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Abstract. On aw*-algebraM, for given two positive linear forms, o € M’ and algebra elements

a,b € M, a variational expression for the Bures distadggv?, o?) between the inner derived
positive linear forma? = v(a* - a) andgb = o(b* - b) is obtained. Along with the proof of the
formula, also an earlier result of S. Gudder on noncommutative probability will be slighly extended.
Also, the given expression of the Bures distance relates nicely to the system of seminorms proposed
by D. Buchholz which occurs, along with the problem of estimating the so-called ‘weak intertwiners’,

in algebraic quantum field theory. In the last section, some optimization problem will be considered.
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1. Introduction
1.1. BASIC SETTINGS ON BURES DISTANCE

Throughout the paper, the Bures distance funciigiil1] and related metric con-
cepts on the positive cont; of the bounded linear form&* over aw*-algebra
M will be considered. We start by defining the Bures distafy@@/|v, o) between
V,0 € M_*;.

DEFINITION 1. dg(M|v, ) = Inf(z 5} pes, yw).vesomo 1V — @l

Instead ofdg (M |v, o) dg(v, o) Will often be used. For unitat-representation
{m, K} of M on a Hilbert spacé.X, (-, -)} and foru € M*, we let

rm(p) ={§ € K () = (m()E, &)}

Then, the infimum within the defining formula fdg (v, 0) extends over all those
7 relative to whichs, , (v) # ¥ and$, y (o) # ¥ simultaneously hold and, within

* Partially supported by ‘Deutsche Forschungsgemeinschaft’.
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each such representation, the vectoendy may be varied through all of;; 5 (v)
and 4§, y (o), respectively. The scalar produst x X > {x,n} — (x,n) € C

on the representation Hilbert space by convention is supposed to be linear with
respect to the first argumept antilinear in the second argumeptand maps into
the complex fieldC. LetC > z — z be the complex conjugation afitt and|z| be

the real part and absolute valuepfrespectively. Greek letters and their labelled
derivates (except fat, which is reserved for representations only) will be used to
label elements of the complex Hilbert spaces on which the contretdgebras
(M) are supposed to act. The normypfe X is given by| x| = +/{x, x). For

the relating operator and*-algebra theory, the reader is referred to the standard
monographs, e.g. [13, 19, 23].

For simplicity, for theC*-norm of an element € M as well as for the operator
norm of an concrete bounded linear operatar B(.X), the same notatioffw || will
be used. In both these cases, the involutiengeration), respectively, the taking of
the hermitian conjugate of an elementis indicated by the transitiom —— x*.

The notions of Hermiticity and positivity for elements are defined as usuat-in
algebra theory, ands, and M, are the Hermitian and positive elements Mdf
respectively. In view to the above, and to make these settings more unambiguous,
Greek letters willnot be used as symbols for linear operators o¥eor elements

of M. The null and the unit element/operatordhandB(.K) will be denoted by

andl.

For notational purposes generally, we recall some fundamentals relating (bound-
ed) linear forms which subsequently might be of concern within the context of
Definition 1. Recall that the topological dual spak& of M is the set of all
those linear functionals (linear forms) which are continuous with respect to the
operator norm topology. Equipped with the dual ngfm|;, which is given by
Iflli =sup|f(x)] : x € M, ||x|| < 1} and which is referred to as the functional
norm, M* is a Banach space. For each givéne M*, the Hermitian conjugate
functional f* € M* is defined byf*(x) = f(x*), for eachx € M. Note that
f € M* is Hermitian if f = f* holds andf is termed positive iff (x) > 0
holds, for eachx € M, . Also remember that a bounded linear form owéris
positive if and only if|| f||1 = f (1) is fulfilled. For positive linear forms, one has
the following fundamental estimate (Cauchy—Schwarz inequality):

Vge Mt : |g(y"')I? < g(v*y) glx*™x), Vx,yeM, (1.1a)

which, accordingly, also holds apr-algebras. From this, it is easily inferred that
for eachg € M7 \{0} the subsef, C M defined by

I, ={xeM: gx*x) =0} (1.1b)

is a (proper)left ideal in M. Provided this ideal is trivial/, = {0}, the positive
linear formg € M7 is calledfaithful (positive linear form).

The most important consequence of positivity and (1.1a) is that, for gach
M, there exists a cyclig-representatiotr, of M on some Hilbert spac#(,, with



BURES-DISTANCE BETWEEN INNER DERIVED POSITIVE LINEAR FORMS 3

cyclic vectorQ e X,, and obeyingg(x) = (m,(x)2, ), for all x € M. This
fact is usually referred to as the Gelfand—Neumark—Segal theorem (GNS). Such
a representation (which is unique up to unitary isomorphisms) will be referred to
as ag associated cyclic representation or a GNS-representatignrespectively.
Note that considering such a construction in the special casegwith + o will
provide a unitak-representatiom = 7, such thats, » (v) # ¥ and$, y (o) # ¥
hold (we omit the details, all of which are standard). It is exactly this fact which
makes the expression in Definition 1 make sense even i@'ttadgebraic case.

Apart from the functional norm topology, we also mention thetopology on
M*, which is the weakest locally convex topology generated by the seminorms
Oy X € M, with p.(f) = |f(x)], for eachf € M*. Recall that, according to
basic result of Banach space theory (the Alaoglu—Banach theorem), each closed,
bounded subset of the dual Banach sp#cehas to bav*-compact.

Along with Definition 1, an auxiliary metric structure arises which can be com-
pared to the metric structure given by the ‘natural’ distafice, o) = ||lv —¢]|1 On
M. The relevant basic facts will be stated here without proof and read as follows:

PROPOSITION 1.Letdg: M} x M3 > {v, 0} +— dg(M]v,0) € R, be given
in accordance with Definitiod. Then the following hold

(1) dg is a distance function on the points &f*;
(2) dg is topologically equivalent td; on bounded subsets of; .

Especially for{v, o} € M} x M} \{0, 0}, one has

c(v,0) tdi(v, 0) < dg(M|v, 0) < /d1(v,0), 1.2)
with c(v, 0) = VIvI[1 + +/Tlel1.

Remark that item (1) and ‘one half’ of the estimate (1.2), from which (2) obvi-
ously can be followed, were anticipated and proved by D.Bures in [11], whereas
the other half of (1.2) can be seen by arguments given by H. Araki in [6, 7], e.g.
omit any details on this matter but remark that D. Bures refers tcte space
of M, 8(M) = {f € M} : f(1) = 1}. This simplifies matters insofar that, in
restriction to8 (M), dg gets an unconditionally topologically equivalent with

1.2. PREREQUISITES USEFUL ESTIMATES AND EXAMPLES

In conjunction with the Bures distandg, one has the functa? of the ¢:-algebraic)
transition probability[25]. For givenw*-algebraM and positive linear forms, o €
M, the definition reads as follows:

DEFINITION 2. PM(V, Q) = SURN’K}’wegﬂM(U),wegﬂM(Q) |<w, (p>|2 .
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Thereby, the range of variables over which the supremum has to be extended
is the same as in Definition 1. With the help Bf;, one then gets a (uniquely
solvable) expression for the Bures distance:

dg(M|v, 0)* = {IIvlls = v/ Pu(v, 0)} + {llells — v/ Pu(v, 0)} - (1.3)

Remark thatP is of importance in its own right (and independent of the aforemen-
tioned appearance within (1.3)) since it can be easily adapted to several applications
in (algebraic) quantum physics, non-commutative probability and estimation the-
ory. The latter also was the heuristic intention behind the introduction of this
functor in [25]. For a particular range of applications see, e.g., [4, 27].

