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Abstract. The entropy of a subalgebra, which has been used in quantum ergodic theory to construct
a noncommutative dynamical entropy, coincidesXoltevel systems and Abelian subalgebras with

the notion of maximal mutual information of quantum communication theory. The optimal decom-
positions of mixed quantum states singled out by the entropy of Abelian subalgebras correspond to
optimal detection schemes at the receiving end of a quantum channel. It is then worthwhile studying
in some detail the structure of the convex hull of quantum states brought about by the variational
definition of the entropy of a subalgebra. In this Letter, we extend previous results on the optimal
decompositions for 3-level systems.
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1. Introduction

The fact that a pure state on a large system need not be pure when regarded as a
state over a smaller subsystem, is a well established quantum mechanical fact that is
often referred to agquantum entanglemerin recent years, quantum entanglement
has become more and more central to quantum computation, quantum crypto-
graphy and quantum information theory. Pure quantum states, e.g. one-dimensional
Hilbert space projections, are not decomposable, whereas their restrictions to finite-
dimensional subalgebras, are, in general, density matrices, that is mixed states. As
such, they can be decomposed in infinitely many ways. In all instances, it is import-
ant to get hold of the degree of entanglement contained in a given quantum state,
a notion that is better expressed in entropic terms [1]: interestingly enough, such
a notion coincides [2] with the so-callezhtropy of a subalgebravhich has been
used to extend the Kolmogorov—Sinai dynamical entropy to quantum dynamical
systems [3-5].

The fact that the same mathematical tool has emerged in two not obviously
related quantum contexts, is certainly a sign that the notion of entropy of a subal-
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238 F. BENATTIETAL.

gebra is fairly natural: beside providing quantitative statements on entanglement, it
also evidences interesting new geometrical structures in the state space of the large
system [6] that might be important to improve quantum detection.

Though the entropy of a subalgebra is easily defined, it is, unfortunately, quite
difficult to compute analytically, mainly because of the intricacies of the variational
principle it is based on. Only very limited results are available [6—-11]. In [12, 13],
the case of one sp%]particle as a subsystem of two séilparticles was considered
and solved. The problem goes back to [1] where some particular cases are already
computed. In [6], Abelian subalgebras 0k2 and 3x 3 algebras were taken into
account, the Abelian subalgebras representing possible measurement processes.
Again, in order to achieve a reasonable understanding in as much an analytic
way as possible, it was necessary to restrict to a highly symmetric state. However,
already in such a relatively simple case, a hardly expected surprise appeared. The
symmetric real quantum states are parametrized by a real parameter and, when that
parameter becomes smaller than a ceféfrcation value a kind ofphase trans-
ition occurs: for larger values there is a unique optimal decomposition, whereas for
smaller ones a whole convex hull of optimal decompositions appears.

In this Letter, we enlarge the class of three-dimensional states by allowing for
complex symmetric density matrices and thus we lessen the symmetry. These states
are now parametrized by two real parameters and it turns out that, if we can control
their optimal decompositions with respect to a maximally Abelian subalgebra, then
we are also able to control a larger part of the whole eight-dimensional state space,
though not all of it. Surprisingly enough, the states in the neighborhood of the
tracial state escape control, despite the tracial state being the least affected by
guantum effects.

The study has been performed analytically as long as it proved possible, when
not, we resorted to numerical calculations, whose support becomes less and less
avoidable. However, the flatness of the maxima and minima involved in the mi-
mimization routine asked for a thorough analytical study. The result is that phase-
transitions are a typical feature even with a lower symmetry. Moreover, the location
of bifurcation points in the parameter space corresponds to the subdivison of the
state space into regions with different characteristic dimensionalities. While the
details of the phase-transition depends on the convex functional used to measure the
degree of entanglement, the presence of bifurcations and phase-transitions only de-
pends on the relation between the larger and the smaller algebras involved (see [11]
for the real, symmetric case).

