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Abstract. The entropy of a subalgebra, which has been used in quantum ergodic theory to construct
a noncommutative dynamical entropy, coincides forN-level systems and Abelian subalgebras with
the notion of maximal mutual information of quantum communication theory. The optimal decom-
positions of mixed quantum states singled out by the entropy of Abelian subalgebras correspond to
optimal detection schemes at the receiving end of a quantum channel. It is then worthwhile studying
in some detail the structure of the convex hull of quantum states brought about by the variational
definition of the entropy of a subalgebra. In this Letter, we extend previous results on the optimal
decompositions for 3-level systems.
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1. Introduction

The fact that a pure state on a large system need not be pure when regarded as a
state over a smaller subsystem, is a well established quantum mechanical fact that is
often referred to asquantum entanglement. In recent years, quantum entanglement
has become more and more central to quantum computation, quantum crypto-
graphy and quantum information theory. Pure quantum states, e.g. one-dimensional
Hilbert space projections, are not decomposable, whereas their restrictions to finite-
dimensional subalgebras, are, in general, density matrices, that is mixed states. As
such, they can be decomposed in infinitely many ways. In all instances, it is import-
ant to get hold of the degree of entanglement contained in a given quantum state,
a notion that is better expressed in entropic terms [1]: interestingly enough, such
a notion coincides [2] with the so-calledentropy of a subalgebrawhich has been
used to extend the Kolmogorov–Sinai dynamical entropy to quantum dynamical
systems [3–5].

The fact that the same mathematical tool has emerged in two not obviously
related quantum contexts, is certainly a sign that the notion of entropy of a subal-
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238 F. BENATTI ET AL.

gebra is fairly natural: beside providing quantitative statements on entanglement, it
also evidences interesting new geometrical structures in the state space of the large
system [6] that might be important to improve quantum detection.

Though the entropy of a subalgebra is easily defined, it is, unfortunately, quite
difficult to compute analytically, mainly because of the intricacies of the variational
principle it is based on. Only very limited results are available [6–11]. In [12, 13],
the case of one spin12 particle as a subsystem of two spin1

2 particles was considered
and solved. The problem goes back to [1] where some particular cases are already
computed. In [6], Abelian subalgebras of 2× 2 and 3× 3 algebras were taken into
account, the Abelian subalgebras representing possible measurement processes.
Again, in order to achieve a reasonable understanding in as much an analytic
way as possible, it was necessary to restrict to a highly symmetric state. However,
already in such a relatively simple case, a hardly expected surprise appeared. The
symmetric real quantum states are parametrized by a real parameter and, when that
parameter becomes smaller than a certainbifurcation value, a kind ofphase trans-
ition occurs: for larger values there is a unique optimal decomposition, whereas for
smaller ones a whole convex hull of optimal decompositions appears.

In this Letter, we enlarge the class of three-dimensional states by allowing for
complex symmetric density matrices and thus we lessen the symmetry. These states
are now parametrized by two real parameters and it turns out that, if we can control
their optimal decompositions with respect to a maximally Abelian subalgebra, then
we are also able to control a larger part of the whole eight-dimensional state space,
though not all of it. Surprisingly enough, the states in the neighborhood of the
tracial state escape control, despite the tracial state being the least affected by
quantum effects.

The study has been performed analytically as long as it proved possible, when
not, we resorted to numerical calculations, whose support becomes less and less
avoidable. However, the flatness of the maxima and minima involved in the mi-
mimization routine asked for a thorough analytical study. The result is that phase-
transitions are a typical feature even with a lower symmetry. Moreover, the location
of bifurcation points in the parameter space corresponds to the subdivison of the
state space into regions with different characteristic dimensionalities. While the
details of the phase-transition depends on the convex functional used to measure the
degree of entanglement, the presence of bifurcations and phase-transitions only de-
pends on the relation between the larger and the smaller algebras involved (see [11]
for the real, symmetric case).

The paper is organized as follows: in Section 2 we introduce the necessary
definitions and results contained in [6]. In Section 3 we turn to the explicit three-
dimensional examples and evaluate the entropy and the optimal decompositions of
symmetric complex density matrices with respect to maximally Abelian subalgeb-
ras. Finally, using the results of the previous section, in Section 4, we discuss how
far optimal decompositions of generic 3× 3 density matrices can be controlled.
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2. The Entropy of a Subalgebra

We consider finite-dimensional Hilbert spaces and finite-dimensional (matrix) al-
gebrasM of observables. Quantum states are either one-dimensional projections or
density matrices, in which case there are infinitely many, physically different mix-
tures that are described by the same stateρ̂. Each one of such mixtures is specified
by (i) a set of weights 06 λj 6 1, with

∑
j λj = 1, and (ii) a corresponding set of

density matriceŝρj such thatρ̂ =∑j λj ρ̂j .
The entropy of a subalgebraN ⊆ M w.r.t. a stateρ̂ singles out certain (optimal)

decompositions among the many possible.