Many properties oP are known. In the following, only a few of these properties
will be explicitly referred to. For instance, essentially, by means of the Cauchy—
Schwarz inequality from the definition d@f, the following fundamental estimates
can be obtained:

IfDI? < Pu(v,0) <vi@e@™, (1.4)

where f can be any linear form of the set

Tu,0) = {f e M :|fO"0|* <vi*yok*x), Vx,ye M}  (L15)

and a can be any invertible, positive elememte M, . Note thatl'y, (v, o) is
obviously w*-closed and bounded/([v]1][e]l1 is @ common upper bound), and
thus is aw*-compact subset ofr*.

For the estimate from above see equation (16) in [25]. Relating the estimate
from below, suppose that a unitarepresentatiofrz, KX} of M on K with &, 5 (v)
# () and 8, (o) # @ is given. From the standard facts, one then infers that for
given(p € /Sn,M(U)’ 1# € ’Sn,M(V)y

Tu(v,0) = {(mOky, @) : k € (M) )1} (1.6)

has to be fulfilled. In this formuléz (M)’), is the unit ball within the commutant
vN-algebrawr (M)’. From this and Definition 2 and with the help of the Theorem
of B. Russo and H. Dye [15], the validity of the estimate from below in (1.4) also
follows, see equation (3) in [1].

Apply (1.4) to the special case of two vector states, which is heuristically im-
portant in a quantum physical context of two wave functions:

EXAMPLE 1. Let M = B(#) be the algebra of bounded linear operators on a
Hilbert space#. Let u, = ((-)¥, ¥) be the vector form generated ky € #

on M, and bep, the orthoprojection onto the span @fe #. Then, considering

F =¥, ¢) € Ty(iy, ity) anda = p, + & *p,, fore € Ry \{0}, and inserting

this into (1.4) provides (v, ¢)|*> < Pu(itg, iy) < (¥, @)1 + ellol®uy (p,).
From this,

Py (i, iy) = (¥, @)1?
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follows for e — 0, in any case of two vectorg, ¢ € J¢.

Also, constellations among the positive linear formg € M are known such
that, for somea: > 0, the upper estimate within (1.4) turns into an equality. This
then provides an expression By, (v, o).

To explain such stuff, fix some notation first. In all that follows foe M and
u € M*, apositive linear formu™ will be defined byu* (y) = w(x*yx), for each
y € M. If this situation occurs, the positive linear fopn will be referred to as an
inner derived(from p) positive linear form. The main result of [25] refers to this
and reads as follows:

THEOREM 1. Vu e M*¥, a,b e M, a*b >0 : /Py (u®, u?) = u(a*b).

For instance, in choosing > 0, b = 1, the premises of the previous result are
fulfilled in a trivial manner and one thus arrives at the formula

ViueM:,ae My : Py(p, p) =u@?. 1.7)

Remark that Example 1 in the case of nonorthogonal vectors can be seen as a
special case of (1.7) as well. It is interesting that the seemingly very special situ-
ation with the premises of (1.7) addresses itself to a wide range of characteristic
applications. One of these reads as follows:

EXAMPLE 2. By the Radon—Nikodym theorem of S. Sakai [22] we are always
in such a situation if, amongst twaormal positive linear formsv, o € M*, a
relation of dominatiorp < Av, with 2 € R, \{0}, takes place, in which situation the
notationg <« v will be also used. That is, far « v, there isa € M, with o = v*.

In view of the above, a in such situatioBy,; (o, v) = v(a)? especially follows. It is
known thata becomes unique K(a) < s(v) is required to hold, with the support
of the operatou and the normal positive linear form respectively. One usually
refers to this uniquer as Sakai's Radon—Nikodym operatorafelative tov, and
then also the notatiom = ,/do/dv will be used.

Finally, it is interesting that, in any case with the help of the bounds appearing
along with (1.4), the value aPy, (v, o) can be approximated to an arbitrary degree
of precision from both sides. This and some other relevant information will be the
content of the following result.

THEOREM 2. Let M be aw*-algebra, and bev, o € M7. Then, the following
facts hold

(l) vV PM(‘)» Q) = infx>0\/ V(X)Q(x_l);

(2) % Py(v,0) = SupfeFM(v.Q) | f(D].
The infimum in(1) extends over all positive invertible elements\bf Moreover, if
{r, K} is any unitalx-representation oM over some Hilbert spac& such that
8,.m(v) # P and s, (o) # @ are fulfilled, then the following is fulfilled
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) VPu(v,0) =SUp,cs. o) (¥, @) Vo €8z m(v).

Also, the supremum i(R) is a maximum and is attained at sonfec 'y (v, 0),
and some maximizing' can be chosen ag = (x(-)v0, ¢o), for somey, €

82m(0), wo € 87 m(V).

For proofs of (1)—(3) see Corollary 1, Corollary 3 and Theorem 3 in [1], for the
additional informations on the attainability of the supremum in (2), see [7] and [2].
The previous result remains valid everMfis supposed to be a unitaf-algebra.

Remark 1.The question arises whether the funckin a reasonable manner
(i.e. such that a relation of type (1.3) with a metric distadgeemained true on
its domain of definition) could be extended to some yet more general category of
x-algebras (including some unbounded operator algebras showing up in relativistic
quantum field theory for example), see [24, 26]. Besides the just-mentiohed
algebraic cases, the answer seems to be in the negative.

1.3. THE MAIN RESULT

Under the premises of Theorem 1, let us suppose now that somesrégadesenta-
tion {w, X} has been chosen in accordance withy, (1) # ¥. Then, forQ e
S2.m(), one hast(a)Q € 8, (u*) andr ()2 € 8, 4 (11?). Hence, in making
use of (1.6) in the special case Bf; (i, 1), with ¢ = v = Q, and in the special
case of"y (u?, u?) with ¢ = 7 (b)Q andy = 7 (a)2, and respecting the positivity
of a*b, one easily infers that

wah) = [rab)e = sup lg@bl= sup |f(D)

g€l (1, 10) SEeTm (s, ub)

has to be fulfilled. The formula of Theorems 1 and 2(2), together with the previous
result, then show that the following is valid:

COROLLARY 1.

YueMi, abeM,a’h>0: Pyu*, u’)= sup |f(a*b).

felm(p, )

The first goal of the paper will be to extend the assertion of Corollary 1 to
hold true under much weaker premises. More precisely, instead of considering two
positive linear forms), ¢ which are both inner derived positive linear forms=
u® ando = u” from one and the same positive linear fopnvia operatorsz, b €
M, which obey the positivity assumptiarib > 0, subsequently two arbitrarily
chosen inner derived positive linear forms are permitted to be considered without
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any further restriction. Based on this a variational expression for the Bures distance
function will be derived, under the same premises as the positive linear forms.

THEOREM 3. Let M be aw*-algebra, and be), o € M, anda, b € M. Then,
the following facts hold true

(1) /Pu (v, ") = SUPcry v | f (@*D)];
(2) da(M|v*, 0")? = SURy e [V(a*a — y*y) + 0(b*b — x*x)} .

Obviously, (1) is the announced extension of the assertion of Corollary 1, where-
as by (2), which will be shown to be a consequence of (1), the mentioned variational
expression for the distane between the two inner positive linear forms derived
from a given paifv, o} is given.

