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Broken symmetries in the entanglement of formation
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We compare some recent computations of the entanglement of formation in quan-
tum information theory and of the entropy of a subalgebra in quantum ergodic
theory. Both notions require optimization over decompositions of quantum states.
We show that both functionals are strongly related for some highly symmetric
density matrices. Indeed, for certain interesting regions the entanglement of forma-
tion can be expressed by the entropy of a commuting subalgebra, and the corre-
sponding optimal decompositions can be obtained one from the other. We discuss
the presence of broken symmetries in relation with the structure of the optimal
decompositions. €2003 American Institute of Physics.
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[. INTRODUCTION

Entanglement, always one of the most intriguing among quantum marvels, has lately become
a powerful resource in prospective quantum information technoldgiesasuring the entangle-
ment content of states of multipartite quantum systems is thus of great practical importance. If a
bipartite systemA+B is described by a density matrig,g, the so-called entanglement of
formatiorf is measured by

E(pAB)':|nf 2 )\JS(TI’B ’7TJ) . pAB:; )\]71'] . (1)

In the above expressio®(p):=—Trplogp denotes the von Neumann entropy of the state ob-
tained by partial trace ovdd and the infimum is computed over all possible decompositions of
as convexly linear combinations, thatN$>0, X\;=1, of one-dimensional projections; of A
+B. In the following we call such decompositioestremal convex decompositions @to be
distinguished from generic convex decompositions into mixed states.

Whenpag=|Vas)(¥ag|, the entanglement of formation gives the asymptotic ratio between
the number of singlet states necessary to conshiel copies ofpag .2 In the following, we will
compare the entanglement of formation with a particular case of a more general quantity, the
“entanglement with respect to a subalgebra” or “entanglement,” for short. This latter concept is
related to the so-called “entropy of a subalgebrétontained in a reference algebtd, relative
to a statep on M,*

Hy(A)=S(plA) —infl 2 A;S(pjIA): p=2) Nipj . 2
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In the above expressior§(p;.A) is the von Neumann entropy of the staigrestricted to the
subalgebrad and the infimum is calculated over all convexly linear decompositiopsrb other
states onM. It plays a key role in extending the classical dynamical entropy of Kolmogorov to
quantum systents.’ The entanglement of formatidgil) can be considered a special caséf as
explained in Remark 2.1.ii below.

We shall call “optimal” those decompositions achieving the extremurijrand (2). Calcu-
lating eitherE(pag) or H,(A) is particularly complicated. The problem has been completely
solved for the entanglement of formatiori#f, = Hg=C2,® and for the entropy of a subalgebra if
M=M,(C).}"*10 30 far, all other available results concern stgigg and p that are highly
symmetric, isotropic in Ref. 11, respectively, permutation-invariant in Ref. 13.

In this paper we will discuss the previously mentioned results by comparing the two notions
of entanglement sketched above. We show, that some of them are one-to-one related. To do so, we
shall focus on the structure of optimal decompositions in relation to the symmetries existing in the
problem and show possible ways of breaking them. These symmetries form a@rang leave
invariant both the statg and, as a set, the subalgebtaGiven extremal optimal decompositions,
the G-orbits of each of their pure states consist of optimal decomposers, too. We will study the
dependence of either entanglements upon the number of different Grbits.

IIl. ENTANGLEMENT

In the following, we shall consider quantum systems described by algebras of opetdtors,
acting on finite or infinite dimensional Hilbert spacks with states, M s X—Tr(p X), repre-
sented by density matrices which we shall denote by greek letters.

Definition 2.1:Given a finite dimensional subalgeh#C M, we define the entanglement of
the statep with respect ta4 by

E(p;M,A)::inf[; ij(p,-rA):ng Nipj{ 3)

where p=Z;\jp; runs through all convexly linear decompositions wfvith states ofM, and
S(p;[A) is the von Neumann entropy of the staterestricted to the subalgebrd.

Remarks 2.1:
(i) The entanglemern) is a convex functional over the states,

E(? mipj i M, A s; 1iE(p; s M, A), 2 pi=1, u;=0. (4)
This follows by choosing optimal decompositions for fés, which together provide a decom-
position, not necessarily optimal, far;u;p; .

