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Any non-pure quantum state admits an infinite number of non-trivial decompositions. 
A recent proposal how to measure the information content of a quantum state with reference 
to a given subalgebra of operators, singles out some of them, called optimal decompositions, 
which depend both on the state and on the subalgebra. In this paper we start exploring 
their main features. 

1. Introduction 

Considering a state w over a large algebra M, but concentrating on its restriction 
w/A to a smaller algebra A C M, we see that the usual definition of entropy [l, 
21 of the restricted state fails to be monotonic for noncommutative algebras. This 
causes severe problems if one considers this entropy as a starting point for a dy- 
namical entropy of the Kolmogorov-Sinai type [3]. In the framework of relativistic 
quantum field theories problems arise, too; the local entropy that is needed to do 
thermodynamics becomes infinite [4]. 

In [5] an alternative definition is offered, tailormade to restore monotonicity which 
turned out to be useful to define both a quantum dynamical entropy [6, 71 and a 
local entropy in quantum field theory. The definition is based on an appropriate 
optimization of the decomposition of the state on the large algebra M with respect 
to the small algebra A G M. 

Unfortunately, only under very special circumstances, that is in case a state-pre- 
serving conditional expectation exists, we have complete control how these optimal 
decompositions look like. In addition, for the abelian subalgebra of MZ generated by 
ll and the Pauli matrix ct and the state w = (11 + n2 + 2na,)/2(1 + n2), the optimal 
decomposition was given in [8], though without a detailed argument. Its generalization 
to arbitrary states can be found in [9], again the surprisingly lengthy and not so much 

w31 
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revealing argument was omitted. In all examples under control all decompositions 
corresponded to an appropriately chosen maximal abelian subalgebra. 

In this paper we want to give a support to the conjecture that all possible de- 
compositions that are needed to define entropy correspond to maximal abelian sub- 
algebras. In order to do so, we will first study the general structure of optimal 
decompositions and find compatibility relations between the components of such a 
decomposition. 

2. The entropy functional and its structure 

DEFINITION 1. Let M be a von Neumann algebra and w a state over it. Let A 
be a subalgebra of M. Then, the entropy of A relative to the state w is [7] 

K.m(A) := sup cXiS(w,wc)tA. 
C,XzUJcl,=d i 

In the above definition xi Xiwi is any convex decomposition of w, as a state on 
M, into (normalized) states wi (over M) and S (w, wi) [A is the relative entropy of the 
states w, wi restricted to A. 

Some properties 
1. As S(w,p) tA is increasing in A [2, 10, 51, so is H,,,(A). 
2. As every decomposition of w as a state over M gives a decomposition of the 

restriction of w to any subalgebra N C M (the reverse need not be generally true), 
H,,,(A) is monotonically decreasing in M. 

3. If A is finite dimensional, the relative entropy can be written 

where 

S(w,wi)rA=Trwi[A{logwirA-logw[A}. (2) 

S (wi [A) = -Tr wi IA log wi IA (3) 

is the von Neumann entropy of the state wi restricted to the (finite dimensional) 
subalgebra A. 

Accordingly, the entropy functional (1) reads: 

&M(A) = S (UtA) - R (W A) , 

R(w,A):=inf{R(w,{Xjw~},A),~Xjwj=~}: 
j 

R(w,{Xjwj},A) :=CAjS(wjtA). 
.i 

(4) 

(5) 

4. In (4), it suffices to compute the infimum over decompositions into pure states. 
In fact, any non-pure state wj appearing in w = Cj Xjwj could be further decomposed 
into Wj = Ck ViWi and due to strict concavity of the von Neumann entropy: 

S(wjtA) > CUES (WHOA). 
k 

(6) 



OPTIMAL DECOMPOSITIONS OF QUANTUM STATES 125 

unless wh [A = wj rA, Vk, we could improve on R (w , { Xjwj } , A). 

THEOREM 1. Let the set of states {w(i), i E I} and corresponding weights {X(i)} 
provide an optimal decomposition for the state w over M with respect to A. that is 

w = s dp(i)J(i)w(i). (7) 

R(w.A) = 7f (w, {X(i)~(i)}~,, .A). (8) 

where we have kept the possibility that the set I has finite cardinal@ or that we can 
decompose with respect to a continuous measure on it. Consider the state 

(;,= 
s d&)i(i)w(i), / d&+) = 1. 
I I 

with x(i) a positive u-measurable function on I. Then 

R (GA) = R (5. { X(~)W(Q}~~~ , A) . 

Proof: Choose a p-measurable function on I, 0 < g(i) 5 1, and set 

(9) 

w 

w1:= s dp(i)g(i)A(i)w(i). 
I 

w2 := 
s 

dp(i)(l - g(i))X(i)w(i). 
I 

by using the X(i) and w(i) given in (7). 
The states w1,2 in w = w1 + wa are not normalized. 