The paper is organized as follows: in Section 2 we introduce the necessary
definitions and results contained in [6]. In Section 3 we turn to the explicit three-
dimensional examples and evaluate the entropy and the optimal decompositions of
symmetric complex density matrices with respect to maximally Abelian subalgeb-
ras. Finally, using the results of the previous section, in Section 4, we discuss how
far optimal decompositions of generic33 density matrices can be controlled.
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OPTIMAL DECOMPOSITIONS WITH RESPECT TO ENTROPY AND SYMMETRIES 239

2. The Entropy of a Subalgebra

We consider finite-dimensional Hilbert spaces and finite-dimensional (matrix) al-
gebraaVl of observables. Quantum states are either one-dimensional projections or
density matrices, in which case there are infinitely many, physically different mix-
tures that are described by the same sgatéach one of such mixtures is specified
by (i) a set of weights & A; < 1, with}_; A; = 1, and (i) a corresponding set of
density matriceg; such thaip = Zj Xipj-

The entropy of a subalgebMiC M w.r.t. a statep singles out certain (optimal)
decompositions among the many possible.

DEFINITION 1. Let M be a finite-dimensional full matrix algebrédl € M a
subalgebrap a density matrix in (a state oM, o | N its restriction toN and
S(p) = —Trplogp the von Neumann entropy of a stgteThen, the entropy of
N w.r.t. p is defined by

H;(N) = sup {S(51 N)=E;(p; 1 N}, (1)

P=2_;*jbj
where

E;({p; I N} =) 2,8 (p; I N) 2
J

Remarkl. Because of finite-dimensionality, the sup in (1) is, in fact, a max-
imum corresponding to the minimumg(N) of E;({p; | N}) attained at one or
more distinguished decompositiofs= Zj 2% p7 which will be called ‘optimal’.

Next, we report two general results from [6] and refer to [11] for further general
considerations on optimal decompositions.

PROPOSITION 1 (a) Letp = >, 4757 be an optimal decomposition for a state
p W.r.t. a subalgebrdN € M. Leté = >, ¢ p; be another state in the convex hull
of the optimal stateg;. Then,c = >, u¢p; is an optimal decomposition fer
w.r.t. N.

(b) Let p and N € M be such that there exist two different decompositions
0= Z,. Ajﬁ;‘ andp = Z; ;ﬁ;&;‘ which are optimal w.r.tN.
) Thte'rl\ll,,a =a) ; Mpr+ (1 —a) ) uié}is also an optimal decomposition of
o W.rt.N.

As a consequence of the above proposition, the state space splits into regions
that do not have common interior points. Furthermore, by convexity arguments [6],
the search for optimal decompositions can be restricted to decompositions in terms
of pure states (one-dimensional projections). Thence, it makes sense to introduce
the following definition:
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240 F. BENATTI ET AL.

DEFINITION 2. Two one-dimensional projections will be called compatible w.r.t.
N C M, if they belong to decompaositions of some statehich are also optimal
w.r.t. N.

With M (isomorphic to) the fullvV x N matrix algebra, any maximally Abelian
subalgebraA C M, generated by orthogonal projectiong;, identifies an or-
thonormal basig|a;)} of the underlyingV-dimensional Hilbert spacgt y. In the
following, we denote by (), j = 1,..., N ,the components of vectolg) € Fy
w.r.t. the basis associated with

LEMMA 1. Two one-dimensional projection:){¢1], |¢2){(¢-| are compatible
only if

91D _
2P

N
> 61 ()¢a()) log 3

j=1

Remark2. (1) The proof of the above Lemma can be found in [6]. Condi-
tion (3) is necessary for the stationarity of the functional (2), but not sufficient
to guarantee that it attains a minimum. In order to exclude ghat >, 2;p;,
with one-dimensional projectiong; compatible w.r.tN, might correspond to a
maximum of (2), one has to study second variations.

(2) Compatible states form compatible sets and the optimal decompositions of
any state w.r.t. any subalgebXaare under control if we know all compatible sets
(w.r.t. N) of maximal size [6]

The presence of symmetries greatly helps to simplify the minimization proced-
ure.