(i) The entanglement of formation in equatiéh) can be obtained from equatiaid) as
follows: setM = A® B, where A and BB are the algebras of observables of the systeghand 5.
With p=p,g it turns out thatpag A=Trg pag-

(iii) The entanglemen() is related with the entropy of a subalgel§ga by

E(pas)=S(paslA®1g) —H, (A®1g). 5

Indeed, as we shall see below in Proposition 2.1, the infimum is achieved at decompositions using
pure states of\1 only, and it enjoys some further remarkable properties.

The quantity in(5) and some techniquEs™ that were developed for computir@), have
recently been used to attack the question whether the entanglement of formation is ddditive.
Among them, a useful result is contained in the following proposition. The idea is in Ref. 13 and,
slightly extended, in Ref. 19. We include a proof for the benefit of the reader.

Proposition 2.1 If the algebraM is finite dimensional, then
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(1) the entanglemenE(p; M,.A) is achieved at certain extremal convex decompositipns
=3jN\jm;, \;>0 which saturatg3). Such decompositions are callegtimal Every pure
state, 7, which appears in at least one optimal decompositiop @ called p-optimal or an
optimal decomposenf p.

(2) For everyp there is an optimal decomposition with a length not exceeding the linear dimen-
sion of M.

(3) The functionalE( . ;. M,.A) is convexly linear on the convex huR(p) of all p-optimal pure
states: Letv=3a;m;, @;>0, Z;a;=1 be any extremal convex decomposition wherehe
are some optimal decomposersfThen,

E(w;M,fu:Ei a;S(mi | A). (6)

Proof: Any mixed statep can be decomposed and, since the von Neumann entropy is concave
on convex combinations, mixed states cannot impr@yewith respect to pure states. ¥1 is d
dimensional, compactness of the state space, extremality and compactness of the set of pure states
ensure by a theorem of Caratheodory that we need not lessdhand not more thard?
decomposer¥!® Because of convexity4), the functionalE( . ;M,.A) is the supremum over
affine functionals. Thus, for evepythere are functionalé such tha&(p; M,.A) =€ (p), while, on
generic states, E(o; M, A)={ (o). Given an optimal decompositign=X;\; it follows

E(p;M,A>=§ NE(, ;M,A>>; Ni€(m)=€(p)=E(p; M, A). (7)

Since equality must hold if7) and becausi;>0, while E(7j; M, A)={(p) by assumption, we
concludeE(m;; M, A)={(;) for all j. With w e R(p), let us now fix this affine functional
and consider the extremal decompositios =« such that all ther{ are optimal decomposers
of p. By convexity and the preceding argument we deduce

E(w;M,A><Ek akEw;M,A):; al(m)={(w). (8)

However,{(w)<E(w;M,.A) by our choice off, and equality holds i8). Thus,E(-;M,A) is
convexly linear orR(p). |

Definition 2.2:We shall call the convex hulR(p) of the optimal decomposers pfaleaf with
respect to the entanglemei(p; M,.A). Then, the state space appears as covered by leaves, and
the entanglement itself is convexly linear above every leaf. That effect is referred to exthe
propertyof E( - ;: M, A),'%i.e., E( - ;M,A) is a convex roof.

Definition 2.3: Given p on M, we shall call a grougs a symmetry group with respect to
E(p; M, A), if for all ge G there exists a linear mag,: M— M such that the state and the
subalgebraA (as a set are left invariant byy,, namely, yg[p]=p, where yg[p](m)
=Tr(py(m)).

Proposition 2.2:1f G is a symmetry group with respect ©(p; M,.A), the leafR(p) is
G-invariant as a set. In particular, the action®@fpermutes the optimal decomposerspof

Proof: Let p=2;_;\;p; be an optimal decomposition with respect E¢p; M,.A). Then,
since y;[p]=p and y(A)=A for ge G, the decompositiorp=2jijjy;(pj) is also optimal.
Therefore, its leafR(p) must contain both the;'s and the‘y;(p]-)’s. |

Based on the previous two propositions, the entrbipy.A) has explicitly been computed in
the following cases:

Case 1:(Refs. 17, 9, 1pLet M be the full 2< 2 matrix algebraM,(C), A the subalgebra of
all 2x 2 matrices diagonal with respect to a given basjs|2), andpz(ﬁ* tl’_a), O<a<1,|b|?
<a(l-—a), any density matrix.
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Case 2:(Ref. 13 Let M=M;(C), A the subalgebra of all 83 diagonal matrices with
respect to the basi4), [2), |3) and

1 1 x Xx
p(X)=§ X 1 x|, —1/2<sx<1, (9)
X x 1

any density matrix invariant under the group of permutation§l¢t,3.