Foremost, such an expression as given in (2) can be useful since it allows for
estimating the behavior of the Bures distancéaip} if this pair is undergoing
an inner perturbation towards another pgif, o”} of positive linear forms. As
it comes out, the geometry of submanifolds of mutually coordinated (via inner
operations) positive linear forms af*-algebras of use to us, should be based
on this formula. We will not elaborate on this in this paper, but instead we will
be concerned with one particular aspect of this geometry more in detail within
Section 3.

In the course of the derivation of the main result, several other characterizations
of P (and thus ofig as well) will be obtained.

2. Results and Proofs
2.1. FURTHER CHARACTERIZATIONS OF TRANSITION PROBABILITY

In all what follows' M is aw*-algebra and, o € M are fixed but can be arbitrar-

ily chosen positive linear forms. We start with some consequences from Theorem
2. Relating notations, when occurring in conjunction with inf or sup, in each case
of occurrence, the variables> 0, {x}, {¢} and{y, x} are thought to extend over

all positive invertible elements, all finite decomposition$x} = {x1, ..., x,} of

the unity into positive elements, all finite decompositi¢as= {es, ..., e,} of the

unity into orthoprojections, and all finite double systefmsx} = {y1, x1, ..., yu,

x,} of elements obeying jYjx; = 1, respectively, withil, wheren can range
through the naturals; € N.

COROLLARY 2. The following properties hotd

(2) \/m = inf[e} ZI V(E,)Q(e,),

* Most of the material of Section 2 as well as some parts of Section 3, especially 3.2, are
reproduced from the part ‘foundational material’ of the manuscript [3].
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3) VPuv,0) =infiy . 5 3 {v(yyyp) +oixp);
(4) Py, 0) =infu_yy 3 0¥y +ox*x)};
(5) VPu(v,0) =infro03 {v(x) +o(x™H}.

Proof.Note that according to (1.5) for eaghe I'y; (v, @) and any finite positive
decompositionx} of the unity, one has

FOI< D If @D =D If TGS Y Vvel).
J J J
According to Theorem 2(2),

VPu O, 0) <inf 3 /v(xeC) <inf ) /v(ejole) (*)
J J

can be followed. That is, the validity of (2) will imply that (1) is also true. To
see that (2) holds, let > 0. According to Theorem 2(1), there exists invertible
x € M, obeyingv(x)o(x™) < Py(v,0) + ¢. Since the map — y~, in
restriction to the invertible elements #f,, is normcontinuous, and since we are
in aw*-algebra, we may additionally suppose thatatisfying the above estimate
is chosen with a finite spectrum, thatis= >__; 4 e; is fulfilled with 2; > 0,

and some finite decompositiofe, ..., ¢,} of the unity into mutually orthogo-
nal orthoprojections of\f. Using this spectral decomposition, one arrives at the
expression

v(x)e(x™)
= Y vlepolen) + > _{rjrtvleoler) + ek uleole))).
J

j>k
Owing to the strict positivity of the.’s and the nonnegativity of the(e;)’s, one
has

hjhto(epaler) + ah s (enele))
> 2,/v(ejole;) v/vier)oler)

for eachj > k. In fact, this is trivial for\/v(ej)g(e.,-)\/v(ek)g(ek) = 0, whereas in
the other case, the estimate follows from minimizing the positive fundiign =
tv(e;)o(er) +1 Lv(er)o(e;) overR,\{0}, which has a solution, since in this case
both coefficients of andz~* are strictly positive. By means of this estimate and
the above, one finally arrives at

Py(v,0) +¢& > v(n)o(r ) > {ZM@;)Q(@»}
J

From this
l{r;)}‘ D Vvppepy) < VPuv, o) +e
j

2

(x)
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is seen. Sinces > 0 could have been chosen at will/Py(v,0) >
infp) X5 V/v(pj)e(p;) follows with { p} extending over the finite decompositions
of the unity into orthoprojections a¥/. From this andX), follow (1) and (2).

In order to prove (3), to given > 0, for eachs > 0 by means of the decompo-
sition {e, ..., ¢,} of the unity into orthoprojections; obeying &) let us define a
double systeniy(s), x(8)} C M by settingx;(8) = ;) e;, y;(6) = ;Lj((S)‘l ej,
with

‘ i v(ej) +5
Hi (8) a \; Q(ej') + 65

for eachj < n. Then, alsozj Vix;(6) =1 holds, and therefore the double
system{y(8), x(8)} is a special case of those double systems considered within the
context of the infimum in (3). Hence, one haf(, .} >~ {v(yiy) +o(xix)} <

F(6), for eachs > 0, with the auxiliary functiors +— F(8) defined by

1
F®) =5 ) {v(;9)y;(0) +00x;(8)"x;0)}.

J
Since with this choice, one easily infers ttfats) may be expressed as

1 v(e;)
FO) = Y. SJlole) +8jve) [—L—+
jonen0 2 viej) +39

1 o(e;)
+ Y YberTeee \/: |
j.0(ej)7#0 2 olej) +46

in view of the previous andk), then

lim F@) =) Vvlepele) < VPulv.o) +e ()

J

can be followed. Therefore
1

VPuvio) e >3 {ian}Z{v(yjyj) +o(xjx))]
T

is seen. Since such a procedure can be performed for £achQ, one can be
assured that

1

VPuv.e) > 5 inf > {vGiy) +ojx))
J

is fulfilled, where{y, x} is allowed to run through all finite double systems obeying
>_; ¥;x; = 1. On the other hand, for each such double systemfardy (v, o),
one has

FDI Y IFOINI <Y v(ivpeix)) .
J J
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Now, for each two elements y € M, the estimatg/v(y*y)o(x*x) < %{v(y*y)—i—
o(x*x)} is inferred from{/v(y*y) — ‘/Q(x*x)}z > 0. Hence, the above estimate
relating double systems can be continued accordingly and results(In] <
32 {v(iy) + e(xix;)}. This has to hold for eaclf € I'y(v, 0) and finite
double systeny, x} obeyingzj yixj =1 Thus, also

1

VPuv.e) <5 inf 3 {vGiy) +ox))
J

is seen. In view of the above, equality follows, that is, (3) is seen to hold. Note that
within the context of {) if an element(§) € M is defined by means of the above
y;j(8) through the setting(§) = Z,- v;j(8)*y;(8), one hasi(§) > O, invertible with
ad) = Z,. x;(8)*x;(8), and then{’) under the above premises oequivalently

also shows that

1
lim > {v(@@®) +e@@®™} = 3 vv(epele)) <v/Puv,0) +e
J

has to be fulfilled. Since > 0 can be arbitrarily chosen, from the previous, then
even an estimate

o1
VPu(v, ) > inf > {u(x) + oD} (")

can be seen to be fulfilled, where now the infimum extends over all invertible,
positive elements oM. On the other hand, for each invertible, positive element
x € M, one has the identity

1
5 (Voo - Vo D) +V/vxetx D)

1
=5 [v(x) +o(xH}. (2.1a)

Taking the infimum over the invertible positivee M on both sides and respect-

ing the nonnegativity of1/2) {v/v(x) — v/o(x~1)}2, will show that the following
estimate has to be fulfilled:

inf Vv(er) < im;% (Vv@ = Ve D) + inf Voo

1
< fﬂ%é [vx) +o(xH}. (2.1b)

Hence, from Theorem 2(1) one can conclude {hatw(v, o) <inf,.o(1/2) {v(x)+
Q(xfl)} has to hold. From this, in view o&(), the validity of (5) follows.
Finally, for eache > 0 by the proof of (5) there exists an invertible > 0

obeying /Py (v, 0) + ¢ = (1/2) {v(a) + o(a™)}. In definingy, = /a and
Xy = ﬁ_l, one hadl = y*x,, and the above estimate then turns into

(1/2) {v(ylye) + o(xfx)} </ Puv,0) +&.
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On the other hand, according to (3), one has
VPu,0) < {li:gtx}(l/Z){v(y*y) +ox* 0} < (W/2{v(iye) +oxixe)} .

