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Fidelity and concurrence of conjugated states

Armin Uhlmann
Institut für Theoretische Physik, Universita¨t Leipzig, D-04109 Leipzig, Germany

~Received 11 October 1999; published 16 August 2000!

We prove some properties of fidelity~transition probability! and concurrence, the latter defined by a straight-
forward extension of Wootters’ notation. Choose a conjugation and consider the dependence of fidelity or of
concurrence on conjugated pairs of density operator. These functions turn out to be concave or convex roofs.
Optimal decompositions are constructed. Some applications to two and tripartite systems illustrate the general
theorems.

PACS number~s!: 03.67.2a, 03.65.Bz, 89.70.1c
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I. INTRODUCTION

In physics antilinearity is well known from symmetrie
with time reversal operations@1#, from second quantization
and from representation theory of groups and algeb
Quantum information theory offers several interesting ap
cations of antilinearity. In the present paper we are c
cerned with one of them. Antilinear operators are intrin
cally nonlocal: One cannot tensor them consistently with
identity operator. They do not share the privilege of line
operators@2# to allow execution in one part of a bipartit
system while ‘‘doing nothing’’ in the other one. It seem
therefore, quite natural to use antilinear operators to desc
or to estimate effects of entanglement. Indeed, Hill a
Wootters in Ref.@3# and Wootters in Ref.@4# used a particu-
lar conjugation, theHill-Wootters conjugation, in order to
get an explicit expression for theentanglement of formation
for two qubits. Their papers are the very starting point for
present contribution. I tried to distill a general method out
their proofs, and to construct explicitly the relevant optim
decompositions. The entanglement of formation concep
due to Bennettet al. @5#. Also a peculiar basis, themagic
basis, with which one can define the Hill-Wootters conjug
tion, is already in that important paper.

In the two-qubit case the entanglement of formation i
function of just one other quantity, called~pre!concurrence,
@4# and the same optimal decomposition of a state into p
ones can be used to calculate its entanglement of forma
and its concurrence. In this form the statement becom
wrong for general states of a bipartite system different fr
the 232 case. But for density operators of rank two simi
results seem not out of range.

However, concurrence seems to be an interesting qua
in its own. It can be defined in higher-dimensional Hilbe
spaces and with respect to any conjugationQ by an explicit
expression~Sec. II! which will be calledQ concurrence. It is
a convex function on the state space~Sec. III!, and it is a roof
~see Sec. V!. Optimal decompositions can be obtained~Sec.
IV ! in a constructive manner, adding some news even for
two-qubit case. Generally, the length of an optimal deco
positions will be the smallest power of two which excee
the dimension of the Hilbert space.

The idea, pointing to the definition ofQ concurrences,
can be extended to another interesting quantity, to the fi
ity, the square root of the transition probability@6#. Q fidelity
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as defined in Sec. II, turns out to be a concave roof. Optim
decompositions can be gained similarly.

The main proofs are in Secs. III and IV. Section V
devoted to the roof concept@7#, an interesting tool if com-
bined with convexity or concavity. The last section conta
some applications, mainly ofQ concurrences. There are con
jugations in multipartite systems such that a nonzeroQ con-
currence indicates inseparability. It is illustrated for bipart
~example 1! and for the three-qubit systems~example 3!. In a
23n bipartite system there is the possibility to bound e
tanglement of formation from below by the aid ofQ concur-
rences ~example 2!. After extending the method slightly
~theorem 5! to a larger class of antilinear operators, exam
4 treatsQ fidelity and concurrence on some two-dimension
subspaces of the two-qubit system. Though the result is
sentially known for the concurrence@3# it explains a part of
the method.

Now I shortly call attention to some notations and rule
connected with antilinearity, to prepare what follows belo
An antilinear operatorq acting on an Hilbert spaceH sat-
isfies by definition

q~a1c11a2c2!5a1* c11a2* c2 .

If c is an eigenvector ofq with eigenvaluel, ec is an
eigenvector with eigenvaluee22l for all unimodular num-
berse. The fact that the eigenvalues of an antilinear opera
fill some circles in the complex plain will be used in th
estimations of Sec. III. The product of two antilinear ope
tors becomes linear, the product of an of antilinear opera
and a linear one remains antilinear. The adjoint~or Hermit-
ian adjoint! q† of an antilinear operatorq is determined by
the relation

^c,q†w&5^w,qc&

for all c,wPH. Notice (q†)†5q. The standard rule
(AB)†5B†A† for linear operators remains valid if one o
both operators are replaced by antilinear ones. In particu
with a complex numbera and antilinearq one gets (aq)†

5q†a* 5aq†, i.e., taking the adjoint is a linear procedu
for antilinear operators. It follows that the set of operato
which are antilinearly Hermitian~antilinearly self-adjoint!,
q5q†, is a linear space of dimensiond(d11)/2 if dimH
5d. Indeed,q is antilinearly Hermitian iff^c,qw& is sym-
©2000 The American Physical Society07-1
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ARMIN UHLMANN PHYSICAL REVIEW A 62 032307
metric. With respect to a basis the condition restricts
off-diagonal entries only. Complex diagonal entries are
lowed.