DEFINITION 1. Let M be a finite-dimensional full matrix algebra,N ⊆ M a
subalgebra,̂ρ a density matrix in (a state on)M , ρ̂ � N its restriction toN and
S
(
ρ̂
) = −Tr ρ̂ log ρ̂ the von Neumann entropy of a stateρ̂. Then, the entropy of

N w.r.t. ρ̂ is defined by

Hρ̂ (N) := sup
ρ̂=∑j λj ρ̂j

{
S
(
ρ̂ � N

)− Eρ̂({ρ̂j � N}
}
, (1)

where

Eρ̂({ρ̂j � N}) :=
∑
j

λjS
(
ρ̂j � N

)
. (2)

Remark1. Because of finite-dimensionality, the sup in (1) is, in fact, a max-
imum corresponding to the minimumE∗

ρ̂
(N) of Eρ̂({ρ̂j � N}) attained at one or

more distinguished decompositionsρ̂ =∑j λ
∗
j ρ̂
∗
j which will be called ‘optimal’.

Next, we report two general results from [6] and refer to [11] for further general
considerations on optimal decompositions.

PROPOSITION 1. (a) Let ρ̂ = ∑j λ
∗
j ρ̂
∗
j be an optimal decomposition for a state

ρ̂ w.r.t. a subalgebraN ⊆ M . Let σ̂ =∑` µ`ρ̂
∗
` be another state in the convex hull

of the optimal stateŝρ∗j . Then,σ̂ = ∑
` µ`ρ̂

∗
` is an optimal decomposition for̂σ

w.r.t. N.
(b) Let ρ̂ and N ⊆ M be such that there exist two different decompositions

ρ̂ =∑j λ
∗
j ρ̂
∗
j and ρ̂ =∑j µ

∗
j σ̂
∗
j which are optimal w.r.t.N.

Then,ρ̂ = α∑j λ
∗
j ρ̂
∗
j + (1− α)

∑
j µ
∗
j σ̂
∗
j is also an optimal decomposition of

ρ̂ w.r.t. N.

As a consequence of the above proposition, the state space splits into regions
that do not have common interior points. Furthermore, by convexity arguments [6],
the search for optimal decompositions can be restricted to decompositions in terms
of pure states (one-dimensional projections). Thence, it makes sense to introduce
the following definition:
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240 F. BENATTI ET AL.

DEFINITION 2. Two one-dimensional projections will be called compatible w.r.t.
N ⊆ M , if they belong to decompositions of some stateρ̂ which are also optimal
w.r.t. N.

With M (isomorphic to) the fullN ×N matrix algebra, any maximally Abelian
subalgebraA ⊂ M , generated byN orthogonal projectionŝaj , identifies an or-
thonormal basis{|aj 〉} of the underlyingN-dimensional Hilbert spaceHN . In the
following, we denote byφ(j), j = 1, . . . , N , the components of vectors|φ〉 ∈ HN

w.r.t. the basis associated withA.

LEMMA 1 . Two one-dimensional projections|φ1〉〈φ1|, |φ2〉〈φ2| are compatible
only if

N∑
j=1

φ∗1(j)φ2(j) log
|φ1(j)|2
|φ2(j)|2 = 0. (3)

Remarks2. (1) The proof of the above Lemma can be found in [6]. Condi-
tion (3) is necessary for the stationarity of the functional (2), but not sufficient
to guarantee that it attains a minimum. In order to exclude thatρ̂ = ∑

j λj p̂j ,
with one-dimensional projectionŝpj compatible w.r.t.N, might correspond to a
maximum of (2), one has to study second variations.

(2) Compatible states form compatible sets and the optimal decompositions of
any state w.r.t. any subalgebraN are under control if we know all compatible sets
(w.r.t. N) of maximal size [6]

The presence of symmetries greatly helps to simplify the minimization proced-
ure.