From these estimates, and since- 0 can be taken at will, the validity of (4)
becomes evident. This completes the proof of all the assertions.

2.2. MISCELLANEOUS COMMENTS

In the following, we will comment on the facts arising from Corollary 2, and will
supplement them with further useful auxiliary results and remarks.

2.2.1. Comments on Corollary 2(1)—(2): Quadratic Means

For normal statesP, (v, o) is the same as the generalized transition probability
Ty (v, 0) given in [12].

The definition of V. Cantoni refers to the two probability measures, (di))
ando(E,(dr)) over the Borel sets dk! that can be naturally associated with two
normal states, o on M through the projection valued measute(dx) of a self-
adjoint element, say € M, with spectral representation= [, A E,(d) (recall
that within a quantum mechanical context the Hermitian elements are the candi-
dates of bounded observables). In line with a proposal of G. Mackey, see Chapter
2,2.2,2.6in[20] and, in accordance with some physically motivated axioms saying
what properties of a ‘transition probability’ should be considered as indispensable
at all, see [21, 17, 16], e.g. in [12] one defines a generalized transition probability

by

2
Ty (v, 0) = inf {/ QMX(V,Q)(d)\.)} , (2.2)
xeMy R1

with the quadratic means

QM (v, 0)(dA) = y/v(E,(dr))o(E,(dA))

of these measures, which is a Borel measure on the line again. On carefully ana-
lyzing the quadratic means in the special case of two normal states, one of which is
at least faithful, the proof tha®,, (v, o) of Definition 2 equals the expression (2.2)
has been given in [8].

As has been remarked on by S. Gudder (see Theorem 1 in [16]), mathematically
(2.2) amounts tqQ/ Ty (v, ) = infy, Zi Vv(ej)o(e;), which is (2) in this special
case.

In summarizing, the information obtained through Corollary 2 on that subject
is the following:
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— the expression in Corollary 2(2) reflects those aspects behind (2.2) which
remain valid forany positive linear forms (not only normal ones) omé-
algebra;

— the expression in Corollary 2(1) can be taken as the common getieral
algebraic essence of the matter around quadratic means.

2.2.2. Comments on Corollary 2(3)—(4): Some Seminormg/on

For normal states, (3) had been conjectured by D. Buchholz, motivated by an appli-
cation to relativistic quantum field theory, and has been proved in the special case
of B(#) in [10], eq. (2.10). But note that there the intention was to deal with certain
vector states of some-algebras of (unbounded) operators. In contrast to this, in
the following we will strictly adhere to the (bounded) context av&algebraM
and positive linear forms.

To start discussions concerning Corollary 2(3)—(4), for givea € M7, let us
consider two real-valued functions o, 7, , andv, ,, which are defined ate M

by

T,0(2) = inf —Z y]y, +Q X7X; )} (2.3a)

{y.x}cM, Z:ngn ,\’}k)‘j

1
Uno(2) = legixé{v(y*ywr@(x*x)}. (2.3b)

Thereby, within the former expression, the infimum is to be taken over all finite
double systemsy, x} of operators ofM obeyingz = ngn yixj, withn € N
arbitrarily chosen. For notational simplicity, we subsequently use the shortcut no-
tationz = {y, x} whenever such a type of relation occurs. If we want to consider
only minimal systems of that kindi(= 1), which, e.qg., is referred to in (2.3b), the
conditionz = y*x will be explicitly used.

Note that the assertions of Corollary 2(3)—(4) then read

Uu,g(l) = Tv,g(l) =V PM(V, Q) . (23C)

Also, it is obvious from the structure of the expression within definition (2.3a) that
T, IS @ seminorm, whereas from (2.3b) it is obvious that is a lower bound for

UV’Q:

Ty0(2) <, ,(2). (2.3d)

Remark that, in relativistic quantum field theory, it was to be hoped that seminorms

of T-type would be useful in proving the existence of non-trivial (weak) intertwin-

ers between so-called standard representations [10, 29]. These standard representa-
tions roughly correspond to the cyclerepresentations aof ande in our bounded

context (for the context, see also [18], especially Definition 2.2.14). Clearly, within
specific settings this is the (highly nontrivial) analog over unbounded observable al-
gebras of the (comparably trivial) task of analyzing the structure of theg,get, o)
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in the bounded case. In case, the above idea reduces to enquiring about the upper
bounds off e I'y (v, ) which can be read in terms of the seminoryy, that is,
one is looking for estimates by , in the form:

VzeM : [f(D)] <ctyp(2), (2.3e)

for some real constant> 0, for instance.
More precisely, the information concerning Corollary 2(3)-(4) consists of the
following:

— the estimate (2.3e) holds with respect to the seminorm (2.3a),cwithl,
and this estimate, being the best possible in favor of the above task, that is,
I'v (v, 0) appears to be triviall'y (v, o) = {0}, if and only if 7, , is trivial,

Tyo = 0;

— the seminorm, , can be calculated exactly, ever{jf, x}, under the infimum
in (2.3a), is bent to be varied only through minimal double systems avith
y*x, i.e., according to this and (2.3b), one hag = v, , to hold,

— when seen in the form of (2.3c), in generalizing from Corollary 2(3) for each
v, 0 € M} and, giverz € M, an (heuristic useful) interpretation of the values
of the seminorn, , in terms of ‘transition probability’ (and, thus, in terms of
the Bures distance) between certain inners derived figm} positive linear
forms can be given.

It is plain to see that the answers to the corresponding items can be read off as
straightforward consequences of the following result:

COROLLARY 3. Foreacha, b € M andz = a*b, the following holds:
T,0(2) =v,(2) =  sup [f(2)]

felrm,0)

— \/PM(v, 0%) = \/PM(v“, o). (2.3f)

Proof. First note that each finite double systdm x} obeyingl = {y, x}
through settingy; = y;a andx; = x;b, respectively, provides another finite
double system of the same lendth x} with a*b = {y, X} (especially, minimal
double systems will be transformed into minimal ones again). Hence, in view of
Corollary 2(3)—(4) and (2.3a)—(2.3b) one can conclude as follows:

PM(v“,Qb) = (1/2) Inf Z yjy] +0 (x x])}

(1/2) inf, Z v(¥75;) +e(¥%))}

> (1/2)inf X}Z{v(yj vi) +o(xjx))}
T

= T,,(a*b).
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Thus, the following estimate has been established:

Tyo(@*b) < |/ Pu(v, 0"). (o)

Also, if from the pair{v, ¢} a representatiofir, KX} as in the premises of Theorem
2(3) is chosen, with fixe@ € 3§, (v) andy € 3§, (o), then obviously also
mw(a)p € 8, (V") andm (b)Y € 8, v (0”) are fulfilled. Application of (1.6) with
respect to{v, o}, {v*, 0”} and {v, o?} will yield that (= (kv @), (w(-)km (b)V,

