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We compare some recent computations of the entanglement of formation in quan-
tum information theory and of the entropy of a subalgebra in quantum ergodic
theory. Both notions require optimization over decompositions of quantum states.
We show that both functionals are strongly related for some highly symmetric
density matrices. Indeed, for certain interesting regions the entanglement of forma-
tion can be expressed by the entropy of a commuting subalgebra, and the corre-
sponding optimal decompositions can be obtained one from the other. We discuss
the presence of broken symmetries in relation with the structure of the optimal
decompositions. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1570509#

I. INTRODUCTION

Entanglement, always one of the most intriguing among quantum marvels, has lately b
a powerful resource in prospective quantum information technologies;1 measuring the entangle
ment content of states of multipartite quantum systems is thus of great practical importanc
bipartite systemA1B is described by a density matrixrAB , the so-called entanglement o
formation2 is measured by

E~rAB!ª infH(
j

l jS~TrB p j ! : rAB5(
j

l jp j J . ~1!

In the above expression,S(r)ª2Tr r logr denotes the von Neumann entropy of the state
tained by partial trace overB and the infimum is computed over all possible decompositionsr
as convexly linear combinations, that isl j.0, (l j51, of one-dimensional projectionsp j of A
1B. In the following we call such decompositionsextremal convex decompositions ofr to be
distinguished from generic convex decompositions into mixed states.

WhenrAB5uCAB&^CABu, the entanglement of formation gives the asymptotic ratio betw
the number of singlet states necessary to constructN@1 copies ofrAB .3 In the following, we will
compare the entanglement of formation with a particular case of a more general quanti
‘‘entanglement with respect to a subalgebra’’ or ‘‘entanglement,’’ for short. This latter conce
related to the so-called ‘‘entropy of a subalgebra’’A contained in a reference algebraM, relative
to a stater on M,4

Hr~A!ªS~r�A! 2 infH(
j

l jS~r j�A! : r5(
j

l jr j J . ~2!

a!Electronic mail: Benatti@Trieste.infn.it
b!Electronic mail: narnh@ap.univie.ac.at
c!Electronic mail: Armin.Uhlmann@itp.uni-leipzig.de
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In the above expression,S~r jA! is the von Neumann entropy of the stater j restricted to the
subalgebraA and the infimum is calculated over all convexly linear decompositions ofr into other
states onM. It plays a key role in extending the classical dynamical entropy of Kolmogoro
quantum systems.5–7 The entanglement of formation~1! can be considered a special case of~3!, as
explained in Remark 2.1.ii below.

We shall call ‘‘optimal’’ those decompositions achieving the extremum in~1! and~2!. Calcu-
lating eitherE(rAB) or Hr(A) is particularly complicated. The problem has been comple
solved for the entanglement of formation ifHA5HB5C2,8 and for the entropy of a subalgebra
M5M2(C).17,9,10 So far, all other available results concern statesrAB and r that are highly
symmetric, isotropic in Ref. 11, respectively, permutation-invariant in Ref. 13.

In this paper we will discuss the previously mentioned results by comparing the two no
of entanglement sketched above. We show, that some of them are one-to-one related. To do
shall focus on the structure of optimal decompositions in relation to the symmetries existing
problem and show possible ways of breaking them. These symmetries form a groupG and leave
invariant both the stater and, as a set, the subalgebraA. Given extremal optimal decomposition
the G-orbits of each of their pure states consist of optimal decomposers, too. We will stud
dependence of either entanglements upon the number of different orbits.12

II. ENTANGLEMENT

In the following, we shall consider quantum systems described by algebras of operatorM,
acting on finite or infinite dimensional Hilbert spacesH, with states,M{X°Tr(r X), repre-
sented by density matrices which we shall denote by greek letters.

Definition 2.1:Given a finite dimensional subalgebraA#M, we define the entanglement o
the stater with respect toA by

E~r;M,A!ª infH(
j

l jS~r j�A! : r5(
j

l jr j J , ~3!

wherer5( jl jr j runs through all convexly linear decompositions ofr with states ofM, and
S(r j�A) is the von Neumann entropy of the stater j restricted to the subalgebraA.

Remarks 2.1:
~i! The entanglement~3! is a convex functional over the states,

ES (
j

m jr j ;M,AD<(
j

m jE~r j ;M,A!, (
j

m j51, m j>0. ~4!

This follows by choosing optimal decompositions for ther j ’s, which together provide a decom
position, not necessarily optimal, for( jm jr j .

~ii ! The entanglement of formation in equation~1! can be obtained from equation~3! as
follows: setM5A^ B, whereA andB are the algebras of observables of the systemsA andB.
With r5rAB it turns out thatrABA5TrB rAB .