(11) 

(12) 

Let v1,2 be the normal- 
izing factors and consider any optimal decomposition {z$kj}j~~ for ijl = I/;‘wI, 
respectively {v$&}k,h. for 22 = v;lwz. Together they provide a decomposition 
{v:$}~~~ u {.v~~~}~~~ for w which is not necessarily optimal, thus: 

R(w,A) 5 vR(Gr, {~j’~$}j~J~A) + vzR(G, {v~W~}~EK~A) 

= vrR(5r.A) + vzR(Ij,,A). (13) 

On the other hand, through (11) and (12) the optimal decomposition (7) for w pro- 
vides hvo decompositions for Wr.2. The latter need not be optimal for Gl, respectively 
W2, hence: 

SIR @I, A) + v2R (G2, A) I 7~ (w , {g($V+4~)},~I t A) + 

+ ‘R (~2. ((1 - g(i))Ww(i)}i,I A) 

i R&A), (14) 

so it follows that the two decompositions are indeed optimal and a further normal- 
ization of w1 and w2 concludes the proof. @ 
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DEFINITION 2. Any linear convex combination w = CiEI Xiwi (I being possibly of 
infinite cardinality) of states w; on M (possibly not normalized) at which the minimum 
in (4) is attained we will call optimal for A C_ M. That is 

7+~.{Xjwi}~~~,A) = R(w.A). (15) 

DEFINITION 3. A set of vectors {)$i)}iEl will be called compatible (with respect to 
A & M) if every positive, linear functional M 3 li: H CzEI &(4,[?/&), with X; > 0, 
CiE1 Xi = 1 and with mutually different positive linear functionals M 3 ? H (~i~:?~~i) 
is an optimal decomposition with respect to A (if Z is not of finite cardinal@, the 
corresponding set of vectors is called compatible if every finite subset is compatible). 

A set { (&)}iE1 is called maximally compatible (with respect to A) if it is compatible 
but not a proper subset of any compatible set. 

Remarks: 1. In Theorem 1, we have written the decomposition as an integral to cover 
the possibility of both finite and infinite decompositions. If M is not of type Z, then we 
know that pure states on M do not exist, therefore the infimum is not attained. However, 
the theorem holds if we interpret the result in the sense that R (w, {X(i)w(l;)} ,A) can 

get arbitrarily close to the infimum. To avoid these difficulties, from now on we restrict 
ourselves to finite dimensional algebras M on which the pure states are well defined and 
we will take M = M,(C) as a full (71 x n) matrix algebra over a complex Hilbert space 
‘FI, = @,I. 

2. The specification “mutually different” in the above definition serves to get rid 
of the arbitrariness of phase factors. Otherwise, any maximally optimal set might be 
of infinite cardinality, for it could contain, together with a vector I+), the whole ray 
WWhE[0.2d. 

LEMMA 1. Zf A = M, all sets { 141). . . . , I&.)}. 7’ = 1, . . . . + co, are compatible. 

Proof: The states 4j: 2 H 4j(i) : = (4j 1214,) are pure on M and then have von 
Neumann entropy S ($jrM) = 0. They need not be pure on a strict subalgebra A c M, 
but in our case A = M. Then 

CXjS(~,IM)=O=inf{C~~S(Pk~M). Cl/k~k=CXjOj}. (16) 
J k k .i 

W 

LEMMA 2. Let M = M,,(C). Then, there exist compatible sets with cardinulity 
1,2 ,... .I?,. 

Proof: Compatible single vector sets exist because any pure state i H q+(z) := (q5/?1+) 
on M has S (q5rM) = 0 and cannot be further decomposed. 

Any faithful state w on M needs at least n vectors I&) to be decomposed into pure 
states M 3 ii H (411citlqbi), the latter giving 

R(w,{&q!~} .M) = 0 = R(w.M). 

Therefore, for faithful states we need at least n pure states to decompose them optimally 
with respect to M. But, in principle, we could need more than that. 
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Cardinalities 2 5 k 5 n can be derived as follows. We consider a sequence of states 
built from a continuous compatible set {$(A)} by means of an absolutely continuous 
measure p(X) on some finite measure space A: 

wn := j- d/4A)gn(A)d(X). (17) 

Vn, E N. W3) 

,,!!& J dAX)gn(X)f(X) = f & .f(xj)- (19) 
j=l 

for any continuous function f on A. Then, because of the finite dimensionality of 
M, the following limit holds in the norm topology: 

(20) 

in the sense that lim,,+, supiEM,llill=l ]wn(?) - w(g)1 = 0. 
. / 

lItin --WI1 
Since JJw,, - wII -+ 0 implies lim, S (w, [A) = S (w/A) [7] for all A C: M, from 

Theorem 1 we get 

1 

‘im R(wn>A) = ,i~~~r,(~n.{gn(X)~(X)},~,,.A) = fxS(qkJA). f!++X (21) 
JZl 

On the other hand, liminf 5 inf lim implies 

(22) 
8 

Instead of looking for optimal decompositions of states on M = Mm(@), we pro- 
ceed by investigating the structure of compatible sets. 

