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1 Introduction

The Einstein-Podolski-Rosen effect! describes the change in one part of a
bipartite quantum system by a measurement in the other part?. It is gov-
erned by the von Neumann, Liiders measurement axioms® applied to bipar-
tite quantum systems. Ekert®, Bennett and Wiesner” belong to the first, who
considered the effect as a useful device for communication if complemented by
a classical channel. See Peres® for an introduction to that and other topics.

Let ‘H% denote the direct product of two Hilbert spaces, H® and H®.
Assume the composed system is in a state with density operator o. Then
the states of the subsystems are necessarily given by the reduced density
operators, ¢* and g®. A von Neumann measurement within the a-system,
will change o® to, say, w®. But it affects also p, and, generically, g®.

Let m* denote a rank one projection of H®. If Alice is asking whether her
system is in state 7, and if the answer to that question is YES, then the state
induced in Bob’s system can be described by ®**(n?), where % = % s a
map from the a-system to the b—system which transports (density) operators
and which depends on g, i. e. on the state of the bipartite system, only!®.
In choosing suitable density operators of the bipartite system, one gets an
interesting and well behaved class of maps which can be realized randomly by
measurements of Alice.

Besides the maps ®** mentioned above, there are further mappings and
operators uniquely associated to an EPR-setting, i. e. to a bipartite system
with a given state. It may be worthwhile to study them in a systematic
manner, and I shall go some steps in that direction in the present paper.

The maps ®** can be composed of simpler ones, denoted by sb® and
s?, and called elementary EPR maps. These building blocks are mappings
between the Hilbert spaces of Alice and Bob and they will be described next.

2 Elementary EPR-maps

A well known mathematical theorem asserts a canonical isomorphism between
H4® and the Hilbert space of linear Hilbert-Schmidt maps from the dual of
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‘He into H®. In Dirac’s notation, the dual of H® is the space of bras if H® is

-considered as a space of kets. The map (@¢| — |¢) is an antilinear isomorphism.

Composing the latter with the (Hilbert-Schmidt) maps from the brase of Alice
to the kets of Bob, one obtains antilinear Hilbert-Schmidt mappings from H®
into H®. Let® ¢ € H. I denote by s?/,“ the antilinear map

st + He — H® (1)

which is canonically determined by 1. That map can be realized randomly
by measurements of Alice. Indeed, let ¢¢ € H®. A possible definition reads

(1) (2°| @ 1°)|w) = |6°) @ 5y7]9%), 2)
valid for all vectors from H®. Similarly, the map
s%b . HP- He (3)

can be defined by requiring for all ¢* € H®
(1°® [¢°) (")) = s'1¢°) ® |6°) (4)

Evidently, the maps (1) and (3) are uniquely defined by (2) and (4) respec-
tively. To get an explicit expression, let us present ¢ in any of the many
possible product representations:

Y= alé}) ®4}) (5)
Then
s51¢%) =Y alob)(6°169), sPI6®) = ailei)(8®lsk)  (6)

Just by inserting the expressions above into (2) and (4), one can convince him-
self that these relations become satisfied. Using in (5) the Schmidt decomposi-
tion results in a particular nice form of (6). With it it becomes straightforward
to justify, for any two vectors v and ¢ from H® the isometry property

(pl) = trasibsl;“ = trbsf’l,“s;b (7
Remark now that the mappings (6) are antilinear ones. The Hermitian ad-
joint, 9*, of an antilinear map, 9, from one Hilbert space into another one (or
from an Hilbert space into itself) is defined by the relation (z|9*|y) = (y|9|z).
Furthermore, while the Hermitian adjoint is an antilinear action on linear op-

erators and maps, it acts linearly on antilinear maps and operators. Applying
this well known facts to the elementary channel maps results in

(S?pa)* — sib’ (Sib)* — Sf/;a (8)

“Remark that ¢ and |¢) are two equivalent notations for the same thing.
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In particular we may regard the traces in (7) as scalar products for the linear
spaces of the s®® and of the s?. With them the mappings ¥ « sf’p" and
Y o s&b become isometrical morphisms between Hilbert spaces. And this
only restates the assertion of the mathematical theorem, I started with, in a
more handy form.

Given an antilinear (Hilbert-Schmidt) map s from Alice’ Hilbert space to
that of Bob, one can find 9 in the bipartite Hilbert space satisfying s** = Sfp“.
After a look at (2) the following inclusion becomes evident:

Do IRNSE =10 = [¥) =) I¢}) ® sitleh) (9)

It is perhaps useful to add some remarks on antilinearity.

(1) An antilinear operation is never local: One cannot consistently tensor a
linear map, for instance the identity operation, with an antilinear one.