LEMMA 2. LetM be a finite dimensional full matrix algebra,a state,f] eMa
unitary operator andN € M a subalgebra. Then,

Hs; (Ny) = Hzo (N),  whereNy := U N U* and pV := U*pU. (4)

Proof. Letp = Y, Ao be an optimal decomposition w.il;;. According
to Definition 1, this mean&(Ny) = 3, PN <a}] I NU). Now,

pINy=p" N and pV=>"2Y0"]U,
J

with the latter decomposition not necessarily optimald8rw.r.t. N. Therefore,

Ef(N) <Y aVs (ﬁ*a;ff/ r N) = E3(Ny).
J
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OPTIMAL DECOMPOSITIONS WITH RESPECT TO ENTROPY AND SYMMETRIES 241

Inverting the roles o, pV andN, Ny, the Lemma is proved. O

COROLLARY 1 LetU € M be a unitary operator.

(@) Letp = Zj A jo; be a decomposition gf which is optimal w.r.tN;,. Then, the
maps; — U*6;U transforms it into a decomposition pf = U*pU which is
optimal w.r.t.N.

(b) LetNy = Nandp¥ = pandp = Z,,- Ajo; be a decomposition gf which
is optimal w.r.t.N. Then, the decompositioh = >, A;U*o;U must also be
optimal w.r.t.N.

(c) If a statep has a unique decompositigh = Zj Ajo; which is optimal w.r.t.

N, then the effect of the map — U*o,U is to exchange the optimal states
among themselves.

Remark3. As we shall see, more than one optimal decomposition may appear,
in which case, according to Proposition 1, their whole convex span is optimal as
well. The state space of aN-level system is theév? — 1-dimensional subman-
ifold of RV determined by the request thatbe a positive normalized matrix.
Given a suitable parametrization 6f we shall say that bifurcation(s) or a phase-
transition(s) occurs when there are subregions in the parameter manifold where
optimal decompositions w.r.t. a given subalgebra are unique and others where they
are not.

3. Totally Symmetric States

While in dimension 2 a fully analytic proof shows the existence of a unique optimal
decomposition for any given stafeand Abelian subalgebra [7-9], already in
three-dimensions this fails to be the case [6].

PROPOSITION 2 LetM be the algebra 08 x 3 complex matrices and c M a
maximally Abelian subalgebra, its minimal projections identifying an orthonormal
basis|a;), j = 1,2, 3. Let us then consider statggx) given, with respect to the
basis associated witA by totally symmetric and real density matrices

[

1 x x
ﬁ(x):—(x 1 x), -1/2<x <1. (5)
x x 1

w

It turns out that

(1) Hy (A) is attained at one or more optimal decompositions of the form

13 . .
px) =3 ;U’W@H%IU’, (6)
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242 F. BENATTIETAL.

where
a + 2bcog06) a—2bcogl —m/3
oy = “EEE0 1y 4 0T ) 4
a — 2bcog6 + 7 /3)
p 2T 1), ©
with

0 0 1
a=+1+ 2x, b=+1—x, and 0:(1 0 o),
010

cyclically permuting the basis vectos;), j = 1, 2, 3.
Thus, to calculate?;(,) (A), one has to seek the angleqx) that minimize

3
E(x;0) :=— > |y]log|y] . 8)

j=1
wherexpg, J = 1,2,3, are the components ¢f/,) with respect tda;), j =
1,23
(2) There exists a valuex = —0.4150230f the parametex such that

(@) For xx < x < 1, there is a uniquex-independent, optimal angle
0*(x) = 2r /3 and a unique optimal decomposition

1 a—>b
|¢(—?*(x)>:§<a_b>- 9)
a—+2b

(b) If —1/2 < x < x*, there are twoc-dependent different optimal angles
0f(x) =21 /3£ a(x), witha(x) # 0.
Correspondingly, two optimal vectors appeatr:

1[4 —2bco9w /3 F a(x))
[Vor o) = = ( a —2bcoSr/3+ a(x) ) : (10)
3 a + 2b cosa(x)

They cannot be mapped one into the other by a permutation: we shall refer
to them as forming an ‘optimal doublet'.