The von Neumann entropy S (wrA) is a smooth function of w except at the 
states w where w[A has eigenvalue 0. Therefore, we can consider the functional 
R (w. {Xj($jl . l$j)} ,A) to be differentiable with respect to the various components 
4j(a) of the vectors 14,) in a suitable orthonormal basis {ja)}&r of RFI, = C”. We 
then proceed with 

DEFINITION 4. Given any subalgebra A C M,(C), the following vector valued 
function on 7-L: 

F(4)(Q) := &ll4ll2S (y-$4) (23) 



128 F. BENA’ITI, H. NARNHOFER and A. UHLMANN 

is defined everywhere except on a submanifold where it becomes singular. Moreover, 
it is homogeneous in the sense that 

IF(cCfJ)) = clJX4)) kfc E @. (24) 

Remark 3: If A c M,,(C) is maximally abelian, then 

l14112S ($-$A) = (4. J’(4)). 

More explicitly, let {Jk)},“=, b e an orthonormal basis in C’ defined by the minimal 
projections Ik)(kl of A. Then, setting d(k) = (k\~$), we get 

(26) 

LEMMA 3. Let the set {I&), I&)} b e compatible and assume that IF(&)) and 
IF(452)) exist. Then 

(41. Ft42)) = F'(41).42). (27) 

proof: Consider the state w = ~(~11.1~1)+~(~21.)~2), with 111&)11 = ~~~c#Q)~~ = 1. This 
state corresponds to a two-dimensional density matrix over the Hilbert space spanned 
by the vectors 141) and 142). In full generality, representing the state w by a density 
matrix fi, we can consider its positive square root fi and decompose the state into pure 
states according to: 

where l$jj) are vectors in ‘H,, such that C:=, Illt,)($jl = Il. Therefore, only linear com- 
binations fiy$Jj) = rjl&) + Sjl4 ) 2 can contribute to the optimal decomposition. Let 

1. yi = fi,6i = J;; y2 = J;, sz = -6. 

2.yi= &5,6i = i&;y2=&& =-i&Y. 

The stationarity of R(w, { 4 (&I . I&) + i(421 . I&)}, A), which follows from the assumed 
compatibility of I&) and IcJ~~), q re uires that the term of order J; vanishes, which is 
exactly relation (27). W 

Remark 4: The above equality is not sufficient, it might correspond to a maximum 
or to a saddle point. That the supremum can be found by differentiation is guaran- 
teed because we are considering a continuous functional differentiable everywhere on a 
manifold without boundary except where the vector components vanish. (Notice that we 
consider the functional as a functional over normalized vectors and not over density 
matrices.) 

Since, according to Theorem 1, for every compatible set, every subset of it is com- 
patible, too, we can generalize the previous result. 
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LEMMA 4. If the set {(&), . . . . jq&)} is compatible, then 

(tii’F(4j)) = (F(tii).$5j) Vi,3 = l....,k. (29) 

These conditions can be used in a constructive way to find compatible sets. We 
consider I&) as points in a 2n-dimensional real manifold. With 14,) also cl4j), Vc E @, 
solves (29). The latter is the only obvious redundancy, and, if we fix the norms and 
the overall phases such that lll$j)ll = 1 and 4j(l) E $ we remain with 2k(71 - 1) 
unknown vector components in relations among each other through the I;(k - 1) real 
equations (29). In addition, the set { Idi), . . , , I&)} should be optimal for some density 
matrix (Tri, = 1) 

j = 5 W1)(hl. (30) 
I=1 

Thus, the unknown vector components must satisfy n2 - 1 equations for any fixed j. 
The total number of constraints to be obeyed by the 2k(7, - 1) + X: - 1 unknowns is 
then k2 - k + 7~~ - 1. If k > n > 2, the former exceed the latter. Thus, we expect that 
any solution to the minimization problem can be found only for k at most equal to 
71.. Of course, the result of Lemma 1 teaches us that great care has to be exercised 
while using this argument. 

LEMMA 5. Assume the set {I&), . . . , I&)} to be linearly independent in 7-t,, and 
compatible. Let {I&), . . . , I&,). [&+I)} and {I&). . . . . I&). Ic&+~)} be compatible sets, 
too. Then, 

(4 n+l. JY&+2)) = P(4n+1), 4n+2). (31) 

proOf: We write I&+1) = II,“=1 Qj)$j), I&+2) = CE=l /&I4k.). From the compati- 
bility of { I&)}rzf it follows 

(4r*F(eajdj)) = eaj(F(Ql),ylj) = (4/3Ci,jE.(djJ). (32) 

j=l j=l .j=l 

for all 1 = 1 , . . . , n,. That is, F(( C,“=, aj$j)) = Cy=, ~~F(l$j)), because of the 
assumed linear independence of {I&)},“=,. Analogously, F( I Xi=1 j&k)) = 

CE=, hdTl4k)). Therefore, 

(4 n+29 F(4,+1) = 

k,j=l 

= P(h+z), &+,). 