LEMMA 2 . LetM be a finite dimensional full matrix algebra,ρ̂ a state,Û ∈ M a
unitary operator andN ⊆ M a subalgebra. Then,

Hρ̂ (NU) = Hρ̂U (N) , whereNU := Û N Û ∗ and ρ̂U := Û ∗ρ̂Û . (4)

Proof. Let ρ̂ = ∑
j λ

U
j σ

U
j be an optimal decomposition w.r.t.NU . According

to Definition 1, this meansE∗
ρ̂
(NU) =∑j λ

U
j S
(
σUj � NU

)
. Now,

ρ̂ � NU = ρ̂U � N and ρ̂U =
∑
j

λUj Û
∗σUj Û ,

with the latter decomposition not necessarily optimal forρ̂U w.r.t. N. Therefore,

E∗
ρ̂U
(N) 6

∑
j

λUj S
(
Û ∗σUj Û � N

)
= E∗ρ̂ (NU).
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OPTIMAL DECOMPOSITIONS WITH RESPECT TO ENTROPY AND SYMMETRIES 241

Inverting the roles of̂ρ, ρ̂U andN, NU , the Lemma is proved. 2
COROLLARY 1. Let Û ∈ M be a unitary operator.

(a) Let ρ̂ =∑j λjσj be a decomposition of̂ρ which is optimal w.r.t.NU . Then, the

mapσ̂i 7→ Û ∗σ̂iÛ transforms it into a decomposition ofρ̂U = Û ∗ρ̂Û which is
optimal w.r.t.N.

(b) Let NU = N and ρ̂U = ρ̂ and ρ̂ = ∑
j λjσj be a decomposition of̂ρ which

is optimal w.r.t.N. Then, the decomposition̂ρ = ∑
j λj Û

∗σj Û must also be
optimal w.r.t.N.

(c) If a stateρ̂ has a unique decomposition̂ρ = ∑
j λjσj which is optimal w.r.t.

N, then the effect of the mapσj 7→ Û ∗σjÛ is to exchange the optimal states
among themselves.

Remark3. As we shall see, more than one optimal decomposition may appear,
in which case, according to Proposition 1, their whole convex span is optimal as
well. The state space of anN-level system is theN2 − 1-dimensional subman-
ifold of RN2

determined by the request thatρ̂ be a positive normalized matrix.
Given a suitable parametrization ofρ̂, we shall say that bifurcation(s) or a phase-
transition(s) occurs when there are subregions in the parameter manifold where
optimal decompositions w.r.t. a given subalgebra are unique and others where they
are not.

3. Totally Symmetric States

While in dimension 2 a fully analytic proof shows the existence of a unique optimal
decomposition for any given statêρ and Abelian subalgebraA [7–9], already in
three-dimensions this fails to be the case [6].

PROPOSITION 2. LetM be the algebra of3× 3 complex matrices andA ⊂ M a
maximally Abelian subalgebra, its minimal projections identifying an orthonormal
basis|aj 〉, j = 1,2,3. Let us then consider stateŝρ(x) given, with respect to the
basis associated withA by totally symmetric and real density matrices

ρ̂(x) = 1

3

( 1 x x

x 1 x

x x 1

)
, −1/26 x 6 1 . (5)

It turns out that

(1) Hρ̂(x) (A) is attained at one or more optimal decompositions of the form

ρ̂(x) = 1

3

2∑
j=0

Û j |ψθ 〉〈ψθ |Û−j , (6)
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where

|ψθ 〉 = a + 2b cos(θ)

3
|a1〉 + a − 2b cos(θ − π/3)

3
|a2〉 +

+a − 2b cos(θ + π/3)
3

|a3〉, (7)

with

a = √1+ 2x, b = √1− x, and Û =
(0 0 1

1 0 0
0 1 0

)
,

cyclically permuting the basis vectors|aj 〉, j = 1,2,3.
Thus, to calculateHρ̂(x) (A), one has to seek the anglesθ∗(x) that minimize

E(x; θ) := −
3∑
j=1

|ψj

θ |2 log |ψj

θ |2 , (8)

whereψj

θ , j = 1,2,3, are the components of|ψθ 〉 with respect to|aj 〉, j =
1,2,3.

(2) There exists a valuex∗ = −0.415023of the parameterx such that

(a) For x∗ 6 x 6 1, there is a unique,x-independent, optimal angle
θ∗(x) = 2π/3 and a unique optimal decomposition

|ψθ∗(x)〉 = 1

3

(
a − b
a − b
a + 2b

)
. (9)

(b) If −1/2< x < x∗, there are twox-dependent different optimal angles
θ∗±(x) = 2π/3± α(x), withα(x) 6= 0.