~iii ! The entanglement~3! is related with the entropy of a subalgebra~2! by

E~rAB!5S~rAB�A^ 1B! 2 HrAB
~A^ 1B!. ~5!

Indeed, as we shall see below in Proposition 2.1, the infimum is achieved at decomposition
pure states ofM only, and it enjoys some further remarkable properties.

The quantity in~5! and some techniques13,14 that were developed for computing~2!, have
recently been used to attack the question whether the entanglement of formation is add15

Among them, a useful result is contained in the following proposition. The idea is in Ref. 13
slightly extended, in Ref. 19. We include a proof for the benefit of the reader.

Proposition 2.1: If the algebraM is finite dimensional, then
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~1! the entanglementE(r;M,A) is achieved at certain extremal convex decompositionsr
5( jl jp j , l j.0 which saturate~3!. Such decompositions are calledoptimal. Every pure
state,p, which appears in at least one optimal decomposition ofr is calledr-optimal or an
optimal decomposerof r.

~2! For everyr there is an optimal decomposition with a length not exceeding the linear dim
sion of M.

~3! The functionalE( . ;M,A) is convexly linear on the convex hullR~r! of all r-optimal pure
states: Letv5( ia ip i , a i.0, ( ia i51 be any extremal convex decomposition where thep j

are some optimal decomposers ofr. Then,

E~v;M,A!5(
i

a iS~p i�A!. ~6!

Proof: Any mixed stater can be decomposed and, since the von Neumann entropy is con
on convex combinations, mixed states cannot improve~3! with respect to pure states. IfM is d
dimensional, compactness of the state space, extremality and compactness of the set of pu
ensure by a theorem of Caratheodory that we need not less thand and not more thand2

decomposers.10,16 Because of convexity~4!, the functionalE( . ;M,A) is the supremum ove
affine functionals. Thus, for everyr there are functionals, such thatE(r;M,A)5,(r), while, on
generic statess, E(s;M,A)>,(s). Given an optimal decompositionr5( jl jp j it follows

E~r;M,A!5(
j

l jE~p j ;M,A!>(
j

l j,~p j !5,~r!5E~r;M,A!. ~7!

Since equality must hold in~7! and becausel j.0, while E(p j ;M,A)>,(r) by assumption, we
concludeE(p j ;M,A)5,(p j ) for all j . With vPR(r), let us now fix this affine functional,
and consider the extremal decompositionv5(akpk8 such that all thep i8 are optimal decomposer
of r. By convexity and the preceding argument we deduce

E~v;M,A!<(
k

akE~pk8 ;M,A!5(
k

ak,~pk8!5,~v!. ~8!

However,,(v)<E(v;M,A) by our choice of,, and equality holds in~8!. Thus,E(•;M,A) is
convexly linear onR~r!. j

Definition 2.2:We shall call the convex hullR~r! of the optimal decomposers ofr a leaf with
respect to the entanglementE(r;M,A). Then, the state space appears as covered by leaves
the entanglement itself is convexly linear above every leaf. That effect is referred to as throof
propertyof E( • ;M,A),10 i.e., E( • ;M,A) is a convex roof.

Definition 2.3:Given r on M, we shall call a groupG a symmetry group with respect t
E(r;M,A), if for all gPG there exists a linear mapgg :M°M such that the state and th
subalgebraA ~as a set! are left invariant by gg , namely, gg* @r#5r, where gg* @r#(m)
5Tr(rgg(m)).

Proposition 2.2: If G is a symmetry group with respect toE(r;M,A), the leafR~r! is
G-invariant as a set. In particular, the action ofG permutes the optimal decomposers ofr.

Proof: Let r5( j PJl jr j be an optimal decomposition with respect toE(r;M,A). Then,
sincegg* @r#5r and g(A)5A for gPG, the decompositionr5( j PJl jgg* (r j ) is also optimal.
Therefore, its leafR~r! must contain both ther j ’s and thegg* (r j )’s. j

Based on the previous two propositions, the entropyHr(A) has explicitly been computed in
the following cases:

Case 1:~Refs. 17, 9, 10! Let M be the full 232 matrix algebraM2(C), A the subalgebra of
all 232 matrices diagonal with respect to a given basisu1&, u2&, andr5(b*

a
12a
b ), 0<a<1, ubu2

<a(12a), any density matrix.
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Case 2: ~Ref. 13! Let M5M3(C), A the subalgebra of all 333 diagonal matrices with
respect to the basisu1&, u2&, u3& and

r~x!5
1

3 S 1 x x

x 1 x

x x 1
D , 21/2<x<1, ~9!