??

From the preceding lemma we also deduce that any compatible, linearly indepen- 
dent set {I&),... . I&)} of vectors of 7-& defines a hermitian 71x7~ matrix A4 E M,(c) 
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such that 

The latter can be completed to a maximally compatible set by finding out all solutions 
to (34). 

Remark 5: B. Kiimmerer and R. Werner arrived at the matrix A4 by optimizing 
among all finite decompositions into pure states of a given density matrix. Then, A4 
enters as the matrix of Lagrange multipliers and depends on the matrix j [ll]. The 
assumption that finite decompositions suffice follows from Choquet theory (every n x rz 
density matrix is a linear convex combination of n fixed l-dimensional projections). As 
a consequence, they could draw a conclusion similar to Theorem 1. 

We stick to the other strategy, for not all A4 can be used, and how to find the 
subclass of permitted M is still an open problem; solving (34) is by far not a trivial 
task. 

2.1. Continuity considerations 

Provided the exactness of considerations in the previous section that “in general” 
only sets of cardinality at most equal to the cardinal@ of the underlying Hilbert space 
3-1, are compatible, we have to examine the consequences of possible exceptional points, 
namely points where the functional (23) is no longer smooth. In the next section we 
will see that the few examples where the optimal decompositions can be given explicitly 
give support to these considerations. 

We begin with the following 

LEMMA 6. The cardinal@ of a minimal optimal set for a jixed A c M(C) is lower 
semicontinuous as a functional on the states over M,(C). 

proof: Let {W(Y)j7~N be a sequence of normalized states such that it converges in 
norm to a normalized state w: limy++03 [[w(r)-wll = 0. Let the set I&(r)),i = 1. . . . *A?, 
provide an optimal decomposition for w(y): w(y) = Cj xj(r)4,, 4j(Z) = (djlZI4,). 

Finally, let {]$I)!..., ]$l)} be an optimal set for the limit state w, that is w(Z) 
= cf=r T+!I~(?), @j(g) = Aj(+j]Z]$‘j), and ClSSUIIle 1 > k* := mmyGI\I k,. 

By representing w(y) and w as the density matrices j(y), respectively $, the states 
$j can be written as fi?j&, where Pj E M,(C) fulfil II > ?j > 0, cl=1 ij = II. The 
same set of positive operators ij can be used to construct a decomposition (in general 
not optimal) of i(y): 

/XT) = C &G%jdiGT~ (35) 
j=l 

That is, w(y) = cl=1 @j(y), where 

(36) 
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Because of the assumed convergence w(y) -+ w, the same uniformity characterizes the 
limit ,6(y) + fi when y -+ +CXL Thus 

lim ‘R(w, {Ilj(r)},A) = R(w, {$j}TA) = R(w,A). -Y-++m (37) 

Furthermore, as the $lj need not form an optimal decomposition for the w(y) we 
have 

R(w(r)l {?lj(r))$A) L R(w(?), {Aj(r)4j).A) v?. (38) 

Even if lim,,+, /!j(r)dj(r) does not make any sense, we can select a norm-con- 
verging subsequence xj(m)&(m) to a positive linear functional (not a normalized 
state) X~*C#$. 0 < j < k*. These limit states provide a decomposition w = ES=1 X:+3 
that cannot be optimal, because we assumed the cardinality 1 of the optimal set for 
w to be strictly greater than I;*. But then, by using (37) and (38) we arrive at a 
contradiction: 

R(w.A) < R(w. {+$;}.A) 

= li~ocR(w(~~l)~ {Xj(~~l)~j(~n)}*A) 

I limKR(w(~n)t {dlj(m)},A) = R(w,A). (39) 

Hence, 1 5 lim,,+, I;, which proves the lemma. N 

LEMMA 7. Let w be a state over A c M,(C) and assume that some optimal 
decomposition be given by n pure states. Then, 

fJ,,,(N = ,=zp,, S (w @ w, w> !A @ B. (40) 
II 

Remark 6: Given M,(C), let ‘F1,z = 3-1, &I ?&, and f?(+) = M,(C) 69 M,(C). In 
this way, w, which is a density matrix j with eigenvalues ok and eigenvectors 1~) 
on Mn(C), gets purified as a state on a(?&:,). It corresponds to the vector state 
Ifi) = Cz=i ,/iZl~) @ Irk) E %2 such that 

w(6) = (&I6 @ Ill&). (41) 

The commutant M,(C)’ that appears in (40) is isomorphic to II @ M,(C). Therefore 
the supremum in the same formula has to be taken over all subalgebras A @ B c 
23(Q), where B C II @ M, being contained in its own commutant must be abelian. 
Furthermore, via (41), w also defines a state on Mn(@)‘, and in turn, a state on 
z?(Q): w @ w(;L @ 6’) = w(iL)w(&‘). 