One callsq antilinearly unitary or simply antiunitary if
q†5q21. Basic knowledge about antiunitary operators
due to Wigner@1#. A conjugationQ is an antiunitary satis-
fying Q251. Writing Q5Q215Q† shows the hermiticity
~self-adjointness! of conjugations. Well studied examples a
time reversal operators@8# for Bose particles and for quan
tum systems with total integer angular momentum .

A conjugationQ distinguishes inH a real subspaceHQ ,
consisting of allQ-invariant vectors, i.e., of all eigenvecto
of Q with eigenvalue 1. No real subspace inH is properly
larger thanHQ . Due to Hermiticity,Qc5c and Qw5w
result in

^c,w&5^w,c&

so that the scalar product becomes real if restricted toHQ .
In other words,HQ is not only a real subspace, it is areal
Hilbert subspace. On the other hand,Q can be gained as
complex conjugation ineverybasis contained inHQ . This
establishes a one-to-one correspondence between ma
real Hilbert subspaces and conjugations.

In a one-qubit space, i.e., dimH52, a conjugation in-
duces a reflection of the Bloch sphere at a certain pl
through its center. Selecting the 1-2 plane, the plane per
dicular to the three-axis, as invariant plane, the effect of
conjugation to the Hermitian operator

%5 1
2 ~x011x1s11x2s21x3s3!, ~1!

that is,%°%̃[Q%Q, reads

%̃5 1
2 ~x011x1s11x2s22x3s3!. ~2!

Given a conjugation and a state vectorc we shall con-
sider the absolute value of the transition amplitude betw
c andQc or, what is the same, the square root of the tr
sition probability between them. The quantity in questi
u^c,Qc&u is well defined for pure states. The problem a
dressed in the paper is to extend it to all states in a canon
way. In other words, we look for functions on the state sp
which are completely determined by their pure state beh
ior. This can be done by relying on the convex nature of
set of all density operators~states! which reflects the proces
of performing Gibbsian mixtures, i.e., of convex sums. Th
is one and only one largest convex function coinciding
pure states withu^c,Qc&u, and, following Wootters, I call it
Q concurrence. And there is exactly one smallest conc
function within all functions which are concave extensio
from the chosen values for pure states to all density op
tors. That function I callQ fidelity.

II. FIDELITY AND CONCURRENCE

Let % andv be two density operators in an Hilbert spa
H. Their transition probability is denoted byP(%,v), their
fidelity, the square root of the transition probability, is call
F(%,v). It holds
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AP~%,v!5F~%,v!5tr~Av%Av!1/2. ~3!

Let H a be an ancillary Hilbert space. For any two vecto
w,cPH^ H a, which reduce to% andv,

%5Trauw&^wu, v5Trauc&^cu,

the transition amplitude is bounded from above by the fid
ity u^w,c&u<F(%,v). Indeed,F(%,v) is the least number
which fulfills this condition. Equivalently, asF25P, a suit-
ably chosen von Neumann measurement in an ancillary
tem can cause a transition%°v with probabilityP(%,v). A
larger transition probability, however, is not possible@6#.
The joined concavity of the fidelity can be seen from

F~%,v!5 infX
1
2 @ tr~X% !1tr~X21v!#, ~4!

whereX runs through all positive and invertible operatorsX.
A proof for finite-dimensional Hilbert spaces is as follow
Abbreviate bya andb the traces overX% andX21v, respec-
tively. From Ref.@9# one knowsF2<ab. But 2Aab<a1b,
and the right hand side of Eq.~4! cannot be smaller than th
left one. If the density operators are invertible then there
unique positive solutionX of

X%X5v, X5%21/2~%1/2v%1/2!%21/2.

With this solution we geta5b and a5F, and Eq.~4! is
saturated. Now we use continuity to extend the proof to
pairs of density operators. See also Ref.@10#.

It is useful to extend Eqs.~3!,~4!, and similar ones to all
positive operators with finite trace. The simple scaling pro
erties ofP, F, and related quantities make this is an ea
task. Of course, the physical interpretation ofP as a prob-
ability is bound to normalized density operators.

Let Q be a conjugation in an Hilbert spaceH and abbre-
viate %̃ªQ%Q. It is evident from Eq.~4! that

FQ~% !ªF~%,%̃ ! ~5!

is concave in% @11#. Equation~5! will be calledQ fidelity of
%.

In order to introduce the~pre!concurrence@5,4# we need
the ordered singular numbersl1>l2>••• of A%Av, that is,

$l1>l2>•••%5spectrum of ~A%vA% !1/2. ~6!

Having in mind Wootters’ explicit expression for the e
tanglement of formation it is tempting to define for any tw
density operators~whether normalized or not! the function

C~%,v!ªmaxH 0,l12(
j .1

l j J ~7!

and to call it concurrence of% andv.
A useful relation can be obtained if the rank of%v does

not exceed two. AddingP5F2 to C2 the cross terms in the
two nonvanishing eigenvalues cancel. But the sum of
squared eigenvalues~6! is equal to the trace of%v. Hence
7-2
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FIDELITY AND CONCURRENCE OF CONJUGATED STATES PHYSICAL REVIEW A62 032307
C~%,v!21F~%,v!252 Tr~%v! if rank ~%v!<2.
~8!

Finally, given a conjugationQ, we call Q congruence of%
the concurrence between% and its conjugate%̃,

CQ~% !ªC~%,%̃ !, %̃5Q%Q. ~9!