any density matrix invariant under the group of permutations of$1,2,3%.
For future comparison with the entanglement of formation of isotropic states ofd-dimensional

bipartite systems studied in Ref. 11, we fix an orthonormal basisu j &PCd and consider the group
G of permutations of$1,2,...,d%. It turns out that anyG-invariant density matrixr(x) over M
5Md(C) can be written as

rF5
12F

d21
~12uc&^cu! 1 Fuc&^cu, ~10!

whereuc&5 (1/Ad) ( j 51
d u j & andF is the fidelity parameter

0<Fª^cur~x!uc&5
~d21!x11

d21
<1. ~11!

Settings(t)ª2t log t, we have
Case 1:For all r, the optimal decompositions are

r5luw1&^w1u1~12l!uw2&^w2u, ~12!

uw1&5S z1

z2
D , uw2&5S z2*

z1*
D , b5z1z2* , ~13!

uz1u25~11A124ubu2!/2512uz2u2, l5
1

2 S 11
2a21

A124ubu2
D . ~14!

The corresponding entanglement isE(r;M2(C),A)5s(uz1u2)1s(uz2u2).
If r5rF is permutation-invariant, that is, ifa51/2, b5x/2 F5(11x)/2, the entanglemen

reads

E~rF ;M2~C!,A!5sS 112AF~12F !

2 D 1sS 122AF~12F !

2 D . ~15!

Case 2:Given the groupG of permutations of$1,2,3%, let V, V2 implement unitarily the
subgroupG0 of cyclic permutations. Then, anyG-invariant staterF can be written

rF5 1
3 uw&^wu1 1

3 Vuw&^wuV211 1
3 V2uw&^wuV22, ~16!

where

uw&5
1

3 S a12b cosu
a22b cos~u2p/3!

a22b cos~u1p/3!
D , a5A3F, b5A3

2
~12F !. ~17!

The structure of optimal decompositions depends on the convexity of
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S~F !ª min
uP[0,2p]

(
j 51

3

s~ uwj~F;u!u2!. ~18!

For F>F*ª(2x* 11)/3, x* 520.415 023 4, the minimum is achieved at a single extrem
G0-orbit generated by the vectors

uw&5
1

3 S a12b
a2b
a2b

D 5
1

) S AF1A2~12F !

AF2A~12F !/2
AF2A~12F !/2

D . ~19!

For each 0,F,F* , there are two different orbit-generating vectors,uw6(F)&, whoseG0-orbits
provide different optimal decomposers for~18!, and which form together one orbit of the fu
permutation groupG. They are

uw6~F !&5
1

3 S a12b cosaF

a22b cos~p/37aF!

a22b cos~p/36aF!
D , ~20!

where the angleaF varies with 0,F,F* .
Finally, for F50, aF52p/6, the minimum is achieved again at a singleG-orbit containing

the vector,uw0&5 (1/&) (1,0,21). As the 6 vectors coincide pairwise up to a sign, the states f
a single optimal decomposition of length 3.

In Ref. 13, it is shown that the above vectors give optimal decompositions as long a
functionS(F) is convex. Numerically, this is the case for allF<8/9. The corresponding entangle
ment is

E~rF ;M3~C!,A!5sS 22F12A2F~12F !

3 D 12 sS 11F22A2F~12F !

6 D ~21!

for fidelities F* <F<8/9. For F50 the entanglement equals log 2. We have only numer
results within the interval 0,F,F* ,14 reflecting that the exact dependence of the angleaF in
~20! as a function ofF is unknown.

Remark 2.2:Permutation-invariant states as in~10! can be written as averages over t
unitariesUp implementing the permutation groupG,

rF5
1

d! (p Up
21uf&^fuUp, ~22!

if and only if u^cuf&u25F, where uc& is the vector in~11!. Necessity comes from the fact tha
Upuc&5uc&. Sufficiency: The identity1 and uc&^cu form a basis for all possible contributions t
the averages~22!.

In view of the structure of the optimal decomposers discussed above, we introduce a no
regularity with respect to a subgroup of a symmetry group, as follows:

Definition 2.4:Given a symmetry groupG with respect toE(r;M,A), we shall call a leaf
R~r! regular of ordern with respect to a subgroupH,G, if there existsn pure statesr̄ j

PR(r) such thatgh* @ r̄ j #5 r̄ j for all hPH, whereas the convex span of the orbits$gg* @ r̄ j #%gPG is
the whole ofR~r!.