Therefore, using (2) the argument of the supremum on the right-hand side of the 
above expression reads 

TrwrAQDBlogwrA@B+S(wrA)+S(wrB). (42) 

Proof: We represent w as a density matrix b that, by assumption, is optimally 
decomposed by a set of n pure states. Thus j? = CyZ1 fi&fi, with the operators i, 
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being minimal projections pi (in M,) of a maximally abelian algebra P, &pj = Sijpj. 
According to the previous remark, selecting any abelian (not necessarily maximally 
abelian) subalgebra B with orthogonal projections (not necessarily minimal in M,) 
Qj, j = 1 , . . . . k 5 n, such that CT=, o3 = II, w[A &, B can be represented as the 
following density matrix on 7-1,~: 

Then, (42) reads 

-~S(&Q~fi~A) -kTr$JjlogTr,@i+S(wlA). 
j=l j=l 

By going to the normalized states wj(‘) = Tr fi$j fi(.)/Tr l;$j, we get 

(42) = S (wrA) - R(w, { (Tr &?j)wj} , A). 

CONJECTURE: We deem it true that 

K+,(A) = sup S(w@ww,w)tA@B (46) 
BCM’ilB’ 

holds in full generality, namely, also for algebras M that are not finite dimensional as 
supposed in (40), but that are, instead, the strong operator closure of an increasing 
sequence of finite dimensional subalgebras M, c M. 

Indeed, for finite dimensional subalgebras we could not find any counterexample. 
In the infinite dimensional case, we cannot expect that there exists any optimal decom- 
position into normal states. Therefore, we equally expect not to have a replacement 
for the compatibility conditions. Nevertheless, in order to pass from formula (40) to 
formula (46) the continuity considerations are applicable. 

LEMMA 8. 

K,,,(M) = i;f &,A(Mn) = ;@a K&K). (47) 

Proof: Every decomposition corresponds to a choice of positive trace class operators 
of the form fig&? for finite dimensional algebras, otherwise we can write them as 

(L$ZA;/%l.n) Vi E M,, Vii E A c M,, (48) 

where we have considered the GNS representation based on w and the associated 
modular operator defined as Friederichs extension of the quadratic form 

&(4,4) := inf 
Ic#J)=~\~),~EM,(@) 

w(Z*). (49) 
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For n, --+ 00, A, converges in the strong resolvent sense to A [4, 81. If ci E M,, then 
6(n) E dom(AA’2). Therefore, st - lim Ak/2ii = A1j2& 

Assume ll(Ak’2 - A1/2)iL/f2)(j 5 ~ll&ll, f or all ci in the finite dimensional subalgebra 
A. Let &(n) give the optimal decomposition for w relative to M,. Then they are nearly 
optimal relative to M because the individual states with respect to A and A, differ only 
by t. 

In order to conclude the argument for the conjecture, we believe now that the 
.?i(rr) form an abelian subalgebra B of M, that can be embedded into M’. Conse- 
quently, the optimum result with respect to M would be also reachable by restriction 
to abelian subalgebras as conjectured. w 

3. Examples 

We will construct examples of maximally compatible sets for various A C M,,(C). 
The purpose of these examples is to get a feeling whether the relations (29) are 
independent constraints so that maximally compatible sets have the cardinality n., that 
is the dimension of any maximally abelian subalgebra of M,(C). If this is not the 
case, we can still look for other conditions that might allow us to fix the cardinality 
of compatible sets. 

EXAMPLE 1. A c M2(@). 
We consider an abelian subalgebra A that we choose to be generated by the 

identity and the Pauli matrix gz (A is uniquely determined up to unitary equival- 
ences). Its elements are n = (I + ygz, whereas those of M2(@) will be of the form 
n, = p + 5. a’. We represent vectors (states) and the action of the functional (23) on 
them with respect to the orthonormal basis associated with A. Let us take 

Thus, equation (27) becomes 

cos Q cos /3 log cos2 a + ei(6-y) sin Q sin p log sin2 cy 

= cos a cos p log cos2 /? + e”(*-l ) sin cy sin /? log sin2 A. (52) 

We distinguish two possibilities: either 6 # y, or 5 = y. 
In the first case, the only solutions to (52) are sin (Y = *sin/j. Since 41,2rA = #/A, 

all states 4 = XI(~I].[&) + X2(421. )42), X1.2 > 0, Xi + X2 = 1, will have S(#fA) 
= XlS(qh/A) + X2S($2rA). Therefore, S(4,&,2) TA = 0, which is the minimal value 
achievable, while we are interested in its maximum. 
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Thus, we must choose the second alternative in which case by denoting z = cosa 
and y = sin cy equation (52) reads f(z, y, a) = 0, where 

f(X.Y,P) := A(@)z - B(j?)z log x2 + C(p)y - D(p)y log y2. (53) 
A(@) = cos /? log cos’ /?, B(P) = cosp, (54) 
C(p) = sin I? log sin2 8, 0(/j) = sin/J. (55) 