In contrast to the higher-dimensional cases it is not h
to get explicit expressions if dimH52. With % given by Eq.
~1! and a conjugation acting as in Eq.~2! one obtains

FQ~% !5Ax0
22x3

2, CQ~% !5Ax1
21x2

2. ~10!

The next issue is to prove thatFQ is a concave andCQ is a
convex roof for every conjugationQ in every finite dimen-
sional Hilbert space. For the time being the finite dimensi
ality of the Hilbert space is essential due to some unex
ined mathematical problems in the case of infin
dimensions. Thus, in all what follows, dimH5d,`.

III. PROPERTIES OF Q FIDELITY
AND Q CONCURRENCE

In this section we derive some implications from and b
gin the proof of Theorem 1.

Theorem 1: Let Q be a conjugation. Then

CQ~% !5min( u^fkuQufk&u,

FQ~% !5max( u^fkuQufk&u, ~11!

where the min and max has to run through all ensemb
$f1 ,f2 , . . . % such that

%5( ufk&^fku ~12!

is valid.
The proof of the theorem will terminate in the next se

tion. Up to that point we consider~11! as a definition of its
left-hand-sides, and we shall draw conclusions without us
Eqs.~5! and ~9! of the preceding section.

Consider first the case%5uc&^cu. Clearly, every decom-
position~12! is gained byfk5akc with numbersak satisfy-
ing (uaku251. Hence

CQ~ uc&^cu!5FQ~ uc&^cu!5u^cuQuc&u. ~13!

A simple consequence of Eq.~11! is homogeneity. For posi
tive reals

CQ~m% !5mCQ~% !, FQ~m% !5mFQ~% !, ;m>0.
~14!

Being in finite dimension the minimum~maximum! in Eq.
~11! will be attained by certain decompositions~12!. They
are called optimal decompositions.
03230
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Choosing optimal decompositions forCQ(%) andCQ(v),
their union is a decomposition forCQ(%1v), though not
necessarily an optimal one. HenceCQ(%)1CQ(v) is an up-
per bound forCQ(%1v). Similar reasoning can be done fo
the Q fidelity. Thus

CQ~%1v!<CQ~% !1CQ~v!,

FQ~%1v!>FQ~% !1FQ~v! ~15!

showing subadditivity ofQ concurrence and superadditivit
of Q fidelity. Because of its homogeneity~14! we conclude
that CQ is convex andFQ is concave.

Now we can go a step further, again without using arg
ments from the preceding section. LetV be the state space
i.e., the convex set of normalized density operators. If% is in
this set, a decomposition~12! can be rewritten as a conve
combination

%5( pkpk , pk5
ufk&^fku
^fkufk&

. ~16!

Assuming that our decomposition~16! is optimal for, say,
the Q concurrence, we can write

CQ~% !5( pkCQ~pk!.

We conclude the following@7#. Let C8 be another convex
function onV coinciding withC at the pure states. Then w
have

C8~% !<( pkC8~pk!5( pkCQ~pk!.

But for a an optimal decomposition which of theQ concur-
rence the right hand sides coincides withCQ(%). A similar
proof is for FQ . It results in Theorem 2.

Theorem 2: CQ is the largest convex function andFQ is
the smallest concave function on the state space coinci
with u^cuQuc&u at the pure states.

To show that the right hand sides of Eq.~11! coincide
with the definitions used in Sec. II, optimal decompositio
will be gained in the next section.

IV. OPTIMAL DECOMPOSITIONS

In building optimal decompositions for ourQ fidelity and
Q concurrence the properties of antilinear operators pla
decisive role. Fix a density operator% and define an antilin-
ear operatorq by

q[q%ªA%QA%. ~17!

BecauseQ†5Q,q is antilinearly Hermitian. Hence

^w,qc&5^c,qw&.

Substitutingw5qc proves all the expectation values ofq2

real and not negative. Thus,q2 is a linear positive operato
and the same is withAq2. Let us abbreviate%̃5Q%Q, so
that q2 can be writtenA%%̃A%. Remark, just to see what i
going on, how the eigenvalues of the positive square roo
q2 have been used in Sec. II to expressFQ andCQ .
7-3
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ARMIN UHLMANN PHYSICAL REVIEW A 62 032307
Our next aim is to prove the existence of a conjugati
Q0, depending on%, with which we can polar decompose

q5Q0Aq25Aq2Q0 , q25A%%̃A%. ~18!

Let l2,l.0 be an eigenvalue ofq2 and H l the Hilbert
subspace of the corresponding eigenvectors. Withc alsoqc
belongs toH l. Define onH l the actionQ0cªl21qc. On
H l the operatorQ0 is a conjugation which commutes wit
q. If one eigenvalue ofq2 is zero,Q0 should induce onH 0

an arbitrarily chosen conjugation. NowH is decomposed a
a direct orthogonal sum of Hilbert spaces of the formH l

andQ0 is given as an operator on every one of them. But t
definesQ0 uniquely as a conjugation onH, and Eq.~18! is
proved. Choosing in everyH l a Q0-invariant basis, we get a
common eigenbasis$c1 ,c2 , . . . %, such that

qck5Aq2ck5lkck , Q0ck5ck ~19!

with ordered eigenvaluesl1 ,>l2 ,>•••.
The vectors constituting an optimal decomposition will

obtained by the help of real Hadamard matrices. They ca
inductively gained by

A25S 1 1

1 21D , A2mªS Am Am

Am 2Am
D ~20!

for m52,4,8, . . . . Let usdenote byaki the matrix elements
of Am . These entries are either 1 or21. They fulfill

(
k51

m

akiak j5md i j , a1 j51; j . ~21!