7 (a)p) and(r (k7w (2)y, @), respectively, will be running through all &%, (v, 0),

'y (v, 0%) andTy (v, %), respectively, if is supposed to be varied through all of
(mr(M)")1. Now, for eachk € (7 (M)')1, one haskn (b)yr, w(a)e) = (kr ()Y, @)

= (n(2)ky, ¢). Hence, in line with Theorem 2(2), when the latter is accordingly
applied to these three special situations, under the premise-af*b the estimate
(o) can be continued as follows:

TU,Q(Z) < \/PM(Vaa Qb) = \/PM(Va QZ) = sup [|f(@2)l (o/)

felrmv,0)

Now, suppose that= {y, x} within the context ofv, ¢}. By definition of"; (v, 0),
for f € 'y (v, 0), One has

@I < Y IFe) < Y o) e(xix)
J J
1

< 52 {v07y) +elxx)}

J

From this and in view of (2.3a), sYpr,, ., f(2)| < 7,,(2) follows, which with
the help of (2.3d) can be turned into

sup | f(2)] < 1,0(2) < vy p(2). (0")
felrm,0)

On the other hand, far > 0, Corollary 2(4) can be applied to the péir, o} and
yields invertiblea > 0 obeying

Py(v,09) +& > (1/2) {v(a) + 0*(a™H)}.

Let us definey = /a andx = /a " z. Then,z = y*x and{v(a) + o*(a™H} =
{v(y*y)+o(x*x)} are fulfilled. Hence, in view of the above, ,(z) < /Py (v, 0%)

+¢ can be followed. Since > 0 can be taken at will from the latter in accordance
with (2.3b), we gev, ,(z) < /Pu (v, 0%). Upon taking this together with() and
("), we can conclude that in fact equality has to occur withif) @nd ¢'), i.e.,
(2.3f) holds. This closes the proof of Corollary 3.

Proof of Theorem3. The formula of Theorem 3(1) is given by one of the
particular subequations coming along with (2.3f). Moreover, according to another
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subequation of (2.3f)y, ,(z) = Py (v¢, 0*)Y/? holds. Inserting this into (1.3), in
view of (2.3b), yields

ds(v",0")? = v(@'a) + (b*h) = inf {v(y*y) + (")}

= sup{v(a*a — y*y) + o(b*b — x*x)},

z=y*x

which is Theorem 3(2).

Remark 2.(1) Without proof, we remark thaP,, (v, o) = 0 is equivalent to
v L o (see, e.g., [5]). Recall that the orthogonality of t@b-algebraic positive
linear formsv, ¢ is defined aglv — ol|1 = |[v]l1 + llo]l1.

(2) Especially for states, ¢ occurring along with quantum physical problems
over an algebra of observabl@$, one is inclined to givePy (v, 0) a (quantum)
probabilistic interpretation. Corollary 3 within such a context will tell us that an
interpretation which reads in terms of the transition probability, but now between
the ‘perturbed’ states® and?, also extends to the value of the rather abstractly
defined seminorms/ > z — 1, ,(z) atz = a*b. Thus, if to given paifv, o} of
states and in accordance with (2.3f) and the previous item (1), those operdtors
are considered which are solutions of the equatigna*b) = 0 (and for which
both v* and o’ are states again), then these might be interpreted as all possible
elementary ‘operations’ (i.e. inner implementable perturbations) driving} into
mutually orthogonal states.

(3) Due to the mentioned interpretation of the values of the seminggmin
terms of ./ P,;, which manifests itself by (2.3f), some subadditivity property of
/Py in respect to inner derived positive linear forms can be followed:

a*b = Za;‘bj — PM(V“, Qb) < Z,/ PM(V“./, Qb./) .

j<n j<n

(4) The fact thatr, , = v, , holds is mainly due to our restriction twunded
operator algebras and cannot be expected to extend simply to a context-with
algebras of unbounded operators.

2.2.3. Comments on Corollary 2(5Minimizing Abelian Algebras

That Corollary 2(5) is a notable result on its own rights — and is not something
to be easily abandoned — has been recognized only recently, and as such will be
discussed here (and in more detail in the next section) for the first time.

In comparing the item in question with Theorem 2(1), one immediately notices
that the essential difference with the latter result lies in the fact that under the
infimum instead of a geometrical means, the arithmetical means of the same two
expressions now enters the equation.
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Quite naturally, within the context of Corollary 2(5) (and within the context
of Theorem 2(1) as well), a main interest will be in describing the structure of
those invertiblex € M, from which, by the expression of {v(x) + o(x™1)}
(or y/v(x) o(x~1), respectively), the (common) infimugd Py (v, o) is nearly at-
tained. Such problems and related questions will now be discussed. As such, for
the purposes of estimation theory, Corollary 2(5) seems to be better suited than
Theorem 2(1). For instance, the map— 3 {v(x) + o(x~ 1} is more sensi-
tive to certain variations of the positive invertible operatoe M than the map
x —> /v(x) o(x~1) is (compare the behavior of both under the change A x,
for realA > 0, simply).

Relating the quality of the mentioned approximation, one has the following
simple facts (cf. also Theorem 4.4 in [2]).

COROLLARY 4. Letv,po € M*, and be{x} c M, a sequence of invertible
elements. The following facts are equivalent

(1) V Py(v,0) = Iimnﬁoo % v(x,) + Q(xn_l)};
2) VPu(,0) =lim,_ o v(x,) = lim,« o(x, 1) .

Moreover, ifComniM] is the family of all Abeliarw*-subalgebras o with the
same unity ad/, then one has

(3) Pu(v, 0) = infrecommim) Pr(VIr, 0lr) -

Proof. In view of Equations (2.1), the asserted equivalence immediately fol-
lows from Theorem 2(1) and Corollary 2(5). Also (3) can be seen as an obvious
conseqguence of each of these items.

Now, for a given paif{v, o} of positive linear forms, a séfliny (v, o) will be
defined as

1
Miny (v, 0) = {x eEM,: Py, 0) = > {v(x) +Q(x—1)}} .

The elements dfliny, (v, o) will be calledminimizing(positive invertible) elements
of the pair{v, o}, where, in this notation Corollary 2(5) is tacitly referred to within
context.

Note that since the set of all invertible positive elements is neither compact nor
closed, it is a nontrivial problem to decide from a concrete paip} of positive
linear forms whether or not the infimum within Corollary 2(5) is a minimum.

In fact, general this cannot happen, as the following simple counterexample
shows.

EXAMPLE 3. According to elementary spectral theory for invertibles M,
one hasy > |y~!||~'1. Hence, for each paifv, o} # {0, 0} of positive linear
forms and for each invertible € M, one infers that

) + o™ H)/2= {Ivlln/lx M+ llell/lxl1}/2 > 0
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has to be fulfilled. On the other hand, according to Remark 2(2), in the special case
of v L o, one has/ Py (v, o) = 0. Thus, in view of the previous estimate in the
case of a nontrivial pair of mutually orthogonal positive linear forktia,, (v, o) =

? holds.

On the other hand, there also exist classes where this question can be answered
affirmatively. A criterion relating to this matter is easily obtained from Corollary
4(1)—(2) and reads as follows:

xe My, /Py, 0) =v(x) = .Q(xil) <= x € Miny (v, 0). (2.4)

EXAMPLE 4. Suppose = v¢, with a € M, beinginvertible Then, in view of
Theorem 1, the criterion (2.4) becomes applicable witk ¢ and shows that the
infimum in Corollary 2(5) is a minimum.