(c) Forx = —1/2, a(x) = —m/6 the optimal vectors are

I 1 (9
v =—1| o). v =— [ -1]. @
[Vor (-1/2)) 73 ; |Yox (-1/2)) NG . (11)

One gets mapped into the other by a suitable cyclic permuatation, so they
do not form an optimal doublet (see the second remark below).
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OPTIMAL DECOMPOSITIONS WITH RESPECT TO ENTROPY AND SYMMETRIES 243

Proof. See [6]. The results were partially analytical and partially numerically
supported. O

Remarkst. (1) Beside the cyclic permutations’, j = 0, 1, 2, the stated(x)
and the algebré are also left invariant by the unitary operator

A 100
v1=(o 0 1). (12)
010

Vectors forming optimal doublets (10) are exchanged one into the othgr. by

(2) Notice that, forx = —%, the optimal states do not form an optimal doublet,
but they are of a quite different form with respect to (9).

(3) The pointx* at which a bifurcation occurs is also a point where we have a
kind of ‘phase-transition’. Indeed, suppaBéx; 6) has a minimum atxg, 6*), that
is0g E(xg;0*) =0 and892 E(x0; 6*) > 0. Then, the continuity of (x; 6) and the
stationarity conditiordy E (x; 8) = 0 implicitly define the optimal angles as con-
tinuous functionsc — 6*(x) in a neighborhood ofxg, 6*). Unlessag2 E(x*;0) =
0, this is always possible in a neighborhood of a p6itit 0) for whichd, E(x*; 0) =
0. For instance, one checks that

(13)

2
BE(; 0 =2/3) = 4—9b [(a + 2b)log U2 _ Gb]

(a — b)?

vanishes at* = —.415023 [8], whiled = 27 /3, which corresponds to a minimum
of E(x; 0) for x > x*, starts giving rise to a maximum &f(x; 6) with a bifurcation
into two symmetric minima &l (x) = 27 /3 £ «(x) as soon as < x*.

(4) Very much in the spirit of the above remark, the necessity of a bifurcation
can be argued as follows (for more details, see [11]). Let us consider the vectors
lv) := (0, —1,1)/+/2 in (11) that are optimal at = —1/2. Whenx — —1/2,
the vectorsju) := (a — b,a — b,a + 2b)/3 in (9), which are optimal for any
x > x*, transform intoju*) := (—1, —1, 2)/4/6. There is no choice of phase and
of cyclic permutationﬁf such thatU/|u*) = expig)|v), while the continuous
transformation ofu) into |v) would certainly be possible 2E (x; 6*(x)) did not
vanish at some.

Proposition 2 tells us that, already for a state as in (6), optimal decompositions
w.r.t. A are not unigue. In order to study whether the occurrence of bifurcations
and phase transitions of the type explained above is a more typical feature, we fix
the three-dimensional context and the maximally Abelian subalgklofaPropos-
ition 2, but we allow the state some more freedom and consider density matrices of
the form

p2) =2

1 z zF
3<z* 1 z), where z=x+1iy. (14)

z z¢ 1
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-0.25F

-0.75 F

V3

Figure 1. Triangle of possible stateiz), z = x + iy.

Positivity and normalization enforce the following bounds
—1<x<1, 0<1-x++3y<1 and 0<1-x—-+3y<1l (15)

Therefore, the density matricesz) as in (14) can be parametrized by the coordin-
ates(x, y) of points belonging to the equilateral triandien Figure 1. The vertices
V1= (1,0), V2= (—1/2,+/3/2) andV3 = (—1/2, —+/3/2) correspond to pure
states, while the origin corresponds to the tracial stag 1

LEMMA 3. ltis possible to decompogez) as follows:

R 1S A .

p@) =32 O/l Wgnl U (16)
j=0

where

a + 2bcog6 + ¢) — i2+/3n cosd

|Ypo) = 3 lai) +

a—2bcos6 + ¢ —n/3) +i2+/3ncos6 — 7/3)