The numberm is adjusted to the dimensiond of H by

m52n11, 2n,dimH<2n11. ~22!

With an arbitrary selection ofd unimodular numbers~phase
factors!, e1 ,e2 , . . . , wedefine with a basis~19! the vectors

wk5(
i 51

d

akie ic i , k51,2, . . . ,m. ~23!

By the help of Eqs.~23! and ~21! it is straightforward to
prove the following, essentially known identities

(
k51

m

uwk&^wku5m(
i 51

d

uc i&^c i u5m1^wkuquwk&5(
j 51

d

e j
22l j .

~24!

The remarkable deviation from most uses of Hadamard
trices is in the appearance of the phase factors produce
the antilinearity ofq. They provide sufficient flexibility in
adjusting the expectation values ofq. By varying thee j in
the second equation arbitrarily, the absolute values of
numberŝ wkuquwk& fill completely the following interval of
real numbers:
03230
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j 52

d

l j J . ~25!

Proof: ~a! The sum of thel j is an upper bound~triangle
inequality! and it is reached withe j

2251 for all j. The sim-
plest choice ise j51 for all j. ~b! If the l1 is not smaller than
the sum of the remaining lambdas, a lower bound
ue1

22l12xu where x is the maximum absolute value o
e2

22l21e3
22l31•••. Hence we get the asserted low

bound. The bound is attained fore2251 ande j
215 i for j

.1. ~c! It remains to prove that if the assumption of~b! is
not valid, the lower bound 0 should be reachable. In this c

(
j 52

d

l j.l1.l22(
j 53

d

l j .

The first inequality is the assumption, the second follo
because otherwisel1,l2 in contradiction to the assume
ordering of thelk . We like to conclude the existence of
representation

l15U(
j 52

d

e j
22l jU

as then the lower bound zero can be reached: We hav
prove the same assertion as above, but now the length o
sum isd21. Hence the proof is done if Eq.~25! is true for
sums of length less thand. Starting with d52, the proof
terminates by induction to the length of the sum to be e
mated.

Given l1 ,l2 , . . . , we choose unimodular number
e1 ,e2 , . . . , saturating, respectively, the upper bound or t
lower bound of Eq.~25!. With this choice the vectors~23!
are denoted bywk

1 ~to refer to the upper bound! and bywk
2

~to indicate the use of the lower bound!, respectively. From
the construction it follows that the insertion of

fk
25A%wk

2 , fk
15A%wk

1 , k51, . . . ,m ~26!

into Eq. ~12! estimates Eq.~11! as follows:

CQ<maxH 0,l12(
j 52

d

l j J , FQ>( l j .

These inequalities must be equalities. For the proof we
an arbitrary decomposition15(uxk&^xku of the unity, insert
fk5A%xk into Eq. ~11!, and convert the sum to be est
mated with the help of Eq.~19! into

a[( u^fk ,Qfk&U5(
k

(
j 51

d Ul j~^xk ,c j !
2u.

At first we estimate concurrence by choosing the phase
c j such that̂ x1 ,ck& becomes real and positive. We get

a5ul12bu, b[(
j 52

d

l j(
k

~^fk ,c j !
2u
7-4
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FIDELITY AND CONCURRENCE OF CONJUGATED STATES PHYSICAL REVIEW A62 032307
for the sum in question. Ifubu is larger thanl1 we already
obtaineda50 with fk5f2. In the other caseubu cannot
exceedl21l31•••, i.e., a2ubu<CQ .

Concerning theQ fidelity the Schwarz inequality will be
applied to the positive Hermitian form̂f,Aq2f8&. Respect-
ing Eqs.~18! and ~19! one gets

u^fk ,Aq2Q0fk&u<^fk ,Aqfk&.

Thereforea cannot be larger than the trace ofAq. The latter
is equal toFQ and we arrive ata<FQ . h

We have not only proved theorem 1 but alsoCorollary 3:
Let dimH5d and 2n,d<2n11. For every% there exist
optimal decompositions for theQ concurrence the length o
which does not exceed 2n11. The same is true for theQ
fidelity.

Remarks. ~a! Can the bounds for the optimal length b
come more stringent for certain dimensions of dimH. The
construction above seems to deny it. But a proof is miss
~b! If d545232, thenn52 and there are optimal decom
positions of maximal length four as shown by Wootters. S
also @12# for the optimal length problem.

V. ROOFS

We now call attention to some peculiarities of convex
concave function on the state space which admit opti
decompositions. These functions are quite different fr
unitarily invariant ones such as, for instance, von Neum
entropy. The latter do not at all discriminate between p
states, they just estimate how strongly a state is mix
Roofs, as defined below, and in particular convex or conc
ones, draw all their information from their values at pu
states. They try to interpolate between those values as
early as possible. Let us see how it is achieved by two sim
examples.