For future comparison with the entanglement of formation of isotropic statéslohensional
bipartite systems studied in Ref. 11, we fix an orthonormal Hasis C® and consider the group
G of permutations of1,2,..,d}. It turns out that anyG-invariant density matrixp(x) over M
=My(C) can be written as

1-F
pr=g=1 (1= u)(wl) + Flo)(ul, (10

where| )= (1/\/d) E?:1|j) andF is the fidelity parameter

(d=1)x+1
O=<F:=(lpM|)=—g—7—=1- (12)
Settings(t) :=—tlogt, we have

Case 1:For all p, the optimal decompositions are

p=N W) (wy|+(1=N)|wa)(w,, (12
Z*
|W1>:(2)' |W2>:(z§)’ b=2,7, (13
|z1|2=(1+ y1—4|b|?)12=1—|z,|? x=1(1+2a—_1>. (14)
M M

The corresponding entanglementEiép; M ,(C),.A) =s(|z1|?) +5(]2,]?).
If p=pg is permutation-invariant, that is, #=1/2, b=x/2 F=(1+x)/2, the entanglement
reads

E(pr;My(C),A)=s

(19

1+2JF(1-F) N 1-2JF(1-F)
2 S 2 '
Case 2:Given the groupG of permutations of1,2,3, let V, V2 implement unitarily the
subgroupG, of cyclic permutations. Then, ang-invariant statepe can be written
pr=5|W)(W|+3VIw)(WIV I+ 5 VEw)(w]V 2, (16)
where
1 a+2bcosé 3
wy=3| a-2bcodd=/3) |, a=\3F, b=\/§(1—F). (17)
a—2bcog 6+ w/3)

The structure of optimal decompositions depends on the convexity of
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3
S(F):= min X, s(|w;(F;8)|?). (18)

fe[0,27]1=1

For F=F*:=(2x*+1)/3, x*=—-0.4150234, the minimum is achieved at a single extremal
Gy-orbit generated by the vectors

<a+2b) [ VE 2R

1
w)=3

a—b |=—| VF=J(1-F)2]. (19
a—b JF=J(1-F)/2

For each 6<F<F*, there are two different orbit-generating vectdus,. (F)), whoseG,-orbits
provide different optimal decomposers f&8), and which form together one orbit of the full
permutation grouf. They are

|w.(F))= | a—2bcog7/3+ af)
a—2bcog 7/3* af)

1 a+2b cosap
: (20

where the anglevg varies with O<F<F*.

Finally, for F=0, ag= — 7/6, the minimum is achieved again at a sin@eorbit containing
the vector|wg) = (1~/2) (1,0,—1). As the 6 vectors coincide pairwise up to a sign, the states form
a single optimal decomposition of length 3.

In Ref. 13, it is shown that the above vectors give optimal decompositions as long as the
function S(F) is convex. Numerically, this is the case for BH<8/9. The corresponding entangle-
ment is

2—F+2\/2F(1—F)>+2 1+F—-2\2F(1-F)
S
3 6

E(pr:M;3(C), A)=s (22)

for fidelities F*<F<8/9. For F=0 the entanglement equals log2. We have only numerical
results within the interval & F<F* 1 reflecting that the exact dependence of the amgldn
(20) as a function ofF is unknown.

Remark 2.2:Permutation-invariant states as (h0) can be written as averages over the
unitariesU .. implementing the permutation group,

1
pe=gr 2 Ua 16X elU (22

if and only if [( ] ¢)|>=F, where|y) is the vector in(11). Necessity comes from the fact that
U.|¢)=|). Sufficiency: The identityl and|¢)(¢{ form a basis for all possible contributions to
the average$2?).

In view of the structure of the optimal decomposers discussed above, we introduce a notion of
regularity with respect to a subgroup of a symmetry group, as follows:

Definition 2.4:Given a symmetry groufs with respect toE(p;M,.A), we shall call a leaf
R(p) regular of ordern with respect to a subgrouplCG, if there existsn pure statesp;
€ R(p) such thaty;;[p;]=p; for allhe H, whereas the convex span of the orBi{g [p; 1} is
the whole of R(p).