(2) In particular one cannot apply a time reversal operation in one system
and do nothing in those systems which can be entangled with the former one.
Time reversal, CPT, and similar operations are global ones.

(3) However, one can tensor the elementary channel maps (3) and (1) with
every antiunitary (indeed, any antilinear) operator.

(4) I do not know of any physical process which realize, possibly randomly, a
genuine antilinear operator mapping an Hilbert space into itself.

(5) EPR-channels provide physical realizations of antilinear actions, though
randomly, from one Hilbert space to a second one, (see also Fivel'!, appendix),
iff both physical systems are independent one from another. (That means, the
observables of the first system commute with the observables of the second.)
(6) A technicality: The trace of an antilinear operator is ill defined.

3 Some properties of the s—maps

The following is a straightforward application of standard tools.
The projection operator onto the carrier space of p* is called Q*. Similarly,
Q" denotes the projection onto the carrier space of g®. If

Y=Y /pil¢3) @} pr#0 (10)
is the Schmidt decomposition of ¢ and ¢ = |¢)(3| then
Q" ="160)(8°, Q° =D |54l (11)

Most easily by taking the Schmidt decomposition in (5), to express the s-maps
by (6), one concludes

Szb o S?/)a — ga, ssba ° S;b — Qb (12)
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Therefore, the polar decomposition of the s—-maps can be written
sy = Vetoiy =iy o Vb, sP=Veboil =ifover  (13)
and by the requirements
jzb oj?/}a — Qa’ j:)/;a Oj:}}b — Qb, (j:,lbb * =j?/)a (14)
the polar decomposition becomes unique. The j—-maps are partial antiunitaries

(or antilinear partial isometries).
Combining (12) with the polar decomposition yields

frogoid =g Podoil =0 (15)
The next issue is to report on transformations of the s—-maps. Assume
o) = (X* ® X°) |¢) (16)
with an arbitrary pair of operators acting on H® and H® respectively. A look
at (6) easily provides
si“:Xbos:’p“o(X“)*, s$b=X“os:‘pbo(Xb)* (17)

Though the calculation establishing (17) is slightly different for antilinear
operators, the result is formally the same:
If X* and X? in (16) both are antilinear, the relations (17) remain true.

4 EPR channel maps

Now we have the means to construct EPR channel maps, ®** and ®% which
act not on vectors but on density operators (states). The assertion is the
existence of the channel map ® such that for all rank one projection operators
w* of H®

(1* ®1%) 0 go (m* ® 1°) = n® @ %% (n?) (18)
To prove this one can start with a pure p to find by (2) and (8)
<I>2“(7r“) = sf’p“ om®o s&b, o= Y)Y (19)

with ¢ € H%. Next we assume a general ¢ which may be represented by an
arbitrary decomposition

o= rulk)(tl, ¥xe€H?® (20)
Again using (2) and (8) one concludes
<I>Z“(7r“) = Z Tkl Sfb‘l om®o s%’ (21)
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Because of (18) the expression (21) depends only on g and does not depend
on the choice of the decomposition (20). Evidently, the roles of the a— and
b-systems can be exchanged to get the maps ®%°.

Let me add some further observations, assuming for simplicity equal di-

mensions of H* and H®. By sandwiching (21) with an antiunitary map, say
j2 from ‘H® onto H® one obtains a completely positive map of the a-system.
Choosing j&b according to (13) with 1 maximally entangled, one get the re-
lation between ”states and channels” of Horodecki et all'4 (section 2). (21)
differs from a cp-map by an antiunitary: It is not the positivity but the lin-
earity that fails. I like to call the maps (21) completely co*-positive, adapting
a notation of Woronowisz®: Indeed, the linear map X — ®(X*) is completely
co—positive.
And another point is important: One gets larger classes of maps in allowing
o in the definition (18) of <I>g“ to be a general (trace class) operator. This be-
comes evident by the following relation, where X and Y denote any operators
on H® and H® respectively:

Tra X®2°(Y*) = Trape (X ®Y) = Tr) Y 852(X*) (22)

Quite similar to Jamiolkowski* and Terhal!® the conditions for ® to remain a
positive, though antilinear, map can be read off from (22) if applied to product
operators:

(4% 228(1¢%)(8°]) [4%) = (¢° ® ¢°|0l¢* ® ¢°)

Finally, what happens if Alice does an incomplete measurement? The ob-
servation may point onto a projection operator #* of rank k, which prepares
m®0%7® in the a—system. If 72 is the sum of k orthogonal rank one projections
|¢%)(#$|, one obtains

(r* ®17)o(r* ®1°) = Y _(185)(d%]) ® ®5* (1) (4%])

Taking the relative trace proves: <I>Z“(7r“) is the density operator prepared in
the b—system by the possibly incomplete measurement in the a—system.