We illustrate the previous definitions with some examples.
Example 2.1:Let M be a fulld3d matrix algebra onCd andA,M diagonal with respect to

a chosen orthonormal basis$u j &% j 51
d in Cd. Let r be a symmetric density matrix,̂j uruk&

5^kuru j &. Then, with respect to the chosen representation, the transpositionT respects both the
state and the subalgebraA. Also, R~r! is regular with respect toG5H5$ id,T %, the order of
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regularity depending on the stater. In fact, letp5uc&^cuPR(r), then, because of Propositio
2.2, T(p)5p85uc8&^c8uPR(r), too. If pÞp8, we may consider the statev5p/21p8/2.
which, by Proposition 2.1, is already optimally decomposed. Also,

E~v;M,A!5S~p�A!5S~v�A!. ~23!

Instead, the decomposition

v5
11Re~^cuc8&!

2
p1 1

12Re~^cuc8&!

2
p2, ~24!

where

p65
uc6c8&^c6c8u
2~16Re~^cuc8&!

~25!

need not be optimal. However, the concavity of the von Neumann entropy yields

E~v;M,A!<
11Re~^cuc8&!

2
S~p1�A!1

12Re~^cuc8&!

2
S~p2�A!<~S~v�A!. ~26!

It thus follows from~23! that p�A5p6�A, whence the componentsc( i ), c8( i ) of c and c8
must coincide apart from an overall phase. Thus,p5p8 and theT-symmetry cannot be broken

Example 2.2:Let M5A^ B, with A andB isomorphic ands:A°B the algebraic exchang
of the two of them. Ifr is a state onM such thatr+(s21

^ s)5r, in general,s21
^ s does not

belong to any subgroup of regularity ofr; indeed, ifA ~and thusB! is a d-dimensional matrix
algebra and$u,&% is an orthonormal basis in the corresponding Hilbert spaceHA ~and thus also in
HB), the density matrix

rABª
1
2 u1&^1u ^ u2&^2u1 1

2 u2&^2u ^ u1&^1u, ~27!

is such that Tr(r(s21
^ s)(X^ Y))5Tr(r(X^ Y)). Also, rAB is already optimally decomposed

E(rAB ;A,M)50 is achieved with the decomposersu1&^1u ^ u2&^2u and u2&^2u ^ u1&^1u, which,
however, are not invariant unders21

^ s.
Example 2.3:Let M5A^ B, with A andB both d3d full matrix algebras. We fix the sam

orthonormal basis$u,&% in both Hilbert spacesHA,B and consider the one-parameter groupU of
unitaries

Utª(
j ,k

ei t (hj 2hk)u j &^ j u ^ uk&^ku. ~28!

The density matrixrABª( j ,kRjk u j &^ku ^ u j &^ku, , R5@Rjk#>0, TrR51, is U-invariant; more-
over, ArAB5( j ,k(AR) jku u j &^ku ^ u j &^ku, so that the operatorsArABMArAB, MPM, have the
same matrix structure asrAB . Choosing positiveM j>0, j PJ, such that( j PJM j51, rAB decom-
poses into

rAB5(
j PJ

~Tr~rAB M j !!
ArABM jArAB

Tr~rAB M j !
. ~29!

Since it is also true that every mixed stater on M can be written as in~29! by means of a suitable
positiveM j , ~29! indeed exhausts all possible decompositions ofrAB . Thus, the decomposersp j

of rAB which are optimal with respect toE(rAB ;M,A), have the same structure ofrAB and are
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thenU-invariant. Hence, the groupU is a group of symmetries ofrAB with respect to entangle
ment and the leafR(rAB) is regular with respect toH[U, its order depending on which furthe
symmetries are enjoyed byrAB .

Example 2.4:Let M5M2(C),A as in Case 1, andrF a permutation-invariant state. The le
R(rF) is the orbit of the groupG of permutations of$1,2%. This follows from the form of the
optimal vectors~12! in such a case:uw1&5(z2

z1), uw2&5(z1

z2), with z1,25A1/2(162AF(12F)). It

is regular of order 1 with respect to rotations with elements fromA.
Example 2.5:Let M5M3(C) andrF a permutation-invariant state. Then, forF* <F andF

belonging to the convexity region ofS(F) in ~18!, the structure of the optimal vectors~19! ensures
that the leafR(rF) is regular of order 1 for the subgroupH of permutations$2,3%°$3,2%.
However, at the pointF5F* such aH-invariant vector bifurcates into the two optimal ones~20!.
Thus regularity with respect to the subgroupH is broken and remains broken for 0,F,F* . At
F50 optimal vector states of differentG0 orbits degenerate pairwise into a single one, and on
them isH-invariant, while the corresponding vector changes its sign.