We illustrate the previous definitions with some examples.

Example 2.11L.et M be a fulld X d matrix algebra orC? and.AC M diagonal with respect to
a chosen orthonormal bas{$j>}?:1 in CY. Let p be a symmetric density matrixj|p|k)
=(k|p|j). Then, with respect to the chosen representation, the transpogitiespects both the
state and the subalgebrsé Also, R(p) is regular with respect t&=H={id,7}, the order of
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regularity depending on the stape In fact, letw=|¢)( | € R(p), then, because of Proposition
2.2, T(m)=="=|¢'}'| e R(p), too. If w#m', we may consider the stat®=w/2+7'/2.
which, by Proposition 2.1, is already optimally decomposed. Also,

E(o; M, A)=8(m[A)=S(w]A). (23)

Instead, the decomposition

_LfRe()  1-ReWl)

5 Ty + 5 -, (24
where
= =y
"= 21 Re(4U) 9

need not be optimal. However, the concavity of the von Neumann entropy yields

E(o; M, A)=< S(m. [ A)+

LeRe (414 m I A=(SwlA). (26

1-R /
6(;¢|l/f>)s(

It thus follows from(23) that 7| A= 7. [ A, whence the componentg(i), '(i) of ¢ and ¢’
must coincide apart from an overall phase. Thas; 7' and theZ-symmetry cannot be broken.

Example 2.2L et M= A® B, with A and B isomorphic andr: A— B the algebraic exchange
of the two of them. Ifp is a state onM such thatpe(o 1@ o) =p, in generalo ™ *® o does not
belong to any subgroup of regularity pf indeed, if A (and thusB) is a d-dimensional matrix
algebra and|¢)} is an orthonormal basis in the corresponding Hilbert sgdgeand thus also in
'Hg), the density matrix

pasi=311)(1]®(2)(2|+ [2)(2]®|1)(1], @7

is such that Trp(o 1@ 0)(X®@Y))=Tr(p(X®Y)). Also, pag is already optimally decomposed,
E(pag;A,M)=0 is achieved with the decomposéls(1|®|2)(2| and|2)(2|®|1)(1|, which,
however, are not invariant under '® o

Example 2.3Let M= A® B, with A andB bothd X d full matrix algebras. We fix the same
orthonormal basig|¢)} in both Hilbert space$t, g and consider the one-parameter grauimf
unitaries

Ups=2y & Mimj)(jl @ [k)K. (29
)

The density matrixpap:=2; (Rjk | )(k|®[j)(k|, , R=[Rj]=0, TrR=1, is U-invariant; more-
over, Vpas==; (VR)jkl [i)(k|®|j)(k|, so that the operator§pasMpas M e M, have the

same matrix structure ggg. Choosing positivé;=0, j € J, such that; _.;M;=1, ppg decom-
poses into

VoaeMVpas
PAB:JEEJ (Tr(pABMJ))W' “

Since it is also true that every mixed staten M can be written as i29) by means of a suitable
positiveM;, (29) indeed exhausts all possible decompositiong4f. Thus, the decomposers
of pag Which are optimal with respect t&(pag;/M.,.A), have the same structure pfg and are
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thenU-invariant. Hence, the group is a group of symmetries qgf,g With respect to entangle-
ment and the leaR(pag) is regular with respect tel=U, its order depending on which further
symmetries are enjoyed g

Example 2.4Let M=M,(C), A as in Case 1, andr a permutation-invariant state. The leaf
R(pg) is the orbit of the groups of permutations of1,2). This follows from the form of the
optimal vectorg12) in such a casdwl>=(2), |W2>=(Z), with z; ,=\/1/2(1+2\F(1—F)). It
is regular of order 1 with respect to rotations with elements frdm

Example 2.5Let M=M;(C) andpg a permutation-invariant state. Then, féf <F andF
belonging to the convexity region &{F) in (18), the structure of the optimal vectaik9) ensures
that the leafR(pg) is regular of order 1 for the subgroup of permutations{2,3}—{3,2.
However, at the poinfE=F* such aH-invariant vector bifurcates into the two optimal or(@§).
Thus regularity with respect to the subgrodpis broken and remains broken forkGF<F*. At
F =0 optimal vector states of differe@, orbits degenerate pairwise into a single one, and one of
them isH-invariant, while the corresponding vector changes its sign.