Obviously, we seek solutions (2, y) of (53) that satisfy the additional condition x2 + y2 
= 1. It is easily verified that we have the following solutions (~$3). y(p)): 

(cos 13. sin p), (cos /J. - sin /3). (56) 
(- cos 8, sin@, (- cos @, - sin 1)). (57) 
(sin @, cos /?), (- sin ij, - cos 0). (58) 

The first four couples provide decompositions that correspond, as before, to the mini- 
mum of S (4: 4;) IA whereas both the last two give rise to the nontrivial set 

(59) 

Notice that the whole of the state space over Mz(Q is covered by the convex combi- 
nations X(&l 141) + (1 - X)($2( . 142) by varying 0 5 X 5 1 and p,S E [0,2z]. 

In the appendix it is proved that there are no other solutions than those in (56)-(58) 
whence the second solution will correspond to the optimal one and the cardinality of 
the maximal optimal sets will be 2. 

EXAMPLE 2. A 2 MS(c). 
We will restrict ourselves to a particular class of states on Ma(c), those invariant 

under all possible permutations of the vectors I/G), k = 1,2: 3, in the orthonormal basis 
defined by the maximally abelian subalgebra A. 

As up to a certain point we need not limit ourselves to ‘II = 3, let Pk = I/c) (kl, 
k = l,... . n, be the minimal projections of maximally abelian A in M,(c) and let us 
call “completely symmetric” with respect to the fixed orthonormal basis any density 
matrix of the form 

P= 

l/n i z . . . z 

z l/n 2 . . . 2 

z i I/n, . . . z 

. . . . . . . . . . . . . . . 

. . . . . . . . . z l/r/, 1 , ZER. (60) 

All these are uniquely determined by a real parameter z and are invariant under all 
possible permutations: 

]k) H IT@)). 7r: (1,2, . . . ,?Z) ++ (n(l),7r(2), . . . ,n(n)). (61) 
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The range of the possible values of z is flxed by the request that the eigenvalues 
p;(z) of 6(z) be 0 < p;(z) 5 1. As the latter are pi(z) = l/n, + z(n, - 1) and c)~(z) = 
. . . = p,(z) = l/n - z, we get -l/n(rt, - 1) 5 z 5 l/n. 

We are now interested in decomposing i?(z) in such a way that R@(z).A) in (5) 
be attained. Notice, however, that getting control over optimal decompositions of 0 
immediately involves controlling optimal decompositions of all [I$?*, with tr being 
unitaries in A. 

According to what was discussed in point 4 after Definition 1, we can limit our 
considerations to decompositions into pure states: 

j(Z) = CAj14j)($bjl* 0 < Xj < 1. XX, = 1. (62) 
j .i 

The next lemma makes use of the considerations mentioned above, essentially 
about the concavity of the von Neumann entropy, and shows that for a restricted 
class of completely symmetric i?(z) the search for optimal decompositions can be 
restricted to those given in terms of the real one-dimensional projections. 

LEMMA 9. Given any density matrix 6(z) E M,,(C) as in (60) there always exists 
an optimal decomposition of b(z) in terms of the real one-dimensional projections 
liJ_ = [4j)(4jl that gives R@(z),A). where A c Mn(C) is the maximally abelian 
subalgebra that jixes the representation (60). 

Proof: Let /;(,z) = Cj XjAj be a decomposition into non-real projections 8,. Then, 
let (iJ E M,,(C) be such that in the orthonormal basis defined by A 

(~;)ll. = (~j)~~. i # I;, ((i5)ii = (~j)ll. %. X: = 1,. . . .71. (63) 

Since (lj(z))jk = z = Cj X,(ej);k = Cj X,(sT)2k, we get that j(z) = C, XjcTJ, too. 
Moreover, S (&-,*rA) = S(bjrA) = S ($(3] + iT,‘)rA), hence 

R (G(z), {X&} .A) = R (j?(z). {Xjj,} .A) . (64) 

where /;J = 4(&j + rj;‘) are not pure states and can thus be further decomposed. 
For instance, take their spectral decompositions (they are rank two operators) /;,] 
= rJli?jl + rjzfijz that must involve real eigenprojectors fij,, 1 = 1.2. 