Correspondingly, two optimal vectors appear:

|ψθ∗±(x)〉 =
1

3

(
a − 2b cos(π/3∓ α(x))
a − 2b cos(π/3± α(x)

a + 2b cosα(x)

)
. (10)

They cannot be mapped one into the other by a permutation: we shall refer
to them as forming an ‘optimal doublet’.

(c) For x = −1/2, α(x) = −π/6 the optimal vectors are

|ψθ∗+(−1/2)〉 = 1√
2

 −1
0
1

 , |ψθ∗−(−1/2)〉 = 1√
2

 0
−1

1

 . (11)

One gets mapped into the other by a suitable cyclic permuatation, so they
do not form an optimal doublet (see the second remark below).
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OPTIMAL DECOMPOSITIONS WITH RESPECT TO ENTROPY AND SYMMETRIES 243

Proof. See [6]. The results were partially analytical and partially numerically
supported. 2

Remarks4. (1) Beside the cyclic permutationŝUj , j = 0,1,2, the statêρ(x)
and the algebraA are also left invariant by the unitary operator

V̂1 =
(1 0 0

0 0 1
0 1 0

)
. (12)

Vectors forming optimal doublets (10) are exchanged one into the other byV̂1.
(2) Notice that, forx = −1

2, the optimal states do not form an optimal doublet,
but they are of a quite different form with respect to (9).

(3) The pointx∗ at which a bifurcation occurs is also a point where we have a
kind of ‘phase-transition’. Indeed, supposeE(x; θ) has a minimum at(x0, θ

∗), that
is ∂θ E(x0; θ∗) = 0 and∂2

θ E(x0; θ∗) > 0. Then, the continuity ofE(x; θ) and the
stationarity condition∂θE(x; θ) = 0 implicitly define the optimal angles as con-
tinuous functionsx 7→ θ∗(x) in a neighborhood of(x0, θ

∗). Unless∂2
θ E(x

∗; θ) =
0, this is always possible in a neighborhood of a point(x∗, θ) for which∂θ E(x∗; θ) =
0. For instance, one checks that

∂2
θ E(x; θ = 2π/3) = 4b

9

[
(a + 2b) log

(a + 2b)2

(a − b)2 − 6b

]
(13)

vanishes atx∗ = −.415023 [8], whileθ = 2π/3, which corresponds to a minimum
ofE(x; θ) for x > x∗, starts giving rise to a maximum ofE(x; θ)with a bifurcation
into two symmetric minima atθ±(x) = 2π/3± α(x) as soon asx < x∗.

(4) Very much in the spirit of the above remark, the necessity of a bifurcation
can be argued as follows (for more details, see [11]). Let us consider the vectors
|v〉 := (0,−1,1)/

√
2 in (11) that are optimal atx = −1/2. Whenx → −1/2,

the vectors|u〉 := (a − b, a − b, a + 2b)/3 in (9), which are optimal for any
x > x∗, transform into|u∗〉 := (−1,−1,2)/

√
6. There is no choice of phase and

of cyclic permutationÛ j such thatÛ j |u∗〉 = exp(iφ)|v〉, while the continuous
transformation of|u〉 into |v〉 would certainly be possible if∂2

θ E(x; θ∗(x)) did not
vanish at somex.

Proposition 2 tells us that, already for a state as in (6), optimal decompositions
w.r.t. A are not unique. In order to study whether the occurrence of bifurcations
and phase transitions of the type explained above is a more typical feature, we fix
the three-dimensional context and the maximally Abelian subalgebraA of Propos-
ition 2, but we allow the state some more freedom and consider density matrices of
the form

ρ̂(z) = 1

3

( 1 z z∗
z∗ 1 z

z z∗ 1

)
, where z = x + iy . (14)
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Figure 1. Triangle of possible stateŝρ(z), z = x + iy.

Positivity and normalization enforce the following bounds

−1
2 6 x 6 1 , 06 1− x +√3y 6 1 and 06 1− x −√3y 6 1. (15)

Therefore, the density matricesρ(z) as in (14) can be parametrized by the coordin-
ates(x, y) of points belonging to the equilateral triangleT in Figure 1. The vertices
V 1 = (1,0), V 2 = (−1/2,

√
3/2) andV 3 = (−1/2,−√3/2) correspond to pure

states, while the origin corresponds to the tracial state 1l/3.