In the last two examples, for @t whend=2, and forF greater than the bifurcation values
F* in the convexity region of(F) in (18), whend= 3, the leafR(pg) of a permutation-invariant
pe is generated by the orbit under the subgr@pof cyclic permutations/!|w), j=0,1,2. The
vector |w) is invariant under a unique transposition out ®f This structure is indeed more
general as will be shown in the next two propositions.

Proposition 2.3:.Let AC M=My(C) be chosen as in Example 2.1 and the density matrix
be invariant with respect to the permutation grd@p If the leaf R(pg) with respect toA is
generated by exactly onBg-orbit of a normalized vector stafev) e CY, with G,C G the sub-
group of cyclic permutations, then the entanglement is

_ 1-pe
E(pF,Md<c,A>>=s<pF>+<d—1>s( 1 ) (30)
|VF+\(d=1)(1-F)|2
pF:: d . (31)

Remarks 2.3:
(i) The assumption of the previous proposition amounts tdRgk:) to be regular of order 1 with
respect to the subgroupC G of permutations o42,3,..,d}. Indeed, the leaf i&-invariant, so
that thed stateg ¢>j>=Vj|w), j=0,1,..,d—1, obtained via cyclic permutations, must be invariant
under the remainingd—1)! permutations This is possible onlydf—1 of thed components of
the optimal vectotw) are equal.
(i) If |w) has three different components, then the decompositi@®s contain at leastl(d
—1) different terms.
(iii ) In Sec. 11l we will show that, upon identification @f with the quantityy(F) in Ref. 11, the
entanglement of formation calculated there is given(®j) and (30) in a rangeF** =F>1/d.
The upper limitF** is a particular bifurcation point which was discovered in Ref. 11 and that will
be reinterpreted accordingly within the framework of this work.

Proof: By hypothesispg=1/d E}’;&lewxwlvfi is an optimal decomposition with entangle-
ment

d
E(pr ;Mo(C).A)= 2 s(I(ilw)[?). (32

Also, taking into account Remarks 2.2 and 2.3, and decomposing

d
[w)=\Fly) +2V1-Flwi)=al1)+ 82, i),
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wheres is a pure phase, it follows théwv; )= (/d|1)—|#))/\Jd—1 and

1-F| 3
W)= —=| (VF+2(1-F)(d—1))|1)+ ﬁ—s\/T)E i) |-
Jd d—1/i%
With £:=2 Reg), the right-hand side of32) reads
5(6)=s(p(&)+ (d— 1)s( _p(f)),

0(£)= F+(1-F)(d—1)+&VF(1—-F)(d—1)
= 5 )

It achieves its minimum at the maximum value pfthat is fore=1, from which the result
follows. Indeed, as we show beloyw) must be real. If remark 2(B applies we always get a
local extremum. Either by direct calculation or relying on Ref. 13 one concladek |

We now relax the hypothesis of the previous proposition and allow for more tha@ g@nebit
to be optimal for the entanglement @f with respect to the subalgehrg that is we allow the leaf
R(pg) to be generated by more than oBg-orbit.

Proposition 2.4:Let AC M =My(C) be chosen as in Example 2.1. If the density mapfixs
invariant with respect to the permutation gro@pand its entanglement with respect.tbcan be
achieved at an optimal decomposition consisting of @qeorbit of normalized vector states
|w) e CY, with G,C G the subgroup of cyclic permutations, then we have three possibilities:

(1) |wy=1/{/d=g_,|k) in which caseF=1 andpg=|¥){#|;

(2) |wy) is real with 1 component equal & andd—1 real components all equal &p#a; ;

(3) |wy) is real with 2 componenta;#a; andd—2 components all equal ta; different from
botha;, anda,.

To prove the result we need a preliminary

Lemma 2.1The vector|w) whoseG,-orbit is optimal can be chosen real.

Proof: Letv, k=1,2,..,d, be the components ¢fv) with respect to the chosen orthonormal
basis{|k)} and|y)= (1/d) ={_,|k). The assumption is thate=1/d ={ZgV/|w)(w|VI; from
normalization it follows that the components |@f) must satisfy

d 2 d
g,l lwy|?=1 , —1—€§ lW}‘W =dF. (33

Further, in order to implement optimality and achiewépg ; M,.A), we minimize

d d
S(W,\, )= 2 wklzloglwklzﬂkE |wk|2+MEk Wwy (34)
=1 0+

with Lagrange multipliers\, . Settingv =:25:1Wk= JdFée?, equating to zero the derivative of
(34) with respect tow; and multiplying byw; we get

—|w;|? loglwj| >+ (X = 1)|wy| 2+ m(v* wj—|w;]?)=0.