Let us refer to an Abeliaw*-subalgebrak ¢ M with 1 € R as theminimizing
Abelian subalgebraf the infimum within Corollary 4(3) is a minimum and is
attained atR. For instance, iMiny (v, o) # ¢ is fulfilled, then in line with the
above, the infimum is attained at each subalgégbrahich is generated bg and
some particulax € Miny, (v, 0). Thus, in generalizing the problem on the existence
of minimizing elements, a more general question on the existence of minimizing
Abelian subalgebras naturally arises.

3. Special Subjects
3.1. MINIMIZING ELEMENTS

In this section we inquire about the existence and uniqueness of minimizing posi-
tive invertible elements, and we derive some results on the structiia gfv, o).

Letx, z € M, be any two invertible positive elements. ldet (z — x). Then the
following algebraic identity can be easily checked to hold:

ri=xt—xx 4+ Az ), (3.1a)
whereA(z, x) = m(z, x)*m(z, x) holds, andn(z, x) is defined by
m(Z, x) — (x—1/28x—1/2)(x—l/zzx—l/Z)—l/Zx—l/Z ) (*)

By construction ofA(z, x) and by invertibility ofz, x from (x), the following can
be followed

A(z,x) € My, with{A(z,x) =0 < § =0}. (3.1b)

Also, sincex~25x~%? is commuting withx ~1/2zx~1/2, yet another expression for
m(z, x) can be obtained from«]. This reads as

m(z, x) = (x Y2x V27122571 (3.1¢)
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With the help of (3.1a) and the previous notations, one finds

1 1
§{v<z> +o@™H} - §{v<x> +o(xh}

1 1
— 5{u(a) —o(xtexhH} + EQ(A(z, x)). (3.1d)

Note that the se/!" of all invertible positive elements af is an open, nonpointed
subcone within the real Banach spdadé,, || - ||} of the Hermitian portion of\/.
Hence, for a particular € MM and giveny € M, for all ¢ € R sufficiently small,
z, = x+1ty € M has to hold (one might take| < |lx~*yx~1(|~1). In this special
situation formula (3.1d) at such a parametegads as

1
[v(x) +o(x™h]}

1
E{U(Zt) +o(zh} - >

2
= é{v(w — oGty h) + %Q(A,(m)) : 3.2)

whereA, (y|x) = t72A(z;, x) is defined forr # 0 and, at = 0, we let
Ao(ylx) = Il | = lim 172 A(z,, x) = x~Tyx~Tyx ™,

We are now ready for the following redefinition gin,, (v, ).

PROPOSITION 2.For anyv, ¢ € M the following holds

Miny (v, 0) = {x € M : v(y) = o(x tyx™h), Yy € My}. (3.3

Proof. Supposer € Miny, (v, 0). Then, for each fixed € My and for allr €
R\ {0} sufficiently small, in accordance with (3.2)

—v) — oG tyx ™| = —[tlo(A(y]x))

has to hold. Having in mind that according to the abave> A,(y|x) is norm-
continuous at = 0, one then has lim.g || o(A,(y|x)) = 0. In view of the
previous estimate;(y) = o(x1yx~1) is obtained.

On the other hand, assume that M such that, for each € My, v(y) =
o(x~tyx™1) is satisfied. For each othere M, lets§ = (z — x) = y. Then one
especially hagv(§) — o(x~15x~1)} = 0. Hence, (3.1d) can be applied and, owing
to the positivity ofA(z, x) andp, yields1{v(z)+o(z™H} -3 {v(x)+o(x 1} > 0.
Hence, since can be arbitrarily chosen from"", x € Miny, (v, o) follows. This
completes the proof of (3.3).

After these preliminaries, we may now summarize as follows.
THEOREM 4. Let M be aw*-algebra. Forv, o € M’ one has
(1) Miny (v, @) #¥ <= Ja € M : o =%
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(2) Miny (v, 0) = {x + I,} " M'™, ¥ x € Miny (v, 0);
(3) #Miny (v, 0) =1 <= Ja € MV : o =, v is faithful.

Proof. According to Example 4, fop = v* with @ € M, one hasu €
Miny, (v, 0). On the other hand, Miny, (v, 0) # @ is supposed in line with formula
(3.3) and since linear forms onGx-algebra are uniquely determined through their
values for the Hermitian portion; = o(x~%(-)x~1) has to be fulfilled for some
x € M. Thatis,o = v* holds witha = x. In summarizing, (1) is valid.

To see (2), suppose thate Miny (v, o) and bez € M. According to what
has been said previousty = v* and, therefore, from (3.3) and (3.1d) one infers
that z € Miny (v, 0) happens if and only ib(xA(z, x)x) = 0 is fulfilled. By
construction ofA(z, x), the latter is equivalent witlm(z, x)x € I,, see (1.1b).
According to (3.1c), the latter is the same(@as/?zx~1/2)"1/2x~1/25 ¢ I,, with
8 = (z — x). Sincel, is a left ideal andxY2zx~12)~1/2x~1/2 js invertible, from
this we finally conclude that, far € M‘+’“’, the conditionz € Miny, (v, ¢) has to be
equivalent withs € 1,. Owing toMiny, (v, o) C MY this is (2).

In order to see (3), we first remark that for faithfubne hasl, = {0}. Hence,
from the just proved (2), the uniqueness of a minimizing element evidently follows.
On the other hand, for an eventually existing 7,\{0}, owing tor*r = |r|?, also
Ir| € I,\{0} follows, see (1.1b). Hence, sinee € Miny (v, o) is invertible, by
standard facts and owing t0> «, alsoz € M} follows for z = a + |r|. By (2)
this, however, then implies thate Miny (v, 0). Sincez # a holds, we therefore
have #iny, (v, o) > 1, for nonfaithfulv. Taking this together with what has been
said previously yields (3).

SinceMiny (0, v) = {x™* : x € Miny(v, 0)} holds, from Theorem 4(2), for
Miny (v, 0) # @, one infers that both positive linear forms have to be faithful or
not, only simultaneously. By reversing this, another class of counterexamples is
easily obtained.

EXAMPLE5. Letv, o € M7 . Suppose that one of the two forms is faithful. Then,
the infimum in Corollary 2(5) cannot be attained on the invertible positive elements
of M.

Remark 3.According to Theorem 4(1), minimizing elements can exist if and
only if each of the two positive linear forms of a pdir, o} can be inner-derived
by means of some positive invertible element from the other one. All these cases
are covered by Example 4.

As announced at the end of Section 2.2.3, the next best question to be raised
concerns the existence of a commutative-subalgebraR of M, with 1 € R, such
that the infimum in Corollary 4(3) could be attained.
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3.2. MINIMIZING COMMUTATIVE SUBALGEBRAS

We start with examples where minimizing abelian subalgebras exist but which are
found to be slighly beyond the bounds of Example 4.

EXAMPLE 6. Suppose = V%, for a € M,. By functional calculus (use the
spectral representation theorem within thié-algebraM) one infers that(a +
e¢1)7*a < a holds, for each reat > 0. Hencea, = (a + ¢1) € M with
o(a;1) < v(a). Owing to this, Theorems 2(1) and 1 (or, equivalently (1.7)),

v(a) =/ Py, 0) <via,) =v@) +elv

as well as
v(a)? = Py(v,0) < o(a; ) v(a.) < v(@)? +ev(a)|vl

are obtained. Upon performing the limit— 0O in both relations and regarding
Corollary 4(1)—(2) will give that thav*-subalgebra generated byand1 can be
chosen as minimizing commutative subalgeBra

The fact that a subalgebrR can be minimizing for a given paifv, o} im-
plies that some very specific additional conditions have to be fulfilled. An im-
portant instance of such conditions occurs within the context of those minimizing
subalgebras which come from Example 6.