+ 3 laz) +
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OPTIMAL DECOMPOSITIONS WITH RESPECT TO ENTROPY AND SYMMETRIES 245

La- 2bcos6 + ¢ + 1/3) + i2+/3ncos6 + 7 /3)

3 laz) ,  (17)
with
a=~1+2x, b=+y1-x—3p?
and

2L a2 22 ith s _ 3
n® = |:1 X \/(1 x) - with Sm2¢>(l—x)2‘ (18)

Thus, analogously t@), the quantity(2) to be minimized reads

3
E(x,y:0,9) == — Y [¥i,1*10g ¥, . (19)

j=1
wherey}, are the components 0fg4), W.I L. |a;), j = 1,2, 3.

The decompositions of the form (16) play the same rolesfiad as those in (6)
for p(x). Indeed,

PROPOSITION 3 Hy(,, (A) is attained at one or more optimal decompositions of
the form(16). It is thus sufficient to look for ‘optimal’ anglés (x, y) and¢*(x, y)
such that(19) achieve its minimunk (6*(x, y), ¢*(x, y)).

Proof. In the case ot = x real, the optimal decompositions were showed to
be of the form (6), by the fact, which was proved numerically, that the minima
E(0*(x)) of (8) form a concave function of the parametee [—1/2, 1] [6]. The
same strategy works far= x+iy complex, if the the minim& (6*(x, y), ¢* (x, y))
form a concave function of the real and imaginary parts of the complex para-
meterz = x + iy. This is indeed the case: Figure 2 shows the concavity of
E(0*(x, y), ¢*(x, y)) over the upper half of the trianglein Figure 1. O

In the numerical proof of the concavity of the surface spanned by the minima as
functions of the parametess y, we can restrict to the upper half of the triandle
because of many useful symmetries enjoyed by the parametrization (17). In order
to better discuss them, we introduce the following three unitary operators

1,

o 100 -1 +i/3
vu=v;=<o 0 u) withu =4 “ =75 (20)
O u O ., —1-iV3
K =

2
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246 F. BENATTI ET AL.

Figure 2. Concavity of the minimaE (x, y; 6*(x, ), #*(x, y)) on the upper half of the
triangleT.

Remarks5. (1) The operators of above transform symmetric staies as
follows

Vo p() Ve = p(uz*), whereu =1, k, k*. (22)

Therefore, unlike the case of reak= x, V; does not represent a symmetry of the
statep(z) for z complex. It is necessary to take the complex conjugate, too.

(2) SinceE (6, ¢) in (19) depends on throughn? in (18), it does not change
wheny — —y. Thus, we can restrict to the upper half triangle in Figure 1. Notice
that density matrice$(z) with y < 0 are reached frond(z) with y > 0 via a
rotation byV:, which amounts to taking the complex conjugates f).

(3) Because of (21), usiny,, u = 1, x and«*, the statesi(z) labelled byz
in T1 can be mapped into states associated to the other triangles. If we identify the
statesp (z) with the points of the triangle belongs to, therV, transformsT1 onto
T2, V,» mapsT1 onto T4, while V; reflectsT1 onto T6.

(4) Sending into 6 + 2r/3, we pass fromys) to the cyclically permuted
vectorﬁ1|¢9¢). However, we know from Corollary 1 that, if the former is optimal,
the latter is optimal, too. Therefore, we can restrict the search for ‘optimal angles’
to0< 6 < 2n/3.

PROPOSITION 4 In order to find all optimal decompositions pfz) with respect
to the maximally Abelian subalgebrs, one can minimizé (x, y; 0, ¢), with z =
x + iy in the triangleT1 of Figure 1, and then act on the optimal vectors with the
unitary operatorsf/u of (20).

Proof. The unitary operator¥, in (20) leave the maximally Abelian subalgebra
A invariant. Thus, the result follows from the previous remarks and the application
of Lemma 3. O
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As an application of the previous Proposition, we now concentrate on the borders
of the triangleT1 in Figure 1.