LEMMA 3 . It is possible to decomposêρ(z) as follows:

ρ̂(z) = 1

3

2∑
j=0

Û j |ψφθ 〉〈ψφθ |Û−j , (16)

where

|ψφθ 〉 = a + 2b cos(θ + φ)− i2√3η cosθ

3
|a1〉 +

+a − 2b cos(θ + φ − π/3)+ i2√3η cos(θ − π/3)
3

|a2〉 +

202030.tex; 15/03/1999; 6:54; p.8



OPTIMAL DECOMPOSITIONS WITH RESPECT TO ENTROPY AND SYMMETRIES 245

+a − 2b cos(θ + φ + π/3)+ i2√3η cos(θ + π/3)
3

|a3〉 , (17)

with

a = √1+ 2x , b =
√

1− x − 3η2

and

η2 = 1

6

[
1− x −

√
(1− x)2 − 3y2

sin2 φ

]
with sin2 φ > 3y2

(1− x)2 . (18)

Thus, analogously to(8), the quantity(2) to be minimized reads

E(x, y; θ, φ) := −
3∑
j=1

|ψj

θφ|2 log |ψj

θφ|2 , (19)

whereψj

θφ are the components of|ψθφ〉, w.r.t. |aj 〉, j = 1,2,3.

The decompositions of the form (16) play the same role forρ̂(z) as those in (6)
for ρ̂(x). Indeed,

PROPOSITION 3. Hρ̂(z) (A) is attained at one or more optimal decompositions of
the form(16). It is thus sufficient to look for ‘optimal’ anglesθ∗(x, y) andφ∗(x, y)
such that(19) achieve its minimumE(θ∗(x, y), φ∗(x, y)).

Proof. In the case ofz = x real, the optimal decompositions were showed to
be of the form (6), by the fact, which was proved numerically, that the minima
E(θ∗(x)) of (8) form a concave function of the parameterx ∈ [−1/2,1] [6]. The
same strategy works forz = x+iy complex, if the the minimaE(θ∗(x, y), φ∗(x, y))
form a concave function of the real and imaginary parts of the complex para-
meter z = x + iy. This is indeed the case: Figure 2 shows the concavity of
E(θ∗(x, y), φ∗(x, y)) over the upper half of the triangleT in Figure 1. 2

In the numerical proof of the concavity of the surface spanned by the minima as
functions of the parametersx, y, we can restrict to the upper half of the triangleT
because of many useful symmetries enjoyed by the parametrization (17). In order
to better discuss them, we introduce the following three unitary operators

V̂u = V̂ ∗u =
(1 0 0

0 0 u∗
0 u 0

)
, with u =


1,

κ = −1 + i√3

2
,

κ∗ = −1 − i√3

2
.

(20)

202030.tex; 15/03/1999; 6:54; p.9



246 F. BENATTI ET AL.

Figure 2. Concavity of the minimaE(x, y; θ∗(x, y), φ∗(x, y)) on the upper half of the
triangleT.

Remarks5. (1) The operators of above transform symmetric statesρ̂(z) as
follows

V̂uρ̂(z)V̂u = ρ̂(uz∗), whereu = 1, κ, κ∗ . (21)

Therefore, unlike the case of realz = x, V̂1 does not represent a symmetry of the
stateρ̂(z) for z complex. It is necessary to take the complex conjugate, too.

(2) SinceE(θ, φ) in (19) depends ony throughη2 in (18), it does not change
wheny → −y. Thus, we can restrict to the upper half triangle in Figure 1. Notice
that density matriceŝρ(z) with y < 0 are reached from̂ρ(z) with y > 0 via a
rotation byV̂1, which amounts to taking the complex conjugate ofρ̂(z).

(3) Because of (21), usinĝVu, u = 1, κ andκ∗, the stateŝρ(z) labelled byz
in T1 can be mapped into states associated to the other triangles. If we identify the
statesρ̂(z) with the points of the trianglez belongs to, then̂Vκ transformsT1 onto
T2, V̂κ∗ mapsT1 ontoT4, while V̂1 reflectsT1 ontoT6.

(4) Sendingθ into θ + 2π/3, we pass from|ψθφ〉 to the cyclically permuted
vectorÛ1|ψθφ〉. However, we know from Corollary 1 that, if the former is optimal,
the latter is optimal, too. Therefore, we can restrict the search for ‘optimal angles’
to 06 θ 6 2π/3.

PROPOSITION 4. In order to find all optimal decompositions ofρ̂(z)with respect
to the maximally Abelian subalgebraA, one can minimizeE(x, y; θ, φ), with z =
x + iy in the triangleT1 of Figure 1, and then act on the optimal vectors with the
unitary operatorsV̂u of (20).