Therefore, the quantltyp w;u and thus, after summing over alsou, must be real, whence,
necessarilyv; = gl vj, Withv; eR, for all j. The result follows by eliminating the overall phelle.

Proof: (Proposition 2. %Accordlng to the previous Lemma, we chodee real and proceed to
minimize
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d d d
S(W,)\,,u,):=—k21 w2 logw2+ )\gl w2+ ,ukzl Wi (35)

Because of convexity, the functiag(x) := —x logx? intersects the straight linf(x):=2(1—\)x
— wu in at most three points ojp—1,1]. Therefore, thal solutions to

— 2w, logwZ — 2wy + 2 Wy + u=0,

can have at most three different real valugs, i =1,2,3. We denote by; the number of times
they appear among the components and consider the functional

3 3 3
S(a;n\,u,v):=— >, na’loga?+\ >, ma?+u>, na;, (36)
= = =

where we treat the;’s as continuous variables constrainedry+ n,+ns;=d. Minimizing (36)
yields the following equations:

ni(a;loga’+a;—\a;—u)=0, i=1,2,3, (37)
—a?loga+za’+uaj+v, i=1,23. (38)

It follows that, ifn;>0,i=1,2,3, ther=>_,(ua;+ 2v+2a)=0,i=1,2,3, and thua=b=c. This

case corresponds - 1=|#){¢|, a pure state, with null entanglement with respectitar here-

fore, if there are three different intersections, the minimum entanglement is reached at the bound-
ary values ofn;, i=1,2,3, that is, without loss of generality,mf=n,=1 andn;=d— 2. If there

are two intersections, that is, if, without loss of generatitys=0 anda, # a,=as, then, from(37)
and(38), we calculateu=—2(a;+a,), u=a;a, and deduce the equality

2

az
aj—as+aja, Iog¥=0 .
1

For fixed a;, because of their convexity properties, the two functid(s):=log (ai/xz) and
g(x):=(a;/x) — (x/a;) intersect ak=a,, but, at no other points. Therefore, the entanglement is
again minimal at the boundary, that is at, sgy=1 andn,=d—1. |

Remark 2.4L.agrange multipliers have been used in Ref. 11 in order to calculate the entangle-
ment of formation of isotropic states of bipartite quantum systems, where it is shown that, when
F>1/d, the optimal decomposers have only two different components. We shall relate those
results to ours in the following section, where we also discuss the fact, discovered in Ref. 11,
stating there is a bifurcation poift** such that the entanglement of formation is lineafin
betweenF** andF=1.

Proposition 2.4 shows that when the vedt) has only two different components, then we
reduce to the case discussed in Proposition 2.3. Instead, [whéras three different components,
which is possible in a range of values Bf then we have more than one optimal decomposition.

If d=3 one gets at least two. Notice that these results are obtained under the hypothesis that
Go-orbits of vectorgw) provide optimal decompositions for the entanglemengofvith respect
to the subalgebral.

This fact is linked to the convexity of the functid@8), which, as observed in the discussion
of Case 2, fails in a neighborhood Bf=1: If F=F** one needs two orbits: the optimal orbit for
F=F** and the singlet foF =1, just as observed in Ref. 11. Consequently,Fét <F<1 no
Gy-orbits can be optimal.
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[lI. ENTANGLEMENT AND ENTANGLEMENT OF FORMATION

In this section we establish a one-to-one correspondence between the results of the previous
section, in particular proposition 2.3, and the entanglement of formation of highly symmetric
states as examined in Ref. 11. This concerns mainly the regidp<E. From Ref. 11 we learned
the existence of the bifurcation poift™* . On the other hand, our results in the regiond)1/
<F<F** can be converted into those found by Terhal and Volbrecht. Indeed, the value of the
entanglement of formation will be proved to be j(30).