LEMMA 1. Supposev, o € M7 and letR be aw*-subalgebra of/ such that
olg = (v|g)* holds for some: € R.,. Then, wheneveR is minimizing for{v, o},
the relation

V(@) — v (a) = v(a) (3.4)

holds for each orthoprojectiop € M obeyingp* € 1,.

Proof.Let P = Py (v, ¢). The assumption thak can be minimizing together
with the reasoning of Example 6 when applied in respectvof, o|z} over R,
prove that foru, = a + ¢ 1 with ¢ > 0, one has

VP =v(a) = Iimov(ag) = IimOQ(aa_l).

Now, letu = p + A p*, with realx # 0. Definea, (1) = u*a,u. Then, for each
e > 0, one hasi,(A) € M. Note also that the assumption gnsaying that
pt € 1, is fulfilled together with the special structureofmply

0(y) = o(pyp) = o(u*yu) = o™ yu~")
to be fulfilled for eachy € M. Hence, by construction i (1), Iirrwc)g(ag(k)*l) =

|im0Q(a£_1) = /P especially follows. On the other hand, since

v(a:(V) =17 (a:) + 22 R v(pLa. p) + 127 (a,)
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is fulfilled, in view of the above, one arrives at

lim v(a: (1)) = v"(a) + 249 v(p*ap) + AP ().

Note that, according to Theorem 2(1), the estimate_ligv(a, (1)) o(a, (L)1) >
P has to be fulfilled, which in view of the previous, amounts to requiring

VP (v (a) + 2. R v(prap) + 1P (a))
> P =P @)+ 2%{v(ptap)) + v (a)),

for all realsa £ 0. That is,
1
2V P(n — 1){sﬁv(plap) +50+D vpL(a)} >0

has to be fulfilled, for each real 0.
SupposeP # 0 first. In considering the previous estimate fox 1, one infers
that® v(prap) + 2(x + 1) v”" (a) > 0 has to be fulfilled, whereas for < 1 we

see thath v(ptap) + %(A + 1) e (a) < 0 has to be fulfilled. Upon performing
the limits A \, 1 andx 7~ 1 within the mentioned relations far > 1 andi < 1,
respectively, and then comparing the results will show wlﬁé(a) = —NRv(ptap)
has to be fulfilled. By means of this,

v(a) = vP (@) + 2R v(prap) + v (@) = v’ (a) — v (a)

is seen. This proves the result in casePof 0.
Finally, for P = 0, one has(a) = 0. Owing toa > 0, a € I,. Hence, also
0 = v(pa) = v(ap) and therefore from

VP (@) = v(a) — 2R v(ap) + vP(a),

one gets?(a) — prt (a) = 0 which is in accordance with (3.4) in this special case.

Bearing Example 5 in mind, we remark that, for faithfuknde = v*, witha €
M, and kewm # {0}, the most simple situations arise where Example 6 provides
cases which go beyond the bounds of Example 4. Less trivial situations of that kind
arise from generalizing Example 2 and modifying those arguments, along the lines
of which we have been following within Example 6. The result in question, which
will be proved here in a sketchy way, reads as follows:

PROPOSITION 3. Let {v, ¢}, with normalv, o € M*, and support orthopro-
jections which are mutually<-comparable, say (o) < s(v), be fulfilled. Then a
minimizing commutative/*-subalgebrar of M exists.

Sketch of proofwWe remark first that fonormal positive linear forms, o with
supports obeying (o) < s(v), the problem in question by way of an appro-
priately chosemormal *-representatior{r, K} which obeyss, ,(v) # ¢ and
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$..m(0) # ¥, can always be reduced to the analogous problem ovepihe
algebraN = 7 (M)”. In this setting, with givery € &, ,(v), the assumption
about the supports can be shown to ensure the existence of some (possibly un-
bounded) selfadjoint positive linear operatbwhich is affiliated toV and which
obeysy = A¢ € 4, .m(0). Note that sinced is affiliated toN, the operatorA

can be chosen to be independent of the particularly choseithin $, ,(v). Let

v, andp, be the vector functionals generated gpyand s over thevN-algebra

N. Extending the notion ‘inner derived positive linear form’ slighly to include at
least such situations with vector forms dhand (unbounded) positive selfadjoint
linear operators affiliated wittv, for o, = v2, one easily proves that formula
(1.7) remains true in the sense PPy (v, 0,) = v, (A) = (Ag, ¢). Since then

also the arguments raised within the context of Example 6 are easily justified to
remain valid withA, = A + ¢ 1 instead ofa,, following along the same line of
conclusions as in Example 6, will provid®y (v;, 0x) = Pr(vz|r, 0x|r), With R

being the commutativeN-subalgebra oV generated by the spectral resolution of
A. Finally, sincePy (v;, 0,) = Py (v, 0) is always fulfilled (note that, o7 = v
andp, o w = p hold), in view of thenormality of sz, which implies that even

N = n(M) holds, the just-mentioned result abayt, o, over N can be easily
rewritten into one oveM.

3.3. LEAST MINIMIZING COMMUTATIVE SUBALGEBRA
3.3.1. Generalities on the Problem

It is plain to see (from each of the items of Corollary 2, for instance) that the map
R +— /Pr(v|r,0lr), v, 0 € M*, with respect to the inclusioa betweenw*-
subalgebras o#f behaves<-(anti-)monotoneous. Hence, if there is a minimizing
commutative subalgebm®, then also each commutative subalgebra larger than this
has to be minimizing.

Going the other way around within this context is less trivial. For instance, one
might ask for the existence oflaastminimizing commutativenv*-subalgebra of
M with the same unit. In the case of the existence of a least-minimizing subalgebra,
the latter will be denoted bR, (v, 0).

Note that a least-minimizing subalgebra must not exist in either case of a pair
{v, 0o} where a minimizing commutative subalgebra exists. To formulate a result for
this, for the following, make use a@[x] as the notation for the commutative*-
subalgebra oM which is generated by and the Hermitian elemente M. Then,
the simplest counterexamples against the existence of a least-minimizing algebra
can be generated from the following auxiliary construction:

LEMMA 2. Suppose = v* holds withx € M. Then, for eackk € I, " M,
R[x + k] is a minimizing Abelian subalgebra to, ¢}. In the case where

0¢Ryv, (] Rix+k=C-1 (3.5)

kel,NM 4
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is fulfilled, there cannot exist a least-element among all minimizing commutative
subalgebras to the paiv, o}.

Proof. It is easily inferred from (1.1a) and (1.1b) that= v*** holds also for
eachk € I, N M. By Example 6,R[x + k] will be a special minimizing commu-
tative subalgebra. Also, from Definition 2 and with the help of known properties of
the Cauchy—Schwarz inequality, one easily infers that, for eacHpait of posi-
tive linear forms,,/ Py (v, 0) < /lIvii1lell: is fulfilled, with equality occurring if
and only ifo = X - v happens for some nonnegative reaDn the other hand, from
the structure of Corollary 2(5) it is easily seen théfM(v, 0) = Jlviilel: is
equivalent to the fact th&f - 1is among the minimizing subalgebras. Now, assume
v, 0 as in (3.5). Then, according to the first of the previously-mentioned facts,
the second condition in (3.5), in the case of the existence of a least-minimizing
subalgebra, implied the latter to be trivial, whereas by the first condition in (3.5)
and owing to the second of the above-mentioned facts, the trivial al@eliris ex-
cluded from being a minimizing subalgebra. Thus, a least-minimizing subalgebra
cannot exist in this case.