In two dimensionsQ fidelity and Q concurrence are
given byA12x3

2 andAx1
21x2

2 on the unit ballx1
21x2

21x3
2

<1, see Eq.~10!. The first one remains constant on th
planesx35const, the second one does so along the linesx1
5c1 , x25c2. The intersections of a plane or of a straig
line with the unit ball are not only convex: The intersectio
can be gained as the convex hulls of the pure states
contain.

In turning to the general case we denote byV the convex
set of all normalized density operators on a fini
dimensional Hilbert space and byVpurethe set of its extrema
points, i.e., the set of pure density operators. A convex su
V0 of V will be called a convex leaf ofV if

V05convex hull of ~V0ùVpure!. ~27!

Let G5G(%) be a function onV andV0 a convex leaf of
V. G is called convexly linear~or, equivalently, affine or
flat! on V0 if for all probability vectorsp1 ,p2 , . . . and for
all choices of pure states

p1 ,p2 , . . . PV0ùVpure. ~28!

G satisfies the relation
03230
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It is not necessary to check condition~29! for all possible
convex linear combinations in caseG is either convex or
concave:

Lemma R-1: Let G be convex or concave. If

%5( qjp j , qk.0 ~30!

is a decomposition of% into pure density operator
p1 ,p2 , . . . , and if

G~% !5( qjG~p j ! ~31!

is valid then G is convexly linear on the convex hull o
p1 ,p2 , . . . .

Proof: AssumeG is convex. Given%, there is convexly
linear function l satisfying G> l on V, and G(%)5 l (%).
Together with Eq.~31! we get

l ~% !5G~% !5( qjG~p j !>( qj l ~p j !.

Because the right hand term isl (%), the> symbol must be
an equality sign. ButG> l now enforcesl (p j )5G(p j ) for
the pure states involved in Eq.~31!. By the help of this
equalities we estimateG(v), v5p1p11•••, by

l ~v!<G~v!<( pkG~pk!5 l ~v!

and the inequality must be an equality.~The first inequality
sign is due tol<G, the second due to the convexity ofG.!
This proves the lemma for convexG. Because2G is convex
if G is concave, the lemma remains true for concave fu
tions. Another proof is in Ref.@13#.

By definition,G is a roof if V can be covered by conve
leaves such thatG is convexly linear on every leaf of the
covering. The covering is said to be a convex covering
longing to or compatible withG.

There is a simple geometric picture beyond. Assum
real numberg5g(p) is given for every pure statep. The
idea is to think of a wall, made of straight lines starting fro
p and terminating atg(p)p. The demand is, to cover th
state spaceV by a roof, founded upon the wall, which is a
flat as possible. To satisfy the demand one joins every
points on the wall by a straight line, every three points by
triangle, and so on. If the dimension of the polyhedra b
comes large enough, (dimH)2 in our case, the set of polyhe
dra coversV ~an application of Caratheodory’s theorem! and
we stop. To get a roof we have to select a onefold cover
of V from our huge set of polyhedra: There should be
functionv→G(v) such thatx5G(v) wheneverxv is con-
tained in one of the polyhedra of the selected covering. I
occurs, G(v)v is a convex combination of theg(p j )p j
which generate the polyhedron. Taking the trace yield
representation
7-5
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ARMIN UHLMANN PHYSICAL REVIEW A 62 032307
G~v!5(
j 51

m

pjg~p j !, m<~dimH!2.

From the bewildering manifold of roofs we select the high
~or the lowest! one: Givenv we look for a polyhedron con
taining xv with the largest~or with the smallest! possible
real numberx. Let us call this numberG1(v), respectively,
G2(v). There is such a polyedron ifg is continuous, be-
cause then the set of all polyhedra based on a bounded n
ber of edges is compact.

Some generalities can be abstracted from the construc
above, see Refs.@14,7#. They are summarized in the follow
ing lemma.

Lemma R-2: Let g5g(p) be a real and continuous func
tion on the set of pure states.

~a! There is exactly one convex roofG2 and exactly one
concave roofG1 on V which coincides onVpure with g.

~b! G1 is the smallest concave function andG2 is the
largest convex function which coincides at the pure sta
with g.

~c! It is

G1~% !5max( pjg~p j !,

G2~% !5min( pjg~p j !,

where the variations have to run through all convex deco
positions of% with pure states.

Starting the discussion above fromg(p)5u^c,Qc&u,
wherep5uc&^cu and Q is a conjugation, we arrive atG1

5FQ andG25CQ . Within the pure states belonging to on
of the optimal decompositions of the preceding section
valuesg(p) remain constant. HenceG1 and G2 are con-
stant on the convex leaf they generate the following.

Corollary 4: The Q concurrence~respectively theQ fi-
delity! allows for a convex foliation such thatCQ ~respec-
tively, FQ) is constant over every of its leaves.

As an immediate consequence,%→ f „CQ(%)… and %
→ f „FQ(%)… are roofs overV for every functionf (x) de-
fined on the unit interval. In general the roofs so obtain
cease to be convex or concave. But there are some r
guaranteeing convexity~concavity! in some cases. To pre
serve convexity it suffices thatf is convex and increasing
Concavity is guaranteed withf concave and decreasing@15#.