In the last two examples, for allF whend52, and forF greater than the bifurcation value
F* in the convexity region ofS(F) in ~18!, whend53, the leafR(rF) of a permutation-invariant
rF is generated by the orbit under the subgroupG0 of cyclic permutationsVj uw&, j 50,1,2. The
vector uw& is invariant under a unique transposition out ofG. This structure is indeed mor
general as will be shown in the next two propositions.

Proposition 2.3:Let A,M5Md(C) be chosen as in Example 2.1 and the density matrixrF

be invariant with respect to the permutation groupG. If the leaf R(rF) with respect toA is
generated by exactly oneG0-orbit of a normalized vector stateuw&PCd, with G0,G the sub-
group of cyclic permutations, then the entanglement is

E~rF ;Md~C,A!!5s~pF!1~d21!sS 12pF

d21 D , ~30!

pFª
uAF1A~d21!~12F !u2

d
. ~31!

Remarks 2.3:
~i! The assumption of the previous proposition amounts to askR(rF) to be regular of order 1 with
respect to the subgroupH,G of permutations on$2,3,...,d%. Indeed, the leaf isG-invariant, so
that thed statesuf j&5Vj uw&, j 50,1,...,d21, obtained via cyclic permutations, must be invaria
under the remaining (d21)! permutations This is possible only ifd21 of thed components of
the optimal vectoruw& are equal.
~ii ! If uw& has three different components, then the decompositions~22! contain at leastd(d
21) different terms.
~iii ! In Sec. III we will show that, upon identification ofpF with the quantityg(F) in Ref. 11, the
entanglement of formation calculated there is given by~31! and ~30! in a rangeF** >F.1/d.
The upper limitF** is a particular bifurcation point which was discovered in Ref. 11 and that
be reinterpreted accordingly within the framework of this work.

Proof: By hypothesis,rF51/d ( j 50
d21Vj uw&^wuV2 j is an optimal decomposition with entangle

ment

E~rF ;Md~C!,A!5(
j 51

d

s~ u^ j uw&u2!. ~32!

Also, taking into account Remarks 2.2 and 2.3, and decomposing

uw&5AFuc&1«A12Fuw1
'&5au1&1b(

j 52

d

u j &,
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where« is a pure phase, it follows thatuw1
'&5(Adu1&2uc&)/Ad21 and

uw&5
1

Ad
F ~AF1«A~12F !~d21!!u1&1SAF2«A12F

d21 D (
j 52

d

u j &G .

With jª2 Re(«), the right-hand side of~32! reads

S~j!5s~p~j!!1~d21!sS 12p~j!

d21 D ,

p~j!5
F1~12F !~d21!1jAF~12F !~d21!

d
.

It achieves its minimum at the maximum value ofp that is for «51, from which the result
follows. Indeed, as we show below,uw& must be real. If remark 2.3~i! applies we always get a
local extremum. Either by direct calculation or relying on Ref. 13 one concludese51. j

We now relax the hypothesis of the previous proposition and allow for more than oneG0-orbit
to be optimal for the entanglement ofrF with respect to the subalgebraA, that is we allow the leaf
R(rF) to be generated by more than oneG0-orbit.

Proposition 2.4:Let A,M5Md(C) be chosen as in Example 2.1. If the density matrixrF is
invariant with respect to the permutation groupG and its entanglement with respect toA can be
achieved at an optimal decomposition consisting of oneG0-orbit of normalized vector state
uw&PCd, with G0,G the subgroup of cyclic permutations, then we have three possibilities

~1! uw&5 1/Ad (k51
d uk& in which caseF51 andrF5uc&^cu;

~2! uw& is real with 1 component equal toa1 andd21 real components all equal toa2Þa1 ;
~3! uw& is real with 2 componentsa1Þa3 and d22 components all equal toa3 different from

both a1 anda2 .

To prove the result we need a preliminary
Lemma 2.1:The vectoruw& whoseG0-orbit is optimal can be chosen real.
Proof: Let vk , k51,2,...,d, be the components ofuw& with respect to the chosen orthonorm

basis$uk&% and uc&5 (1/Ad) (k51
d uk&. The assumption is thatrF51/d ( j 50

d21Vj uw&^wuV2 j ; from
normalization it follows that the components ofuw& must satisfy

(
k51

d

uwku251 , U(
k51

d

wkU2

512 (
,Þk51

d

w,* wj5dF. ~33!