COROLLARY 2. Each stateo(z) with z on the lineg0,0) — VliandH1 — V1
has a unique optimal decomposition w.r.t. the maximally Abelian subalgkbra
There is a bifurcation point on the line frofd, 0) to H1.

Proof. The case of the lin€0, 0) — V1 is known from [6], that of the line
H1 — V1 comes from numerical results some of them being collected in Table I.

Table I. Optimal values ofE (x, y; 6, ¢) and optimal vector componen;sf + il//; for
statesj(z) on the line fromH1 to V1 '

V3 V3 Ne
x=z+7l, y=—§+T, 1 e 0,7 .

t E@*(x,y). ¢*x.y) v vl owh o wh o vh oy

.001 .6931 .0004 O .6124 .3533 .6124-.3533
.01 .6933 .0046 O .6135 .3514 .6135-.3514
A .7074 .0472 0 .6231 .3325 .6231-.3325
2 .7383 .0949 0 .6319 .3100 .6319-.3100
A4 .8275 1940 O .6433 .2593 .6433-.2593
.6 .9380 3048 0 .6443 1958 .6443-.1958
.8 1.058 4519 0 .6233 .0962 .6233-.0962

As to the appearance of a bifurcation, we use the third among the previous
remarks and rotate witht,-, as in (21), the states parametrized by the line from
(0,00 — HZ2. The resulting states are parametrized by the (@) — H1.
Therefore, by applying Lemma 3, the optimal decompositions corresponding to
the line(0,0) — H1 are obtained by rotating with, those associated with the
line (0, 0) - H?2, which are known from [6] to suffer a phase transitiordt 0).

At the pointz* = r + is = —x*/2 — ix*+/3/2 a bifurcation occurs on the line
(0,00 — H1: optimal doublets forx < x* are rotated withV,- into optimal
doublets forr < x < 1/4 andy = +/3x,s < y < /3/4. O

Table | shows numerically that, on the lidél — V1, no bifurcation occurs,
that is the optimal decompositions are unigue and the structure of the optimal vec-
tors is such that each one of them is mapped into itself by transforming itWyith
and taking the complex conjugate. This reminds us of the case 2c) in Proposition 2
where doublets return to a singletxat= —1/2. More details are given in

PROPOSITION 5 In the interior of the triangleT1 of Figure 1, a bifurcation
occurs on any straight line frorl — x)/+/3 to O with x € [1/4, 1].

Proof. According to Proposition 3 and to the parametrization (¢ #ust equal
/2 on the line fromH 1 to V1. Thus, the optimal vectors are of the form:
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248 F. BENATTI ET AL.

o) = = [ a+2ibei@=3 ), = . (22)
3 a -t 2if e iO+T/3 2

Tables | and Il (see below) show that there are no bifurcations on the line from
H1to V1 and that only optimal singlets contribute to the minimum of (19), with
6 = n /2. Therefore, the vector (22) transforms into

1 a —2b
U,) ::§<a+lg(l+i«/§)) : (23)
a+b(l—iV3)

which is left invariant by acting with; and taking the complex conjugate. By
symmetry (see the discussion before Proposition 4), the same is true on the line
from H1to V2.

Concerning the interior of the trianglEl in Figure 1, some numerical results
are summarized in Table Il (see also Table II).

x*

-0.4

-0.2 0 0.2 0.4 0.6 0.8 1

Figure 3. Curve of bifurcation points of (x, y; 0, ¢).

The structure that emerges is depicted in Figure 3 and is as follows: (1) For
pointsz = x + iy below the bifurcation curve in the trianglEl, the ‘optimal’
angles are fixed t¢* = 7 /2 and6* = 7 /6 and the optimal vectors are singlets.
Indeed, they are of the form

a—l;(«/l—l—c—i-i«/i_’)«/l—c)

\U,.y) = % a—-b(VI+c—iv3J/1—0) |, (24)
a+2by1+c¢
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Table Il. Optimal values of, ¢ andE (x, y; 6, ¢) in T1.

x y ymax ~ ¢* 6* E(x,y)
101 1732 7/2  7/6 0665
A 1732 1732 w/2 /6 .1248
3 2 4041 7/2  7/6 3241
3 3 4041 72 7/6 4832
3 .35 4041 1.202 1.290 .5875