Examples areCQ
s with real 1,s is a convex roof,FQ

s

with 0,s,1 is a concave roof. An important convex an
increasing function, used by Hill and Wootters in Refs.@3#
and @4# to get an expression for the entanglement of form
tion @5# reads

f HW~x!5:sS 11A12x2

2 D 1sS 12A12x2

2 D , ~32!

wheres(y) abbreviates2y ln y. Thus

%° f HW„CQ~% !… ~33!
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is a convex roof for every conjugation in every Hilbert spac
However,only if the Hilbert space is four dimensional, an
Q the Hill-Wootters conjugation, Eq.~33! is equal to the
entanglement of formation. In bipartite 232n systems~33!
can only be a lower bound to the entanglement of format
for appropriately chosenQ ~see the next section!.

The following statements copy facts known in two-qub
systems to a more general frame. The maximum ofFQ is
one, andFQ51 is the equation of a convex leaf forFQ by
lemma R-2. IfFQ(%)51 thenQ%Q5% by ~5!, and% has a
basis ofQ-invariant eigenvectors. The minimum ofCQ is
zero. The set of all states with vanishingQ concurrence is a
convex leaf with respect toCQ . If % is Q invariant,Q%Q
5%, thenCQ(%)50 if and only if no eigenvalue of% ex-
ceeds 1/2.

The entanglement of formation vanishes, as known fr
Ref. @5#, exactly for separable, i.e., classically correlat
states@16,17#. Separability in a two-qubit-system can equa
well be characterized by the vanishing ofCQ , Q the Hill-
Wootters conjugation. Again, just for two-qubits,FQ51 is
the equation for the convex hull of the maximally entangl
pure states.

VI. EXAMPLES

This section considers some possible applications of
general theorems. By looking at examples we ask whetheQ
concurrences can be used to decide separability problem
bipartite and multipartite systems. In a two-qubit system
density operator is separable if and only if its concurren
vanishes. Could one suppose similar statements in a hi
dimensional or in a multiqubit system? Certainly not wi
just one functional. But with sufficiently many it can work
Before treating the examples we have to return to a furt
issue in antilinearity.

All conjugations of an Hilbert space are unitarily equiv
lent. From Eq.~6! and the definitions of fidelity and concur
rence one gets

FQ8~% !5FQ~U%U†!, CQ8~% !5CQ~U%U†!

with Q85U†QU and every unitary operatorU. However, in
a bipartite or multipartite system,

H5H a
^ H b

^ ^ H c
•••, ~34!

one considers two conjugations equivalent iff there is alocal
unitary U such thatQ85U†QU. Some of these equivalenc
classes consist of tensor products of antiunitary operator

Q5ua^ ub^ •••. ~35!

To obtain a conjugation, the square of each factor must b
multiple of the appropriate identity, for example,ua

25ca1a.
According to Wigner there are only two possibilitiesca5
61. Therefore, a factor in Eq.~35! is either a conjugation or
it is an antiunitary satisfyingu2521. The number of the
latter cases must be even to obtain a conjugation by Eq.~35!.

For the purpose of the present paper an antiunitaryu sat-
isfying u2521 is called a skew conjugation. While ske
7-6
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conjugations are mostly discussed in connection with ti
reversal of fermions, we need them as building blocks
conjugations in multipartite quantum systems.

A skew conjugation fulfillsu2152u† and

^f,uf8&1^f8,uf&50. ~36!

All expectation values of a skew conjugation vanish. Th
is a consequence for vectorscPH which are separable with
respect to the first factor in Eq.~34!, sayc5fa

^ w. If the
first antiunitary,ua , is a skew conjugation, the expectatio
value^c,Qc& must vanish. In other words: LetQ be a con-
jugation ~35! and assume its first factor is a skew conjug
tion. If ^c,Qc& is not zero,uc&^cu cannot beH a separable.

A skew conjugation,u, allows for a representation@1#

uc2 j5c2 j 21 , uc2 j 2152c2 j , ~37!

1< j <n, with a certain basis,c1 ,c2 , . . . , called au basis.
By Eq. ~37! the Hilbert space decomposes into a direct s
of two-dimensional, u invariant Hilbert subspaces. O
course, any basis ofH can serve as au basis for a certain
skew conjugationu.

In one-qubit spaces there is, up to a phase, just one s
conjugation u that may be defined byu0&→ i u1&, u1&→
2 i u0&. ~The imaginary unit in the definition is by conven
tion.! On the state space it induces the well known spin fl
With that definitionu ^ u is the Hill-Wootters conjugation o
a two-qubit space.

Example 1: Consider in Eq.~34! a direct productH
5H a

^ H b of two even-dimensional Hilbert spaces. We d
tinguish a special classF of conjugations:QPF if the con-
jugation can be written as the productQ5ua

^ ub of two
skew conjugations. Notice that, up to a phase,F consists of
one conjugation in the two-qubit case, the Hill-Wootters o

We have already seen from Eq.~36! that for this class
^cuQuc&50 if c is a product vector. ThusCQ(p)50 for
every pure product state and for everyQPF. But, as seen a
the end of the preceding section, the equationCQ(%)50
defines a convex leaf, i.e.,CQ vanishes for all separabl
density operators. One may rephrase the statement by sa
if % is a state in a bipartite system and if we can findQ
PF such thatCQ.0, then% cannot be separable. We no
complement the last statement: Letp be pure. If CQ(p)
50 is true for allQPF thenp is a product state, i.e., sepa
rable.

