 0n0, 02U, 620U6. (42)

Let ¢y e H and® from this set. Theq|® is zero if s is
Y= z aj ‘f’?@’ ¢Jb’ @ == (38) a product vector. A separabfe aIIovl?/s |for| ?convex dewcom—
position with product states by definition. FGg =0 deter-
to define a skew conjugations in the two parts of our bipartitamines a convex leav& (o) has to vanish.
system.d, is defined by requirings$,#3, . .., to be af, Turn now to the reverse and let bea pure states with
basis. In® we complete, if necessary, thﬁJ vectorsto a Cg(7)=0 for some conjugations listed in E¢42). The
basis which then is used as a the definfjgbasis. After manifold of pure product states is eight-dimensional. We
these preparations we consid®r=60,® 6,,, a conjugation shall prove that eight equationSg=0 with conjugations
tailored for the vecton(38). A straightforward calculation from Eq.(42) are sufficient to decide whetheris a product
yields vector or not.
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This goes as follows. Writey as a sum|0)|¢o) it essential that the antilinear operatde=/o® o is anti-
+|1)|¢1) and start by the first set of conjugations listed inlinearly Hermitian. For that reason one proves by literally the
Eq. (42). We have to solve the equations same arguments.

Theorem 5Let ® be antilinear and self-adjoin@ =01,
- Then
0=(yly)=2 (i|Udlj)eile;).
Fo:=F(0,000), Cg:=C(0,000)

The t'ld'.a a_bbrewates the H|.II-Woojcters conjugatiom 6 is a concave respectively a convex roof. Theorem 1 and Cor-
With unitaries of the formU|j)=¢;|j) we see thalp, is  jaries 3 and 4 remain valid for them.

orthogonal topy . Henceg is a product vector. To come to  Example 4 The final aim of the exercise is to determine
this conclusion, we need two diagonal unitaries. Next, withfidelity and concurrence of certain conjugated states of rank
U equal to eithelo; or o, we see thatp, is orthogonal to  two in in a two-qubit space. The reader should consider the
©,. Because both are product vectors, either the first or thexample as representative for a lot of others which need
second one of their constituents has to be orthogonal one twmore calculation effort.

another. Hence, after checkir@,=0 with 4 conjugations Let H, be a two-dimensional Hilbert space. The transition

from our list, we arrive, up to a local unitary, at one of two probability can be given by elementary algebraic operations

possibilities: [18]. For the present purpose an adequate expression reads
[0)|$)|0)+[1)|$")[1), [0)|0)] ) +[1)|1)["). P(e,0)=F(0,0w)*=Trow+2\deto detw. (43

Choosing now a conjugation from the second group of Eq.By the aid of Eq.(8) the equation can be converted to

(42) yields(#|U 6| ¢')=0. We need just two of them to see 5 o e
that either¢p=0 or ¢'=0 has to take place, providefl is Cle,0)"=Trew—2ydete detw. (44)
located at the second position in the direct product. To cove,

alsot;[hﬁ cgssnmt/;]tld)tmrgherthwd position, we need two con- getFo(o) or C@_)(Q) we have to know the trace @f® 0©
Jugf to Sb 0 € ¢ tg C}Up'th bit svst Th and the determinants @f and® 0.

_-€lm DE a pure state ot a tree-qublt system. There are - aqor these preliminaries we think 6f, as of a subspace
eight conjugations of the forr¥2) such thatsr is a product of a two-qubit Hilbert spacé{. We cannot use the Hill-

state if and only ifC,() =0 is valid for all of them. Itis ., yerg conjugatio® ,,, in Eqgs.(43) or (44) directly be-

tempting to ask whether one can prove similar statements foc,[ause generallyH, will not allow as a symmetry
. . . . . . y 2 HW .

any multiqubit system. | believe the answer is afflrmatlve,.l_herefore we se® =00 ,,Q with Q the projection opera-

but | did not check it. o . : .
Last but not least we are going to cure a curious shortzor projecting{ onto’H,. ®, so defined, will be antilinearly

coming of the treatment in example 1: It cannot be applied nHermm_an_ an~d it mapst, into Ho. By the little trick we see,
one of the factors of the bipartite system is odd dimensiona@Pbreviatinge =0,y O,