To this end we consider the tensor produet:=.A® B of the full dXd matrix algebra,
denoted byA, with a copy,B, of itself. We fix an orthonormal bas{gj)} of C and given any
density matrix, that is a state os,

pA=§ Rili)(kl, R=[Ry]=0, TrR=1, (39)

we embed it aP[ p,] into the state space o¥1 according to the following:

Definition 3.1:Let D be the linear map associating matrix units(k| of .4 with matrix units
{li)(k|®|j)k|} of M. We shall refer to it as thdoubling map It transforms stateg, on A into
states onM = A® B of the form

pAHD[pAL:% Rixli)(k|®]j)(K|. (40)

Remark 3.1This yields the class of density matrices in Example 2.3, which we shall refer to
as diagonal clas@vith respect to the chosen basi®n the given diagonal class the doubling map
can be inverted

D—lszB=§ R,-,k|i><k|®|1><k|~>pA=§ R; i )(KI. (41)

The argument developed in Example 2.3 ensures that decompositippscah be mapped onto
decompositions oD[p,]. Vice versa, decompositions @fag provide decompositions for the
diagonal class op, by applyingD 1. Moreover, if 4,C .4 denotes the subalgebra of diagonal
matrices in the given, fixed representation, tHi&p[.4g) =S(D[pall.A). Therefore:The en-
tanglement is preserved by, n the sense that

E(pa; A, Ag) =E(D[pal; AR B, A). (42

In Ref. 11 the entanglement of formation has been calculated for the isotropic states
1-F
wpzﬁ(lAB_|\I’><‘P|)+F|‘I’><q’|- (43

In the above expressiaol g is the identity for the algebral® B and

=53, el a4

Remark 3.2The isotropic states are invariant under the grgugf all unitaries of the form
U®U where(a|U|b)=(a|U|b)*,

UoUwpU @0 1= w. (45)
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As in Remark 2.2, it follows thab g can be expressed as the following average with respect to the
Haar measureqlJ,

szfgdgu UeU|dNdlutel?, (46)

if and only if F=(¥|wg|¥)=[(¥|D)|2.
We compare the isotropic stat®- with the doubling ofpg in (10),

1-F
Dlpe]=g—7 (DL11=DLI¥)(w) + FOLI¥)(vl]
1_F d . . . .
91 ;1|J><J|®|l><l|—|‘1’>(‘1’]| + FlW) (|, (47)

Proposition 3.1:Let F>1/d and consider the decomposition
1 -1 -1
wF:d_lz U7T ®U77 |(D><¢|U’TT®U7T

by means of the unitaridd ;. that implement the permutation groG If the latter is optimal for
the entanglement of formatiolE(wg) with |®P)®| in the diagonal space, thek(wg)
=E(pr., A Ag).

Proof: The d! unitariesU . form a subgrougc® G of the group of unitaries in Remark 3.2;
they implement the permutation of the chosen bd$j$®|j)} of the diagonal space. Then,
(V]we|¥)=(¥|D[pe]|¥)=F and

1w, 4
Dlpr]= gy 2 U, "o U @) P|U U,

If |®XP| is optimal for wg, it turns out from Proposition 2.2 that the decomposeltkes

®U|<I)>(<ID|U‘1®U‘1 are optimal, too. Thus the result follows from Proposition 2.1. N
Remarks 3.3:

(i) If F>1/d the isotropic stateog is entangled. Wher<1/d it becomes separable. There
exist several proofs of this fact, e.g., Ref. 18.

(i)  Inview of Remark 2.8i), the previous proposition establishes a link between our results
and those of Ref. 11. In Ref. 11 a new symmetry breaking bifurcation point was observed
at F=8/9 whend=3. The doubling map makes it correspond to a bifurcation point within
case 2 of the previous section at the same valuE.oThe numerical analysis in Ref. 14
missed it, the needed accuracy being of the order of 1 both cases the leavé{ wg),
respectively,R(pg), are identical for allF within F** =8/9<F<1. This unique leaf is
generated by the optimal decompositionsaegfy Which form one orbit, and by the pure
statew; given by (44). The same is true gbg9 andp,. The latter orbits are singlets.

(i) The entanglement gf; andpg that generate the leaf discussed in the previous remark do
not coincidet®

E(p1;M,A)=In3, E(pgg:M,A)=In3- 3In2. (48)

We shall now relate the remark above to another observation which again relates entanglement
of different algebras with one another.