Further, in order to implement optimality and achieveE(rF ;M,A), we minimize

S~w,l,m!ª2 (
k51

d

uwku2 loguwku21l(
k51

d

uwku21m(
,Þk

w,wk* , ~34!

with Lagrange multipliersl, m. Settingvª(k51
d wk5AdFeiu, equating to zero the derivative o

~34! with respect towj and multiplying bywj we get

2uwj u2 loguwj u21~l21!uwku21m~v* wj2uwj u2!50.

Therefore, the quantityv* wjm and thus, after summing overj , also m, must be real, whence
necessarilywj5eiuv j , with v jPR, for all j . The result follows by eliminating the overall phase.j

Proof: ~Proposition 2.4! According to the previous Lemma, we chooseuw& real and proceed to
minimize
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S~w,l,m!ª2 (
k51

d

wk
2 logwk

21l(
k51

d

wk
21m(

k51

d

wk. ~35!

Because of convexity, the functiong(x)ª2x logx2 intersects the straight linef (x)ª2(12l)x
2m in at most three points on@21,1#. Therefore, thed solutions to

22wk logwk
222wk12lwk1m50,

can have at most three different real values,ai , i 51,2,3. We denote byni the number of times
they appear among the components and consider the functional

S~aW ;nW ;l,m,n!ª2(
i 51

3

niai
2 logai

21l(
i 51

3

niai
21m(

i 51

3

niai , ~36!

where we treat theni ’s as continuous variables constrained byn11n21n35d. Minimizing ~36!
yields the following equations:

ni~ai logai
21ai2lai2m!50, i 51,2,3, ~37!

2ai
2 logai

21lai
21mai1n, i 51,2,3. ~38!

It follows that, if ni.0, i 51,2,3, then( i 51
3 (mai12n12ai

2)50, i 51,2,3, and thusa5b5c. This
case corresponds torF515uc&^cu, a pure state, with null entanglement with respect toA. There-
fore, if there are three different intersections, the minimum entanglement is reached at the
ary values ofni , i 51,2,3, that is, without loss of generality, atn15n251 andn35d22. If there
are two intersections, that is, if, without loss of generality,n350 anda1Þa25a3 , then, from~37!
and ~38!, we calculatem522(a11a2), m5a1a2 and deduce the equality

a1
22a2

21a1a2 log
a2

2

a1
2 50 .

For fixed a1 , because of their convexity properties, the two functionsf (x)ª log (a1
2/x2) and

g(x)ª(a1 /x) 2 (x/a1) intersect atx5a1 , but, at no other points. Therefore, the entanglemen
again minimal at the boundary, that is at, sayn151 andn25d21. j

Remark 2.4:Lagrange multipliers have been used in Ref. 11 in order to calculate the enta
ment of formation of isotropic states of bipartite quantum systems, where it is shown that,
F.1/d, the optimal decomposers have only two different components. We shall relate
results to ours in the following section, where we also discuss the fact, discovered in Re
stating there is a bifurcation pointF** such that the entanglement of formation is linear inF
betweenF** andF51.

Proposition 2.4 shows that when the vectoruw& has only two different components, then w
reduce to the case discussed in Proposition 2.3. Instead, whenuw& has three different component
which is possible in a range of values ofF, then we have more than one optimal decompositi
If d53 one gets at least two. Notice that these results are obtained under the hypothes
G0-orbits of vectorsuw& provide optimal decompositions for the entanglement ofrF with respect
to the subalgebraA.

This fact is linked to the convexity of the function~18!, which, as observed in the discussio
of Case 2, fails in a neighborhood ofF51: If F>F** one needs two orbits: the optimal orbit fo
F5F** and the singlet forF51, just as observed in Ref. 11. Consequently, forF** ,F,1 no
G0-orbits can be optimal.
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III. ENTANGLEMENT AND ENTANGLEMENT OF FORMATION

In this section we establish a one-to-one correspondence between the results of the p
section, in particular proposition 2.3, and the entanglement of formation of highly symm
states as examined in Ref. 11. This concerns mainly the region (1/d)<F. From Ref. 11 we learned
the existence of the bifurcation pointF** . On the other hand, our results in the region (1/d)
,F<F** can be converted into those found by Terhal and Volbrecht. Indeed, the value o
entanglement of formation will be proved to be just~30!.