For the proof we consider an arbitrary unit vectorcPH
and assume dimH a52n<dimH b. We use the Schmidt de
composition

c5( a jf j
a

^ f j
b , a1>a2>••• ~38!

to define a skew conjugations in the two parts of our bipar
system.ua is defined by requiringf1

a ,f2
a , . . . , to be aua

basis. InH b we complete, if necessary, thef j
b vectors to a

basis which then is used as a the definingub basis. After
these preparations we considerQ5ua^ ub , a conjugation
tailored for the vector~38!. A straightforward calculation
yields
03230
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n

a2 ja2 j 21 . ~39!

The sum on the right-hand-side can vanish only if all t
Schmidt coefficientsa j vanish with the exception of the
largest one. Hencec must be a product state.

Can we skip in the last statement the purity requireme
It seems unlikely with the exception of the two-qubit cas
Thus we are faced with the problem to characterize the se
states with vanishingQ concurrences for all conjugation
from F. Let us call the set of all these statesVc. As an
intersection of convex leaves it is convex, but not necessa
a leaf. It contains all separable states. Moreover, a pure s
is in Vc if and only if it is separable. But not all extrema
points ofVc might be pure and, then, it will contain densi
operators which are not separable.

Example 2. We proceed with the setting of example 1 a
requireH a to be two-dimensional. The requirement allow
to bound the entanglement of formation from below for a
even dimensional second factorH b in the bipartite system.
To do so we use Eq.~39! to establish

2Adetr5supQu^c,Qc&u, QPF. ~40!

Herer denotes the partial trace ofuc&^c&u over the second
factor H b. It then follows a lower bound for the entangle
ment of formationE(%).

E~% !>supQ f HW„CQ~% !…5 f HW„supQCQ~% !…, ~41!

wheref HW is explained by Eq.~32!. The equality sign is due
to the monotonicity off HW . The right-hand side of Eq.~41!
is convex as a sup of convex functions of type~33!. For pure
states it coincides by Eq.~40! with the entanglement of for-
mation. But the entanglement of formation is a convex ro
by its definition, see Ref.@5# and point~c! of lemma R-2.
Hence the left-hand side is the largest possible convex fu
tion with the described values for pure states.

Example 3. Now we try a similar procedure as in examp
1 for a three-qubit-system. As already mentioned there
after fixing a phase, only one skew conjugation, sayu, in a
two-dimensional Hilbert space. Every conjugation in dime
sion two is of the formUu with unitary U.

H in Eq. ~34! is now the direct product of three
2-dimensional Hilbert spaces. Consider the conjugations

Uu ^ u ^ u, u ^ Uu ^ u, u ^ u ^ Uu. ~42!

Let cPH andQ from this set. Then̂cuQuc& is zero ifc is
a product vector. A separable% allows for a convex decom
position with product states by definition. ForCQ50 deter-
mines a convex leave,CQ(%) has to vanish.

Turn now to the reverse and let bep a pure states with
CQ(p)50 for some conjugations listed in Eq.~42!. The
manifold of pure product states is eight-dimensional. W
shall prove that eight equationsCQ50 with conjugations
from Eq.~42! are sufficient to decide whetherc is a product
vector or not.
7-7
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This goes as follows. Writec as a sum u0&uw0&
1u1&uw1& and start by the first set of conjugations listed
Eq. ~42!. We have to solve the equations

05^cuc&5( ^ i uUuu j &^w i uw̃ j&.

The tilde abbreviates the Hill-Wootters conjugationu ^ u.
With unitaries of the formUu j &5e j u j & we see thatwk is
orthogonal tow̃k . Hencewk is a product vector. To come t
this conclusion, we need two diagonal unitaries. Next, w
U equal to eithers1 or s2, we see thatw0 is orthogonal to
w̃1. Because both are product vectors, either the first or
second one of their constituents has to be orthogonal on
another. Hence, after checkingCQ50 with 4 conjugations
from our list, we arrive, up to a local unitary, at one of tw
possibilities:

u0&uf&u0&1u1&uf8&u1&, u0&u0&uf&1u1&u1&uf8&.

Choosing now a conjugation from the second group of
~42! yields ^fuUuuf8&50. We need just two of them to se
that eitherf50 or f850 has to take place, providedf is
located at the second position in the direct product. To co
also the case withf in the third position, we need two con
jugations from the third group.

Let p be a pure state of a three-qubit system. There
eight conjugations of the form~42! such thatp is a product
state if and only ifCu(p)50 is valid for all of them. It is
tempting to ask whether one can prove similar statements
any multiqubit system. I believe the answer is affirmativ
but I did not check it.

Last but not least we are going to cure a curious sh
coming of the treatment in example 1: It cannot be applie
one of the factors of the bipartite system is odd dimensio
The setF becomes empty. The same unsatisfactory ev
arises if no or only one factor of a multipartite system is ev
dimensional. Let us think, for example, the factorH a is
three-dimensional. To get an appropriate antilinear oper
ua we splitH a into a direct sum of a two-dimensional and
one-dimensional Hilbert space. In the former we equalua to
a skew conjugation. In the latter we setua to zero. We do not
get an antiunitary operator, but an antilinear operator sa
fying ua

†52ua . This relation suffices to guarantee Eq.~36!.
It seems natural, therefore, to allow in Eq.~35! the larger
class of antilinearu fulfilling u†56u as factors, and to re
quire for the tensor productQ†5Q only.