The setF becomes empty. The same unsatisfactory event - -

arises if no or only one factor of a multipartite system is even F(e,0)=Fe(e), C(0,0)=Ceq(0)
dimensional. Let us think, for example, the factaf® is )

three-dimensional. To get an appropriate antilinear operatoheneverg is supported byH,. _

6, we split 2 into a direct sum of a two-dimensional and a ~ We assumé, is generated by two separable unit vectors
one-dimensional Hilbert space. In the former we eqiato a b a b

a skew conjugation. In the latter we g&tto zero. We do not hi=diedie H=H"®H". (45)
get an antiunitary operator, but an antilinear operator satis- .

fying 1= — 6,. This relation suffices to guarantee Eg). Ve choose their phases such that

It seems natural, therefore, to allow in E@5) the larger

class of antilineam fulfilling "=+ ¢ as factors, and to re- (05,41 =a, (g5.41)=b, (46)

quire for the tensor produd ™= only. .
Returning to the bipartite system of example 1 we couldvherea, b are positive real numbers between 0 and 1. We

fet ® be an antilinear Hermitian operator acting BR. To

consider the larger class of antilinear operators get, by appropriately adjusting the free phase in the Hill-
Wootters conjugation
_ t_ t__
0020, 6a==0ar 6=—b (b Orawt)= (o Ouw) = (T=2I L8,
4

so that is antilinearly Hermitian and, nevertheless,

(4,0 ¢)=0 for product vectorsy. We arrive at the follow- We can replacé by ®=Q0,,Q in Eq. (47) without
ing general question: D@ fidelity (5) and ® concurrence changing its validity. This reminds us also thak; ,® ;)
(9) remain concave respectively convex roofs for any anti-=0 because); is a product vector.

linear self-adjoint®. Going through all the proofs one finds  We introduce a suitable basis by
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Yot o 489)
¢ T 2ran) ©  J2(1-ab)

By a short calculation one concludes from E4j7)

Do a. of _V(1-a%)(1-b%)
¢ Tz, 8T 1+ab '

(49

Possessing a distinguished badig) in H, we represent any

density operatop supported byH, as usual by the help of
Pauli operators, see E(fl). The Pauli operators to the basis

(49) are by convention
7

o3=le " We |-le Ne l.o1=le" e |+|le )¢

ando,=i0403. Transformingo according tao—®p® can
be accomplished by transforming the identity?é$ and the
just introduced Pauli operators. Using E49),

2 2

2, .2
a2+a? a’-a
2 o + — + —
= = +
02=0Q0 - —1+———0,,
a’-a?> a’+a’
0'3@2 2 1+ 2 g3,

®0'1®:a+a_0'1, ®O’2®:_a+a_0'2.

One gets for the determinant
det®@p®=(a,a_)’detp.

and for the trace op®p0®

2 2

2 2
ai+at , , aj—-al a,a_
——(Xgt+x3)+ XoXzt+ 5

2 (G=x3).

2

These expressions shall be inserted into E43). and (44):

PHYSICAL REVIEW B2 032307
Fo(@)?=%[(a; +a_)xot(a,—a_)xgl?~a,a_x3,

Co(0)?=1[(a,—a_)xo+(a, +a_)xsl?+a,a_xi.

One should have in mingy=1 for normalized density op-
erators. Then the last equation represents just Wootters con-
currenceC(p) for density operators supported B3y,. Re-
turning to the amplitude$46), a and b, results in a more
convenient form

Fo(0)=AV(xo—abx)?—(1—a%h?)x5,  (50)

Co(0)=A\(x3—abx))?+(1—-a’b?)xi, (51
[(1—a?)(1-b?)

A:= —1_a2b2 . (52

One easily determines to convex leaves for these roofs: For
Fe we fix xo=1, X,, andx;z and letx; vary. We obtain a
straight line inx-space which intersects the Bloch sphere of
'H, exactly twice, corresponding to the twa-values with
which x;,X,,X3 becomes a unit vector. Along the line the
fidelity remains constant. The same procedure, however,
with fixing Xg,X1,X3 and varyingx,, produces the convex
foliation for the® concurrence which, in our example, is the
Hill, Wootters one.
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