Proof.The unitary operatorŝVu in (20) leave the maximally Abelian subalgebra
A invariant. Thus, the result follows from the previous remarks and the application
of Lemma 3. 2
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OPTIMAL DECOMPOSITIONS WITH RESPECT TO ENTROPY AND SYMMETRIES 247

As an application of the previous Proposition, we now concentrate on the borders
of the triangleT1 in Figure 1.

COROLLARY 2. Each stateρ̂(z)with z on the lines(0,0)→ V 1 andH1→ V 1
has a unique optimal decomposition w.r.t. the maximally Abelian subalgebraA.
There is a bifurcation point on the line from(0,0) toH1.

Proof. The case of the line(0,0) → V 1 is known from [6], that of the line
H1→ V 1 comes from numerical results some of them being collected in Table I.

Table I. Optimal values ofE(x, y; θ, φ) and optimal vector componentsψrj + iψij for

statesρ̂(z) on the line fromH1 toV 1:

x = 1
4 +
√

3

2
t , y = − t2 +

√
3

4
, t ∈

[
0,

√
3

2

]
.

t E(θ∗(x, y), φ∗(x, y)) ψr1 ψi1 ψr2 ψi2 ψr3 ψi3

.001 .6931 .0004 0 .6124 .3533 .6124−.3533

.01 .6933 .0046 0 .6135 .3514 .6135−.3514

.1 .7074 .0472 0 .6231 .3325 .6231−.3325

.2 .7383 .0949 0 .6319 .3100 .6319−.3100

.4 .8275 .1940 0 .6433 .2593 .6433−.2593

.6 .9380 .3048 0 .6443 .1958 .6443−.1958

.8 1.058 .4519 0 .6233 .0962 .6233−.0962

As to the appearance of a bifurcation, we use the third among the previous
remarks and rotate witĥVκ∗, as in (21), the states parametrized by the line from
(0,0) → H2. The resulting states are parametrized by the line(0,0) → H1.
Therefore, by applying Lemma 3, the optimal decompositions corresponding to
the line(0,0) → H1 are obtained by rotating witĥVκ∗ those associated with the
line (0,0)→ H2, which are known from [6] to suffer a phase transition at(x∗,0).
At the pointz∗ = r + is = −x∗/2− ix∗√3/2 a bifurcation occurs on the line
(0,0) → H1: optimal doublets forx < x∗ are rotated withV̂κ∗ into optimal
doublets forr < x < 1/4 andy = √3x, s < y <

√
3/4. 2

Table I shows numerically that, on the lineH1→ V 1, no bifurcation occurs,
that is the optimal decompositions are unique and the structure of the optimal vec-
tors is such that each one of them is mapped into itself by transforming it withV̂1

and taking the complex conjugate. This reminds us of the case 2c) in Proposition 2
where doublets return to a singlet atx = −1/2. More details are given in

PROPOSITION 5. In the interior of the triangleT1 of Figure 1, a bifurcation
occurs on any straight line from(1− x)/√3 to 0 with x ∈ [1/4,1].

Proof.According to Proposition 3 and to the parametrization (17),φ must equal
π/2 on the line fromH1 toV 1. Thus, the optimal vectors are of the form:
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|ψθ 〉 = 1

3

(
a − 2ib̃ e−iθ

a + 2ib̃ e−i(θ−π/3)
a + 2ib̃ e−i(θ+π/3)

)
, b̃ =

√
1− x

2
. (22)

Tables I and II (see below) show that there are no bifurcations on the line from
H1 to V 1 and that only optimal singlets contribute to the minimum of (19), with
θ = π/2. Therefore, the vector (22) transforms into

|Ux〉 := 1

3

(
a − 2b̃

a + b̃(1+ i√3)
a + b̃(1− i√3)

)
, (23)

which is left invariant by acting withV̂1 and taking the complex conjugate. By
symmetry (see the discussion before Proposition 4), the same is true on the line
fromH1 toV 2.

Concerning the interior of the triangleT1 in Figure 1, some numerical results
are summarized in Table III (see also Table II).

Figure 3. Curve of bifurcation points ofE(x, y; θ, φ).