To this end we consider the tensor productMªA^ B of the full d3d matrix algebra,
denoted byA, with a copy,B, of itself. We fix an orthonormal basis$u j &% of Cd and given any
density matrix, that is a state onA,

rA5(
j ,k

Rjku j &^ku, R5@Rjk#>0, TrR51, ~39!

we embed it asD@rA# into the state space ofM according to the following:
Definition 3.1:Let D be the linear map associating matrix unitsu j &^ku of A with matrix units

$u j &^ku ^ u j &^ku% of M. We shall refer to it as thedoubling map. It transforms statesrA on A into
states onM5A^ B of the form

rA°D@rA#ª(
j ,k

Rjku j &^ku ^ u j &^ku. ~40!

Remark 3.1:This yields the class of density matrices in Example 2.3, which we shall ref
as diagonal class~with respect to the chosen basis!. On the given diagonal class the doubling m
can be inverted

D21:rAB5(
j ,k

Rj ,ku j &^ku ^ u j &^ku°rA5(
j ,k

Rj ,ku j &^ku. ~41!

The argument developed in Example 2.3 ensures that decompositions ofrA can be mapped onto
decompositions ofD@rA#. Vice versa, decompositions ofrAB provide decompositions for the
diagonal class ofrA by applyingD21. Moreover, ifA0,A denotes the subalgebra of diagon
matrices in the given, fixed representation, thenS(r�A0)5S(D@rA#�A). Therefore:The en-
tanglement is preserved by D, in the sense that

E~rA ;A,A0!5E~D@rA#;A^ B,A!. ~42!

In Ref. 11 the entanglement of formation has been calculated for the isotropic states

vF5
12F

d221
~1AB2uC&^Cu!1FuC&^Cu. ~43!

In the above expression1AB is the identity for the algebraA^ B and

uC&5
1

Ad
(
j 51

u j & ^ u j &. ~44!

Remark 3.2:The isotropic states are invariant under the groupG of all unitaries of the form
U ^ Ũ where^auUub&5^auŨub&* ,

U ^ ŨvFU21
^ Ũ215vF . ~45!
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As in Remark 2.2, it follows thatvF can be expressed as the following average with respect to
Haar measure dGU,

vF5E
G
dGU U ^ ŨuF&^FuU21

^ Ũ21, ~46!

if and only if F5^CuvFuC&5u^CuF&u2.
We compare the isotropic statevF with the doubling ofrF in ~10!,

D@rF#5
12F

d21
~D@1A#2D@ uc&^c#u! 1 FD@ uc&^cu#

5
12F

d21 S (
j 51

d

u j &^ j u ^ u j &^ j u2uC&^C#u D 1 FuC&^Cu. ~47!

Proposition 3.1:Let F.1/d and consider the decomposition

vF5
1

d! (p Up
21

^ Up
21uF&^FuUp ^ Up

by means of the unitariesUp that implement the permutation groupG. If the latter is optimal for
the entanglement of formationE(vF) with uF&^Fu in the diagonal space, thenE(vF)
5E(rF ,A,A0).

Proof: The d! unitariesUp form a subgroupG^ G of the group of unitaries in Remark 3.2
they implement the permutation of the chosen basis$u j & ^ u j &% of the diagonal space. Then
^CuvFuC&5^CuD@rF#uC&5F and

D@rF#5
1

d! (p Up
21

^ Up
21uF&^FuUp ^ Up.

If uF&^Fu is optimal for vF , it turns out from Proposition 2.2 that the decomposeresU

^ ŨuF&^FuU21
^ Ũ21 are optimal, too. Thus the result follows from Proposition 2.1. j

Remarks 3.3:

~i! If F.1/d the isotropic statevF is entangled. WhenF<1/d it becomes separable. Ther
exist several proofs of this fact, e.g., Ref. 18.

~ii ! In view of Remark 2.3~ii !, the previous proposition establishes a link between our res
and those of Ref. 11. In Ref. 11 a new symmetry breaking bifurcation point was obs
at F58/9 whend53. The doubling map makes it correspond to a bifurcation point wit
case 2 of the previous section at the same value ofF. The numerical analysis in Ref. 1
missed it, the needed accuracy being of the order of 1024. In both cases the leavesR(vF),
respectively,R(rF), are identical for allF within F** 58/9,F,1. This unique leaf is
generated by the optimal decompositions ofv8/9 which form one orbit, and by the pur
statev1 given by ~44!. The same is true ofr8/9 andr1 . The latter orbits are singlets.

~iii ! The entanglement ofr1 andr8/9 that generate the leaf discussed in the previous remar
not coincide,19

E~r1 ;M,A!5 ln 3, E~r8/9;M,A!5 ln 32 1
3 ln 2. ~48!

We shall now relate the remark above to another observation which again relates entang
of different algebras with one another.