1.939 1.851 .5875

3 4 4041 1692 1602 .6886
1.448 1539  .6886
3 4041 4041 nm/2  m/2 6977
5 1 2886 7/2  7/6  .4632
5 .2 2886 n7/2  n/6  .5833
5 .25 2886 1.281 1257 .6815
1.860 1.884  .6815
5 .28 2886 1.670 1628 .7415
1471 1513 .7415
5 2886 .2886 m/2  nm/2  .7709
8 .05 1154 /2 /6 .8400
8 .08 1154 /2 /6 8730
8 1 1154  1.731  1.974  .9096

1.410 1.166 .9096
.8 .105 .1154 1.688 1.775 .9196

1.453 1.366 .9196
.8 1154 1154 7/2 /2 .9553

wherec? = 1 — 3y2/((1 — x)2, thus invariant unde¥; and complex conjugation.
Sincec — 1 wheny — 0, the optimal vector§U, ,) continuously transform into
the optimal vectors (9) wity — 0. On the other hand, when— (1 — x)/+/3,
¢ — Oand

a—b(1+i/3)
V) —10p) =3 | a—ba-iv3 | . (25)
a+2b

With a little more effort than in Remark 4.4, one can show that there is no choice
of phase and of cyclic permutatiaii/ such thatU/|U*) = expii¢)|U,). This
failure of continuity indicates the occurrence of one or more bifurcations when
fixing 1/4 < x < 1 and lettingy vary from 0 to(1 — x)/+/3.
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Table Ill. Optimal vector componenﬁfz/’. + iw; for statesp(z) in T1.

x oy ymax ¥ ¥ vy vy vh b

A 1732 .0504 —.0529 .0504 .0529 9946 O

1732 1732 .0534 —.0926 .0534 .0926 .9884 O

4041 .1520 -—-.1236 .152 1236 9608 O

3 4041 .1667 —.1961 .1667 .1961 9313 O
.35 4041 .0537 —.0866 .3636 .3035 .8474 —.2168
.0537 .0866 .8474 .2168 .3636-—.3035

W wweRk R
(V)

3 4 4041 .0175 .0120 .6779 .3222 .5694-.3343
.0175 —-.0120 .5694 .3343 .6779 —.3222
3 4041 4041 0242 O .6203 .339 .6203-.339
5 1 .2886 .2393 —.0718 .2393 .0718 .9354 O
S5 .2 .2886 .2527 —.1524 2527 .1524 9087 O
5 .25 .2886 .1432 —.0776 .4399 .2464 .831 -.1687

.1432 .0776 .8310 .1687 .4399-.2464

5 .28 .2886  .1073 .0169 .7034 .2455 .6034-.2624
1073 —-.0169 .6034 .2624 .7034 —.2455
5 .2886 .2886 .1342 O .6399 .2853 .6399-.2853
.8 .05 1154 3921 —-.0573 .3921 .0573 .8281 O
.8 .08 1154 3991 —.0964 .3991 .0964 .8140 O
8 1 1154 .3208 .0597 7646 .0912 .5270-.1509

3208 —-.0597 5270 .1509 .7646 —.0912
.8 .105 .1154  .3006 .0331 .7242 1210 .5874-.1547
3006 —.0331 .5874 .1547 7242 —.1216
.8 .1154 1154 3230 O .6447 1793 .6447-.1793

(2) The bifurcation points actually unfold along a curve which continuously
connects the verte¥X 1 to the point(r, s) on the line(0, 0) — H1 and, symmet-
rically, from (r, s) to V2, as showed in Figure 3. The program was asked to signal
the first appearance of doublets of optimal vectors, whence the dots erattis,
between the real bifurcation point and—1/2.

(3) For points above the bifurcation line the ‘optimal’ angles depend; on
and the ‘optimal’ vectors appear in doublets which are mapped into themselves
by ‘rotating’ with V; and taking the complex conjugate.