5 Lifts to H®

There are relatives of the channel maps which act on the ab—system. Presently
I restrict myself to an EPR-equipment characterized by a pure ¢ = |[¢){¢],
¥ € Heb. This setting allows for the construction of some swapping opera-
tions by performing twisted cross products. The operators can be defined by

antilinearity and by their action on product vectors:
54(4° ® ¢") = jubsy (¢° @ ¢") = §¢’ ® si'g”
F¢(¢a ® ¢b) = S¢®j¢ (¢a ® ¢b) — Szb(ﬁb ®ji)pa¢a
Ty(6° ® ¢°) = 54®sy (¢° ® ¢°) = s3°¢" ® sy ¢
Ty(9* ® ¢°) = Ju®iy (¢° ® ¢°) = ji’¢° ® jif' ¢ (23)
® indicates the twisted direct product. The notations are ad hoc ones with the
exception of the last, Jy;, which is in common use for the modular conjugation.
The action of the operators on a Schmidt basis, see (10), is comfortably simple.

At first, the product vectors ¢5 ® #% with p;px = 0 are the null-vectors of the
operators (23). The other cases read

Sy} © ) = V/Pidi ® 5, Pipk #0
Fy(45®@¢%) = VPR oy ® 45, pipe #0

T (65 ® ¢4) = \/BiPx 5 © 65,

Ty (6} @) = dE ® ¢}, pipk #0 (24)

Jy and Ty are self-adjoined. But (Sy)* = Fy.
Remembering (11), (13) and (14) one gets

I=Q°®Q", Yi=0cd
The polar decompositions are
8y =TuJ(e* Q) = /(@ @ ")y
Fy= Jw\/(Q“ ®0%) = \/(Q“ ® Q%) Jy
Ty=Jy \/(9“ ®e) = \/(9“ ® %) Jy (25)

The contact to the previously introduced channel maps ®,, o = |¥)(¥|, is
established by

Syo(X®1%) 0 Fy = Q* @ B3*(X™)

Fpo(1°®Y)0 8, =02(Y")® Q"

Tyo(X®Y)oTy =d%(Y*)® &2 (X™) (26)
From these and similar relations one can deduce what happens with a general
o. That task will be reported elsewhere.

Let us now sharpen the assumptions: The dimensions of H® and H®
should be equal, and 1 should be completely entangled. Then the square of
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Jy equals 19, Q% = 19, @ = 1, and Jj, is a conjugation.

1) is called cyclic and separating with respect to the representation X¢
X% ® 1% of B(H®). The representation may be called GNS-representation
with GNS-vector . (GNS stands for Gelfand, Neumark, Segal. A readable
introduction is in Haag®. Here one needs only almost trivial cases.) According
to Tomita und Takesaki an antilinear operator Sy, is introduced by

Sp(X® @ 1)) = (X°)* @ 1°[¢) (27)

The polar decomposition of S, defines the modular operator, Ay, and the
modular conjugation, Jy, as positive and as antiunitary parts of Sy.

Sy =Jy/By, Dy =0"® (") (28)
Compared with (23) definition (28) of Jy, looks rather different. Nevertheless
we obtain the same operator. One may compute the linear operator J;Sy in
the Schmidt case by (24) to prove the assertion. (Similarly one identifies
juy®jw with the relative modular conjugation.) There are several further
relations between all these operators, for example

VAySy =Fy, ATy =(*®1°)Jy
We have seen the appearance of Jy within two rather different mecha-
nisms: by a twisted direct product and by polar decomposing Tomita’s Sy.
Yet there is a further one.
If an Hilbert space H is of even dimension and {¢x}, £k = 1,2,... one of its
orthonormal bases, let us define the antiunitaries ©4 by

O+dok_1 = P2k, Oxdor = Tdor_1 (29)

Let us do so in the parts H* and ‘H? of a bipartite Hilbert space. Let {ps} be
a probability vector with non-vanishing coefficients and consider

Y= /Pr (B5r_1 @ B £ 85, ® 65,_1) (30)
which is a vector in H%. Then
Jy, =01 =01 ®6% (31)

14 is an eigenvector of ©1. Therefore, by the last remark of section three it
follows
2os®=5"%00%, O%os=s"002 (32)

where the s—operators refer to the vector 14 respectively.
Remarkably, in the 2-qubit-space, ©_ is the conjugation coming from the
magic basis'?, hence the Hill-Wootters conjugation!3.
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