From Case 1 in Sec. II, we know that vectors of the form (y
x) and (x

y), with x21y251
generate the leaf of some stater2 on M2(C). These two-dimensional vectors can be embedde
C3 as follows:
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uw1&5S x
y/&
y/&

D , uw2&5S y
x/&
x/&

D . ~49!

With them we construct the density matrix inM3(C) of the form

r̃35luw1&^w1u1~12l!uw2&^w2u5S a b b

b c c

b c c
D . ~50!

It is easy to check that powers ofr̃3 have the same structure which is thus inherited byAr̃3. It
thus follows that

Ar̃3uf&5S u
v
v
D

for any uf&. The discussion of Example 2.3 assures that the optimal decomposers ofr̃3 with
respect to the entanglementE( r̃;M3(C),A3), with A3 the maximally Abelian subalgebra in th
chosen representation, have again the same form. But then, (y

x) and (x
y) being optimal with respec

to E(r2 ;M2(C),A2), ~50! is itself an optimal decomposition ofr̃3 with respect to
E( r̃3 ;M3(C),A3).

According to the discussion at the beginning of this section, it also follows that the dou
map,

uw1&°uW1&5xu1& ^ u1&1
y

&
~ u2& ^ u2&1u3& ^ u3&), ~51!

uw2&°uW2&5yu1& ^ u1&1
x

&
~ u2& ^ u2&1u3& ^ u3&), ~52!

provides optimal decomposers, too. In particular, for givenx,y on the unit circle the pure state
uWj&^Wj u, j 51,2, generate a leaf of the entanglement of formation functional on which
convexly linear.

Moreover, forx51/) andy5A2/3, we getuW1&5uC&, with fidelity F5u^CuW1&u251, and
uW2&5uF8/9& with fidelity F5u^CuW2&u258/9, indicating a reason for the bifurcation valueF
58/9.

One observes that~51! and ~52! become identical forx5y51/& so that the doubling map
gets the vector,

uW3&5
1

&
u1& ^ u1&1

1

2
~ u2& ^ u2&1u3& ^ u3&), ~53!

which has fidelity

F5u^CuW3&u25 1
2 1A 2

35p1~12p! 8
9 , 0,p53A62 7

2,1. ~54!

Let us now consider the state

rF5puC&^Cu1~12p!uF8/9&^F8/9u. ~55!

By using ~48!, it can be shown that its entanglementE(rF) is larger thanpE(r(1))1(1
2p)E(r(8/9)) for 0,p,1. This implies that convexity ofS(F) in ~32! is lost for F.F** in
accordance with the discussion above.

We finally note that one can extend~49! to all dimensions larger than two. Indeed, letz1 ,z2

denote the components of a unit vector in two dimensions. By similar arguments one prove
the leaves of case 1 of the previous section are mapped onto certain leaves belonging
entanglement of formation ind11 dimensions by the embeddings
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S z1

z2
D → z1u00&1~z2 /Ad! (

j 52

d11

u j j &. ~56!

In particular, the embeddings of$z1 ,z2% and $z2* ,z1* % form an optimal pair with respect to th
entanglement of formation. One further observes in the special casez151/Ad11 the embeddings
~56! are the totally symmetric vectorC in d11 dimensions and

A d

d11
u11&1A 1

d~d11! (
j 52

d11

u j j &. ~57!

Its fidelity readsF54d/(11d)2, and we see as above

Fd11** 54d~d11!22, ~58!

i.e., the bifurcation value given in Ref. 11 ford11.2.

IV. CONCLUSIONS

We have studied in several examples the entanglement defined by a maximal comm
subalgebra of a full matrix algebra, and its relation to the entanglement of formation. Apart
its actual numerical value, what is interesting is the structure of both entanglement funct
upon the space of states, and their separation into different leaves. To some extent these le
be found by applying group theoretical considerations. They show a rich structure with va
stability under the groups under consideration. Since the same group appears in different al
contexts, it can be shown that the decompositions of states on different algebras can be
This helps to control the optimal decompositions and to understand their variety. This new
nique is shown at work in several examples: The doubling map relates two quite different lin
research which had been considered almost independently up to now. In particular we
further proof of the entanglement of formation results for isotropic states of Terhal and Volb
in the region (1/n)<F<F** .11 Another embedding map verifies their bifurcation pointF**
close toF51 as a footprint of a symmetry-breaking in two dimensions. It belongs to a clas
maps which change entanglement but not the leaves. The leaves are respected because
tanglements differ just by a convexly linear function.

We have provided some examples of embedding procedures which allow to connect v
entanglement problems not only with each other, but also with problems involving other qua
based on convex or concave roofs, for example general entanglement monotones or
~1-shot! capacities.
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