The structure that emerges is depicted in Figure 3 and is as follows: (1) For
points z = x + iy below the bifurcation curve in the triangleT1, the ‘optimal’
angles are fixed toφ∗ = π/2 andθ∗ = π/6 and the optimal vectors are singlets.
Indeed, they are of the form

|Ux,y〉 := 1

3


a − b̃(√1+ c + i√3

√
1− c)

a − b̃(√1+ c − i√3
√

1− c)
a + 2b̃

√
1+ c

 , (24)
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Table II. Optimal values ofθ , φ andE(x, y; θ, φ) in T1.

x y ymax φ∗ θ∗ E(x, y)

.1 .1 .1732 π/2 π/6 .0665

.1 .1732 .1732 π/2 π/6 .1248

.3 .2 .4041 π/2 π/6 .3241

.3 .3 .4041 π/2 π/6 .4832

.3 .35 .4041 1.202 1.290 .5875

1.939 1.851 .5875

.3 .4 .4041 1.692 1.602 .6886

1.448 1.539 .6886

.3 .4041 .4041 π/2 π/2 .6977

.5 .1 .2886 π/2 π/6 .4632

.5 .2 .2886 π/2 π/6 .5833

.5 .25 .2886 1.281 1.257 .6815

1.860 1.884 .6815

.5 .28 .2886 1.670 1.628 .7415

1.471 1.513 .7415

.5 .2886 .2886 π/2 π/2 .7709

.8 .05 .1154 π/2 π/6 .8400

.8 .08 .1154 π/2 π/6 .8730

.8 .1 .1154 1.731 1.974 .9096

1.410 1.166 .9096

.8 .105 .1154 1.688 1.775 .9196

1.453 1.366 .9196

.8 .1154 .1154 π/2 π/2 .9553

wherec2 = 1− 3y2/((1− x)2, thus invariant under̂V1 and complex conjugation.
Sincec→ 1 wheny → 0, the optimal vectors|Ux,y〉 continuously transform into
the optimal vectors (9) withy → 0. On the other hand, wheny → (1− x)/√3,
c→ 0 and

|Ux,y〉 −→ |U ∗x 〉 :=
1

3


a − b̃(1+ i√3)

a − b̃(1− i√3)

a + 2b̃

 . (25)

With a little more effort than in Remark 4.4, one can show that there is no choice
of phase and of cyclic permutation̂Uj such thatÛ j |U ∗x 〉 = exp(iφ)|Ux〉. This
failure of continuity indicates the occurrence of one or more bifurcations when
fixing 1/46 x 6 1 and lettingy vary from 0 to(1− x)/√3.
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Table III. Optimal vector componentsψr
j
+ iψi

j
for statesρ(z) in T1.

x y ymax ψr1 ψi1 ψr2 ψi2 ψr3 ψi3

.1 .1 .1732 .0504 −.0529 .0504 .0529 .9946 0

.1 .1732 .1732 .0534 −.0926 .0534 .0926 .9884 0

.3 .2 .4041 .1520 −.1236 .152 .1236 .9608 0

.3 .3 .4041 .1667 −.1961 .1667 .1961 .9313 0

.3 .35 .4041 .0537 −.0866 .3636 .3035 .8474 −.2168

.0537 .0866 .8474 .2168 .3636−.3035

.3 .4 .4041 .0175 .0120 .6779 .3222 .5694−.3343

.0175 −.0120 .5694 .3343 .6779 −.3222

.3 .4041 .4041 .0242 0 .6203 .339 .6203−.339

.5 .1 .2886 .2393 −.0718 .2393 .0718 .9354 0

.5 .2 .2886 .2527 −.1524 .2527 .1524 .9087 0

.5 .25 .2886 .1432 −.0776 .4399 .2464 .831 −.1687

.1432 .0776 .8310 .1687 .4399−.2464

.5 .28 .2886 .1073 .0169 .7034 .2455 .6034−.2624

.1073 −.0169 .6034 .2624 .7034 −.2455

.5 .2886 .2886 .1342 0 .6399 .2853 .6399−.2853

.8 .05 .1154 .3921 −.0573 .3921 .0573 .8281 0

.8 .08 .1154 .3991 −.0964 .3991 .0964 .8140 0

.8 .1 .1154 .3208 .0597 .7646 .0912 .5270−.1509

.3208 −.0597 .5270 .1509 .7646 −.0912

.8 .105 .1154 .3006 .0331 .7242 .1210 .5874−.1547

.3006 −.0331 .5874 .1547 .7242 −.1216

.8 .1154 .1154 .3230 0 .6447 .1793 .6447−.1793

(2) The bifurcation points actually unfold along a curve which continuously
connects the vertexV 1 to the point(r, s) on the line(0,0) → H1 and, symmet-
rically, from (r, s) to V 2, as showed in Figure 3. The program was asked to signal
the first appearance of doublets of optimal vectors, whence the dots on thex-axis,
between the real bifurcation pointx∗ and−1/2.

(3) For points above the bifurcation line the ‘optimal’ angles depend onz

and the ‘optimal’ vectors appear in doublets which are mapped into themselves
by ‘rotating’ with V̂1 and taking the complex conjugate.