(4) Taking into account the previous results, one could try, as in Remark 4.3, to
detect the bifurcation points as thase y) in the triangleT where the determinant
of the Hessian matri@fvE(x, y; /6, 7/2), (u,v) = (0, ¢), vanishes. The result
is showed in Figure 4 for the upper half ©f confirming the result obtained in
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%x*
) ) N . " x
-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 4. Zeroes of the determinant of the Hessi@ﬁE(x, v;0,¢), (u,v) = (,¢) at
0=n/6¢=m/2.

Figure 3. For the lower half the result is specular, thus evidentiating the equilateral
symmetry of the problem.

(5) Analogously to Remark 4.2, approaching the line — H1, the doublets
become singlets again with ‘optimal’ angle$ = 6* = = /2. O

4. Coverable State Space

According to Proposition 1 and Corollary 1, we do not only control the optimal
decomposition of symmetrig(z), but also those of the density matrices that can
be obtained fronp(z) by generic unitary operators

Vop = a1 + €%y + PG5,  wherea, f real (26)

anda;, j = 1,2, 3, are the minimal projections of the subalgelaln fact,
they leaveA invariant. Let therp;(z) denote the projections onto the vectors that
optimally decompose a given stgbgz) in (14) w.r.t. A. Then, the first part of
Proposition 1 ensures the density matriges

p=> 1iVaphi(2)Viy, (27)
j
are already optimally decomposed wAt.
LEMMA 4 . In the eight-dimensional real manifold of states3devel quantum

systems, there is a subset of states, still parametrized by eight independent reals,
for which the optimal decompositions are of the fai2m).
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Proof. Let z belong to the region where the sta{e&) have doublets of op-
timal decompositions. Then, for each sughsix different projections,(z) are
available to be used in (27). However, the different doublets must sg@igly=
Z?zlujﬁj(z) = Z?:4ujﬁj(z). Moreover, Z?lej = 1 provides a further
constraint so that only 4 out of the 6 possible positive weightsire independ-
ent. Together withr, 8 andz = x + iy, this makes for eight real independent
parameters. O

Despite the right dimensionality, there are constraints on the subregion of al-
lowed parameters that forbid complete control of the whole of state space.

PROPOSITION 6 There exist density matrices with optimal decompositions w.r.t.
A not of the form(27).

Proof. Consider a vectofa, b, ¢) and assume it to belong to the optimal set of
someVaﬁﬁ(z)V;ﬂ. Then,(a, b, ¢) = (a, €%bg, € cy), for (a, b, cp) in an optimal
set of p(z). Therefore, using cyclic permutations and according to Corollary 1,
(a,b,c) and(bo, €%, €Pa) = (e7*b, €@ P¢, €Pa) must belong to the optimal
set ofVaﬁp(z) and thus must be compatible in the sense of Lemma 1, that is

2
|bI? ||

|a Ilbllog + bl |c| € log —— b2

|2
z=0. (28)

" |a B
wherey ands depend onx, 8 and on the phases of b andc. The above equality
can always be arranged to have the form

A+ é'B +¢é°C=0, (29)

for unknownyr, ¢ and 0< A < B < C . Solutions to (29) can be found only if
the circle of radiugC around the origin intersects the circle of radiRisentered in
A, thatisifand only ifA+ B > C. Itis no restriction to consider (not normalized)
vectors(l, b, ¢), so that, without any order relation betweénB andC, the three
necessary inequalitie$+ B > C, B+ C > AandC + A > Blead to

|c| _1bl

———log|c* > log |b/?, (30)
e[ —1 6] — 1
I jogiep = 1P jog)ep (31)
lc] +1 bl + 1
1b] el

log|b|* > —— o 32
o1 gl EE oglel*. (32)

The first two inequalities are always satisfied, whereas the third one is violated by
|b| close to 1= |a| and sufficiently largec|. a
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Remark6. Inequality (32) is violated by vectors likél, ¢, £) that lie in a
neighborhhod of the optimal sét, 0, 0), (0, 1, 0) and(0, O, 1) of the tracial state.
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