Strict concavity of the von Neumann entropy (inequality (6)) tells us that either 
an optimal decomposition is already given in terms of real projections, or, if this 
is not the case and the optimal decomposition involves generic projections, we can 
always find one with the same optimal contribution 72 (j(z), A), but using real pure 
states. In fact, from (6) 

(65) 
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We turn now to the case TZ = 3 where we have the following 

LEMMA 10. Given a density matrix i(z) E MS(@) completely symmetric with respect 
to a maximally abelian subalgebra A c MS(C) as in (60), there exists a one-parameter 
family of real vectors jq5(~; 2)) E C3. u E [O. 24: such that 

where the on3 are the unitaries in Ms(@) that implement the cyclic permutations of the 
basis vectors defined by A: that is 

TV: (1.2,3) H (1,2.3). 

C?n7]k) = Irj(k)) and 7r2: (L2.3) ++ (3.1.2), 

x3: (1,2,3) H (2,3,1). 

Proof: When ~1 = 3, the real parameter z E [-i, $1. Define the quantities 

(X=X.4-T-C, b = 2~~, 

(67) 

(68) 

and the vectors, whose components with respect to the basis I/C), k = 1.2,3, defined by 
A are: 

&(‘1L, z) = f[Cz + bcos (U - $)I, 

42(u, z) = +[a + hcos (.u + $r)]. IL E [O, 27r], (69) 

C#Q(U. z) = +[a - b cos U] 

Remark 7: Given any vector ~4 E C”, in order to get out of it a completely symmetric 
density matrix with respect to a maximally abelian subalgebra A c M,(C), one would in 
principle use all the unitaries 6TT E MTL(C) implementing all the possible permutations 
T of the basis vectors provided by A and construct 

(70) 

In fact, when n = 3, not all permutations are necessary, but only the cyclic ones. 

From Lemma 9 we know that the class of decompositions of j(z) consisting of 
real pure states always contains at least one optimal decomposition with respect to the 
maximally abelian A with respect to which c(z) is completely symmetric. What turns 
out is that, in the 3-dimensional case, the subclass of the latter containing only three 
cyclically permuted real projections already provides optimal decompositions of s(z) 
with respect to A. 
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We start with fixing the notation. 
We will denote by F~(?L, z) the projections onto the vector states 

contribute to (66), and by 

T(?L. Z) = R(/?(z), { $pj(‘tL. z)}.A) 

3 3 
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or, I~(,(L. z)) that 

= 4 C S (Pj(u, t)]A) = - C 4,(~. z)” lOg~~(~~L. Z)2 (71) 
j=l k=l 

their entropic contribution as a decomposition of 6(z). Notice, in fact, that pJ(~c~, t)/A 
= ~q5(w))(~(u,z)~~A, Vj = 1.2.3, as A is mapped into itself by the whole of the !?=‘s. 

Finally, we will consider 

T*(Z) = inf {r(q z). 11 E [O! 2r]} . (72) 

namely the minimum of the entropic contributions coming out of the special subclass 
of cyclically permuted real decompositions (66) and denote by ZL*(Z) the point at 
which it is attained: T*(Z) = r-(.11*(z). 2). 

Notice that we cannot exclude that more than one vector [4($(z). z)), 1 = 1.2.. . ., 
might optimally contribute with $(u;(z), z) = T*(Z). 

Before coping with the various possibilities we introduce the following 

LEMMA 11. Let b(z) E M3(@) and A E Ms((C) as in the previous considerations. 
Assume T*(Z) in (72) to be a convex function of z E [-i. $1: 

r* (c Xkik) 5 c xkr*(zk). 

k k 
(73) 

for all 0 5 Xk 5 1 with XI, XI, = 1 and all Zk E [-i, +I. Then, R(j(z),A) = r*(z). 
vz E [-$. $1. 

Proof: Let us consider any decomposition s(z) = cj Xjirj of j(z) into real 
one-dimensional projections 6j E M3(c). Since 6(z) = ~~fi(z)~~, for all permutations 
T of the basis vectors Ik), k = 1,2: 3, provided by A we can use the cyclic projections 
and decompose it as follows 

(74) 
.i k=l 

According to Lemma 10, the density matrices 5 C”,=, ark 8jGG, are completely sym- 
metric with respect to A and identified by a real parameter zk, k = 1.2.3. Let they 
be denoted by &(i&). 

Let us now assume the initial decomposition i(z) = Cj Xjhj to be optimal with 
respect to A, that is 

‘R(~(z),{A~B~} .A) = R(/?(z),A) = CAjS(iTJrA). (75) 
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Because of Theorem 1, it thus turns out that the decompositions 

(76) 

must be optimal for l;j(zj) and therefore the contributors onk 8J!?&, k = 1,2,3, must 
coincide with some triple $(~L;(z), z), k = 1.2.3, that minimizes T(WL z) in (71) giving 
T*(Z) in (72). That is, 

Using now the assumed convexity of T*(Z) in [-i, 31, and (75)-(77), we get 

T*(Z) 2 R(;(z),A) = C XJT*(zj) 2 T* (C Xjzj) = T*(Z). 
j j 

(78) 

Indeed, the first inequality follows because the decomposition of fi(.~) that minimizes 
T(U, 2) in (71) need not minimize R (6(z), {/-~~jl} , A). The last equality is a consequence 
of (74). 