(4) Taking into account the previous results, one could try, as in Remark 4.3, to
detect the bifurcation points as those(x, y) in the triangleT where the determinant
of the Hessian matrix∂2

uvE(x, y;π/6, π/2), (u, v) = (θ, φ), vanishes. The result
is showed in Figure 4 for the upper half ofT, confirming the result obtained in
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Figure 4. Zeroes of the determinant of the Hessian∂2
uvE(x, y; θ, φ), (u, v) = (θ, φ) at

θ = π/6, φ = π/2.

Figure 3. For the lower half the result is specular, thus evidentiating the equilateral
symmetry of the problem.

(5) Analogously to Remark 4.2, approaching the lineV 1→ H1, the doublets
become singlets again with ‘optimal’ anglesφ∗ = θ∗ = π/2. 2

4. Coverable State Space

According to Proposition 1 and Corollary 1, we do not only control the optimal
decomposition of symmetriĉρ(z), but also those of the density matrices that can
be obtained from̂ρ(z) by generic unitary operators

V̂αβ = â1 + eiαâ2+ eiβ â3 , whereα, β real (26)

and âj , j = 1,2,3, are the minimal projections of the subalgebraA. In fact,
they leaveA invariant. Let thenp̂j (z) denote the projections onto the vectors that
optimally decompose a given statêρ(z) in (14) w.r.t. A. Then, the first part of
Proposition 1 ensures the density matricesρ̂

ρ̂ =
∑
j

λj V̂αβp̂j (z)V̂
∗
αβ , (27)

are already optimally decomposed w.r.t.A.

LEMMA 4 . In the eight-dimensional real manifold of states of3-level quantum
systems, there is a subset of states, still parametrized by eight independent reals,
for which the optimal decompositions are of the form(27).
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Proof. Let z belong to the region where the statesρ̂(z) have doublets of op-
timal decompositions. Then, for each suchz, six different projectionsp̂j (z) are
available to be used in (27). However, the different doublets must satisfyρ̂(z) =∑3

j=1µjp̂j (z) =
∑6

j=4µj p̂j (z). Moreover,
∑6

j=1 λj = 1 provides a further
constraint so that only 4 out of the 6 possible positive weightsλj are independ-
ent. Together withα, β and z = x + iy, this makes for eight real independent
parameters. 2

Despite the right dimensionality, there are constraints on the subregion of al-
lowed parameters that forbid complete control of the whole of state space.

PROPOSITION 6. There exist density matrices with optimal decompositions w.r.t.
A not of the form(27).

Proof.Consider a vector(a, b, c) and assume it to belong to the optimal set of
someV̂αβρ̂(z)V̂ ∗αβ. Then,(a, b, c) = (a,eiαb0,eiβc0), for (a, b0, c0) in an optimal
set of ρ̂(z). Therefore, using cyclic permutations and according to Corollary 1,
(a, b, c) and(b0,eiαc0,eiβa) = (e−iαb,ei(α−β)c,eiβa) must belong to the optimal
set ofV̂αβρ̂(z)V̂ ∗αβ and thus must be compatible in the sense of Lemma 1, that is

|a| |b| log
|b|2
|a|2 + |b| |c| e

iγ log
|c|2
|b|2 + |a| |c| e

iδ log
|a|2
|c|2 = 0 , (28)

whereγ andδ depend onα, β and on the phases ofa, b andc. The above equality
can always be arranged to have the form

A + eiψB + eiφC = 0 , (29)

for unknownψ , φ and 06 A 6 B 6 C . Solutions to (29) can be found only if
the circle of radiusC around the origin intersects the circle of radiusB centered in
A, that is if and only ifA+B > C. It is no restriction to consider (not normalized)
vectors(1, b, c), so that, without any order relation betweenA, B andC, the three
necessary inequalitiesA+ B > C, B + C > A andC + A > B lead to

|c|
|c| − 1

log |c|2 > |b|
|b| − 1

log |b|2, (30)

|c|
|c| + 1

log |c|2 > |b|
|b| + 1

log |c|2, (31)

|b|
|b| − 1

log |b|2 > |c|
|c| + 1

log |c|2 . (32)

The first two inequalities are always satisfied, whereas the third one is violated by
|b| close to 1= |a| and sufficiently large|c|. 2
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Remark6. Inequality (32) is violated by vectors like(1, ε, ε̃) that lie in a
neighborhhod of the optimal set(1,0,0), (0,1,0) and(0,0,1) of the tracial state.
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