From Case 1 in Sec. Il, we know that vectors of the for))fm &nd (), with x?>+y?=1
generate the leaf of some stateon M,(C). These two-dimensional vectors can be embedded in
C? as follows:
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X
yIv2 x/V2
With them we construct the density matrix M3(C) of the form
a b b
Pa=Awp)(wy|+(1=N)|wo)(wp|=| b € ¢, (50)
b ¢ c

It is easy to check that powers pf have the same structure which is thus inheritedypy. It
thus follows that

u
Vsl ¢>=( v)
v
for any |¢). The discussion of Example 2.3 assures that the optimal decomposgksvath
respect to the entanglemetp; M5(C),.A3), with A5 the maximally Abelian subalgebra in the
chosen representation, have again the same form. But r;)eamtd ¢) being optimal with respect
to E(p,;M,(C),A,), (50 is itself an optimal decomposition op; with respect to
E(p3:M3(C), As).
According to the discussion at the beginning of this section, it also follows that the doubling
map,

W)= W) =x| D3| 1)+~ (|2)912)+[3)|3)), 5
W)= W) =y|1) 1)+ —(12)2[2)+[3)9]3), 52

provides optimal decomposers, too. In particular, for gixgyn on the unit circle the pure states
IW;)(W;|, j=1,2, generate a leaf of the entanglement of formation functional on which it is
convexly linear.

Moreover, forx=1/3 andy=\/2/3, we gefW,)=|¥), with fidelity F=|(¥|W,)|?=1, and
|W,)=| g with fidelity F=|(¥|W,)|?=8/9, indicating a reason for the bifurcation valBe
=8/9.

One observes thdbl) and (52) become identical fox=y=1#2 so that the doubling map
gets the vector,

W)= —lneln)+ 5 (12)812) +3)613), 9
which has fidelity
F=|(W|Wa)2=3+3=p+(1-p)§ . 0<p=3\6- I<1. (54)
Let us now consider the state
Pe=P| VYN W[+ (1—p)[Pgol Peg- (55)

By using (48), it can be shown that its entanglemeB{pg) is larger thanpE(p(1))+ (1
—p)E(p(8/9)) for 0<p<1. This implies that convexity of(F) in (32) is lost for F>F** in
accordance with the discussion above.

We finally note that one can exterid9) to all dimensions larger than two. Indeed, #gtz,
denote the components of a unit vector in two dimensions. By similar arguments one proves that
the leaves of case 1 of the previous section are mapped onto certain leaves belonging to the
entanglement of formation id+ 1 dimensions by the embeddings
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d+1
(zl) — 2400+ (z,/d) X ji)- (%0
2 =2

In particular, the embeddings ¢£,,z,} and{z},z;} form an optimal pair with respect to the
entanglement of formation. One further observes in the specialzgast/\/d+ 1 the embeddings
(56) are the totally symmetric vectob in d+1 dimensions and

d+1

d .
grpiot mj;“l)- (57)

Its fidelity readsF =4d/(1+d)?, and we see as above
Fati=4d(d+1)7? (58)

i.e., the bifurcation value given in Ref. 11 fdrt+1>2.

V. CONCLUSIONS

We have studied in several examples the entanglement defined by a maximal commuting
subalgebra of a full matrix algebra, and its relation to the entanglement of formation. Apart from
its actual numerical value, what is interesting is the structure of both entanglement functionals
upon the space of states, and their separation into different leaves. To some extent these leaves can
be found by applying group theoretical considerations. They show a rich structure with varying
stability under the groups under consideration. Since the same group appears in different algebraic
contexts, it can be shown that the decompositions of states on different algebras can be related.
This helps to control the optimal decompositions and to understand their variety. This new tech-
nique is shown at work in several examples: The doubling map relates two quite different lines of
research which had been considered almost independently up to now. In particular we have a
further proof of the entanglement of formation results for isotropic states of Terhal and Volbrecht
in the region (I)<F<F** .1 Another embedding map verifies their bifurcation pofit*
close toF=1 as a footprint of a symmetry-breaking in two dimensions. It belongs to a class of
maps which change entanglement but not the leaves. The leaves are respected because the en-
tanglements differ just by a convexly linear function.

We have provided some examples of embedding procedures which allow to connect various
entanglement problems not only with each other, but also with problems involving other quantities
based on convex or concave roofs, for example general entanglement monotones or Holevo
(1-sho} capacities.
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