Concluding, T*(Z) = R(j(z),A) and every decomposition of 6(z) as in (66) that 
minimizes T(‘~L, Z) in (71) is already an optimal decomposition in the larger sense of 
Definition 2. ??

The convexity of T*(Z) in [-i. $1 is controlled by the numerical means and Fig. 2 
supports the conjecture that T*(Z) is indeed convex. As far as the minima of T(L Z) 
in (71) are concerned, again by the numerical means, the following two possibilities are 
discovered (see Fig. 1). 

There exists a bifurcation value z* < 0: 

Z* _ I (t*)2 - 4t* + 3 < o 
- ?; 2(t*)2 - 4t* + 3 . (79) 

where eet* = t* - 1, such that, for all z 2 z*, T(,YL: Z) has three absolute minima at 
U;(Z) = $r, ,$(z) = 7r = AL; + $7r and .r~z(z) = 5~ = 2~ - TJi(z). 

On the contrary, for all z 5 .z*, there are six z-dependent absolute minima of T(,u, 2). 
The first two are attained at 0 < u;(z) = 3~ -o(z) and U;(Z) = 4~ + Q(Z). For z = -i 
we have u;(z) = ix, U;(Z) = in. 

The other four are related to these latter as are the second two to the first one for 
z > z*, namely AL; = UT(z) + $n, TL~(Z) = U;(Z) + $n and, finally, U;(Z) = 27r -$(z), 
7&Z) = 2X - 7&Z). 

Indeed, the functional T(W Z) in (71) is invariant under ‘u H 1~ + $T and u H 27r - 7~. 
For z 2 z*, the three minima are associated with optimal decompositions that are 

just the cyclic permutation of the other and thus do not differ; the optimal vectors have 
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f(u,z=-l/6) 

u 

f(u,z=z*) f(u,z>z*) 

Fig. 1: Various minima of f(u. z) with varying -l/6 5 z < l/3. 
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Fig. 2: Convexity of T*(Z). 
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two equal components. Therefore, our conjecture on the minimal number of optimal 
decomposers is confirmed. 

For z 5 z*, the first two minima correspond to two different optimal decompositions 
of the kind (66) whereas the other minima contribute with optimal decompositions 
that come out of the first two by cyclic permutations. It thus turns out that there exist 
optimal decompositions which contain just three decomposers in agreement with our 
hypothesis, but there is more of them than one. Together with the two provided by the 
two minima at ,u;(z) = $T F N(Z), we also have the whole of their convex span. 

Appendix 

In order to show that the solutions (56)-(58) to equation (52) are the only ones, 
we follow the idea expounded in [12, Chapter 181. Precisely, we consider the complex 
functions 

FI(ZI, ~2) := A@) 21 - B(y)zllogz: - C(P)22 + q/3)@ log& (80) 
F2(Zi.Z2) := z: + 2; - 1, (81) 

we choose definite branches of the logarithms in order to make them analytic functions 
and form the homotopy H(zl. ~2.t) := (Hl(z1,~2.t),H2(il,~2.t)), t E [O, 11: 

Wl(Zi. za. t> := (1 - t)(Z: - 1) + tFl(tl, 22). (82) 

N2(q,Z2,t) := (1 - t)(z; - 1) + W2(21. z2). (83) 

Notice that for t = 0, H(z 1. z2, 0) = 0 has 6 solutions and that, for t = 1, H(zi ,252.l) 
= 0 is solved by the 6 (real) solutions to (56)-(58). 

Via the implicit function theorem, the manifold of solutions to H(zi, 22, t) = 0 con- 
sists of the paths connecting the solutions to H(zl, z2, 0) = 0 with those to_H(zi. z2, 1) 
= 0. Now, splitting Hi and z, in their real and imaginary parts, Hii(zi. 22, t), 
&;2(~1.~2.t) and x;, wz, respectively, the determinant of the Jacobian 

I;r&u, t> := [o,,>J (B&J, t>. A,,(,W, t,>] . UJ = (21. y1, x2. yz). (84) 

is always > 0 because of the Cauchy-Riemann relations. It happens to be strictly positive 
at t = 0, which means that no more than one path can start from the solutions to 
H(zi, z2. t) = 0 at 1 = 0, namely from the 6 solutions to zf = 1 and 22” = 1. 

Therefore, if there were more than 6 solutions at 1 = 1, then some of the paths 
issuing from them should diverge somewhere in between 0 and 1. This is excluded. In 
fact, 

lim Hl(%. 22, t) 

zf - 1 
=1-t. 

ll-IlIb+X 
(85) 

lim S&i> z2. t> = 1 _ t, 

IIzZll++W 22” - 1 (86) 
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Thus, the diverging solutions to H(zI , z2, t) = 0 are forbidden for all 0 5 t < 1. 
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