Returning to the bipartite system of example 1 we co
consider the larger class of antilinear operators

Q5ua^ ub , ua
†52ua , ub

†52ub

so that Q is antilinearly Hermitian and, nevertheles
^c,Qc&50 for product vectorsc. We arrive at the follow-
ing general question: DoQ fidelity ~5! and Q concurrence
~9! remain concave respectively convex roofs for any a
linear self-adjointQ. Going through all the proofs one find
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it essential that the antilinear operatorqªA%QA% is anti-
linearly Hermitian. For that reason one proves by literally t
same arguments.

Theorem 5. Let Q be antilinear and self-adjoint,Q5Q†.
Then

FQªF~%,Q%Q!, CQªC~%,Q%Q!

is a concave respectively a convex roof. Theorem 1 and C
ollaries 3 and 4 remain valid for them.

Example 4. The final aim of the exercise is to determin
fidelity and concurrence of certain conjugated states of r
two in in a two-qubit space. The reader should consider
example as representative for a lot of others which n
more calculation effort.

Let H2 be a two-dimensional Hilbert space. The transiti
probability can be given by elementary algebraic operati
@18#. For the present purpose an adequate expression re

P~%,v![F~%,v!25Tr %v12Adet% detv. ~43!

By the aid of Eq.~8! the equation can be converted to

C~%,v!25Tr %v22Adet% detv. ~44!

Let Q be an antilinear Hermitian operator acting onH2. To
get FQ(%) or CQ(%) we have to know the trace of%Q%Q
and the determinants of% andQ%Q.

After these preliminaries we think ofH2 as of a subspace
of a two-qubit Hilbert spaceH. We cannot use the Hill-
Wootters conjugationQHW in Eqs.~43! or ~44! directly be-
cause, generally,H2 will not allow QHW as a symmetry.
Therefore we setQªQQHWQ with Q the projection opera-
tor projectingH ontoH2 . Q, so defined, will be antilinearly
Hermitian and it mapsH2 into H2. By the little trick we see,
abbreviating%̃5QHW%QHW ,

F~%,%̃ !5FQ~% !, C~%,%̃ !5CQ~% !

whenever% is supported byH2.
We assumeH2 is generated by two separable unit vecto

c i5f i
a

^ f i
bPH5H a

^ H b. ~45!

We choose their phases such that

^f0
a ,f1

a&5a, ^f0
b ,f1

b&5b, ~46!

wherea, b are positive real numbers between 0 and 1. W
get, by appropriately adjusting the free phase in the H
Wootters conjugation

^c1 ,QHWc0&5^c0 ,QHWc1&5A~12a2!~12b2!.
~47!

We can replaceQHW by Q5QQHWQ in Eq. ~47! without
changing its validity. This reminds us also that^c i ,Qc i&
50 becausec i is a product vector.

We introduce a suitable basis by
7-8
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w15
c01c1

A2~11ab!
, w25

c02c1

A2~12ab!
. ~48!

By a short calculation one concludes from Eq.~47!

Qw65a6w6, a65
A~12a2!~12b2!

16ab
. ~49!

Possessing a distinguished basis~48! in H2 we represent any
density operator% supported byH2 as usual by the help o
Pauli operators, see Eq.~1!. The Pauli operators to the bas
~49! are by convention

s35uw1&^w1u2uw2&^w2u,s15uw1&^w2u1uw2&^w1u

ands25 is1s3. Transforming% according to%→Q%Q can
be accomplished by transforming the identity ofH2 and the
just introduced Pauli operators. Using Eq.~49!,

Q25QQQ5
a1

2 1a2
2

2
11

a1
2 2a2

2

2
s3 ,

Qs3Q5
a1

2 2a2
2

2
11

a1
2 1a2

2

2
s3 ,

Qs1Q5a1a2s1 , Qs2Q52a1a2s2 .

One gets for the determinant

detQ%Q5~a1a2!2 det%.

and for the trace of%Q%Q

a1
2 1a2

2

4
~x0

21x3
2!1

a1
2 2a2

2

2
x0x31

a1a2

2
~x1

22x2
2!.

These expressions shall be inserted into Eqs.~43! and ~44!:
-

rs

,

um
an

03230
FQ~% !25 1
4 @~a11a2!x01~a12a2!x3#22a1a2x2

2 ,

CQ~% !25 1
4 @~a12a2!x01~a11a2!x3#21a1a2x1

2 .

One should have in mindx051 for normalized density op-
erators. Then the last equation represents just Wootters
currenceC(%) for density operators supported byH2. Re-
turning to the amplitudes~46!, a and b, results in a more
convenient form

FQ~% !5AA~x02abx3!22~12a2b2!x2
2, ~50!

CQ~% !5AA~x32abx0!21~12a2b2!x1
2, ~51!

AªA~12a2!~12b2!

12a2b2 . ~52!

One easily determines to convex leaves for these roofs:
FQ we fix x051, x2, andx3 and letx1 vary. We obtain a
straight line inx-space which intersects the Bloch sphere
H2 exactly twice, corresponding to the twox3-values with
which x1 ,x2 ,x3 becomes a unit vector. Along the line theQ
fidelity remains constant. The same procedure, howe
with fixing x0 ,x1 ,x3 and varyingx2, produces the convex
foliation for theQ concurrence which, in our example, is th
Hill, Wootters one.
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