Unfortunately, condition (3.5) can be easily satisfied, e.g. it can be shown to
be fulfilled for any two noncommuting pure states (the following 2 case can
exemplarily stand for any situation of this kind; we omit the details).

EXAMPLE 7. LetM = M,(C) be the full algebra of 2 2-matrices with complex
entries,p, ¢ € M one-dimensional orthoprojections, with, ¢] = pg — gp # 0.

Letx = p+eph, withO < ¢ < 1, and bev € M*\{0} with v(g) = 0 (such
positive linear form trivially exists). Define = v*. Theng € I, N M, and, in line

with the first part of Lemma 2 for both andy = x + ¢, one has thaR[x] and

R[y] are minimizing commutative subalgebras which, owing to the assumptions,
obey[x, y] # 0and, therefore, both have to be nontrivial as well as not being the
same,R[x] # R[y]. Since each nontrivial commutative subalgebravigfC) can

be generated by exactly two atoms, thejx] N R[y] = C - 1 has to be followed.
This especially means that condition (3.5) is fulfilled and, thus, in accordance with
the other assertion of Lemma 2, a least-minimizing subalgebra cannot exist.

The above negative result and the previous counter-example, together with some
view on the structure of condition (3.5), indicate that the existence of a least-
minimizing Abelian subalgebra seems to depend on the size as well as on the
mutual position of the kernel ideals and /, in relation to each other (cf. also
Lemma 1). Recall that the kernel ideglin a W*-algebra becomes manageable,
especially ifv is supposed to beormal In this case/, = Ms(v)* holds, where
s(v) is the support orthoprojection of the normal positive linear fortbe careful
about the context; the same notatiox) will be also used for the support of a
Hermitian elementk e My which will subsequently also play a role). Unfortu-
nately, even in the normal case, only very few answers are known on this subject,
except when we are in the special case witk v which relates to Example 2, and
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where sufficiently many examples of minimizing Abelian subalgebras are known.
Before going into details, some auxiliary notion relating to the general{pair}
of normal positive linear forms will be introduced:

DEFINITION 3. LetR c M be aw*-subalgebra off which contains the unity
of M. R is called{v, o}-projectiveprovided the condition

Vy € R : v'@(y) = v(ys(0)) (3.6)

is fulfilled (R will be simply referred to as projective subalgebrdf the ordered
pair is unambiguously given by the context).

EXAMPLE 8. For a normal, positive linear form, the unital subalgebra/”
defined by

M'={xeM:vixy) =v(yx), Vy e M}

is a W*-subalgebra of\f, which is usually called a-centralizer. Obviously, if
the support (o) of another normal positive linear forgobeyss(p) € M", then
relation (3.6) is automatically fulfilled for eadh*-subalgebrak of M. Hence, in
this case, each sudhis {v, o}-projective.

Remark 4.(1) Since, for each normal positive linear fonmone hass(v) e
M, according to Example 8 in the case of normab € M7 with equal supports,
s(v) = s(0), each subalgebrR of M is both{v, o}- and{p, v}-projective.

(2) Obviously, for given{v, g}, the set of alfv, o}-projective subalgebras af
is nonvoid and each subalgebra of a projective subalgebra is projective again. Also,
the set of all projective subalgebrasMfis closed with respect to intersections.

(3) Supposep = v*, for a pair{v, o} of normal positive linear forms, with
x € M, obeyingxs(o) = s(o)x. Then, according to Example 6 and since (3.6)
is obviously fulfilled for R = R[x], the latter subalgebra is an example of a
minimizing Abelian projective subalgebed M for {v, o}.

(4) Suppose under the conditions of (3) that a least-minimizing Abelian subalge-
braR (v, o) exists. According to the previous two items, it follows tiRy; (v, o)
has to be projective, too.

3.3.2. Radon—Nikodym Theorem and Minimizing Projective Subalgebras

For the following recall that in case of « v the Radon—Nikodym operatar =
J/do/dv of o relative tov is understood to be the unique element M, which
obeys botlp = v* ands(x) < s(v).

LEMMA 3. Suppose, ¢ € M7 are normal, withp < v. LetR be any minimizing
Abelian projective subalgebra of M f¢p, o}. Then the following facts are vatid

(1) Vk € s(v)* M s(v)* : R[\/do/dv + k] is minimizing, projective;
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(2) Ik e s(W)* M s(v)* : R[/do/dv+ k] CR.

Proof. According to Examples 2 and 6, one knows that the assumptions ensure
that minimizing Abelian subalgebras have, in fact, to exist. Singenormal, as
mentioned abovel, = Ms(v)* holds. Hence/, N M = s(v)*M_s(v)* holds
and then by Lemma 2 we know that the formula in (1) provides minimizing Abelian
subalgebras. Moreover, singe < v implies s(y/do/dv) = s(o) < s(v), one
obviously has that each Qfdp/dv + k, with k € s(v)*M_s(v)*, commutes with
s(0). Hence, by Remark 4(3), all the subalgebras given in accordance with (1)
also are projective. Thus, it remains to be shown that each minimizing Abelian
projective subalgebr® has a subalgebra as given in line with (1). Note that the
assertion holds fop = 0 since therC - 1 is minimizing. In line with this, we are
going to prove the previous assertion in the nontrivial case with=~ 0.

Let R be any minimizing Abelian projective subalgebra to the given paip}.

Note that by their very definitions, the conditions of normality for a positive linear
form, as well as the relatiork among normal positive linear forms, are hereditary
conditions when considered in restriction W -subalgebras oM. Thus, espe-
cially we also findp|z <« v|g on R. Therefore we have unique Radon—Nikodym
operatorsy = /do/dv andz = /dp|z/dv|z. As mentioned above, we especially
haves(x) = s(o) < s(v) and sincep # 0 is supposed in this case, we also have
z # 0. The assumption tha should be minimizing together with the reasoning of
Example 6 when applied fdp, o} over M, and for{v|g, 0|z} Over R, respectively,
prove that forr, = x + ¢ landz, = z + ¢ 1, with ¢ > 0, one has

lim v(x) = lim o(x;*) = v(x) = vPu(v.0) = VPr(vIr. 0lr)
= v(z) = !iLnOV(zg) = liLnOQ(zgl).

Hence, since& = (z, — x.) = (z — x) andp = v* hold, upon taking the limit
& — 0 within the relations which occur if (3.1d) is considered farx, instead of
z, x, we will arrive at

0=- liLnOv(xxglch;lx) + liLnOv(xxglcSz;le;lx) , (3.7a)
where also the special form of(z,, x.) arising along with (3.1c) has been taken

into account. Also note that by elementary facts on spectral theoey, xx; =

x; 1x is positive for eacte. Also, if positive reals are regarded as a directed set

in its descending ordering, thés.} C M, turns into an ascendingly directed net

of positive elements oM, with s, < s(x), and has the support orthoprojection
s(x) of x as the least upper bound, that isLb.{s. : ¢ > 0} = s(x) is fulfilled.

In passing, note that the assertion on monotonicity can be understood as a special
consequence of the fact saying that the funciiton {0} > ¢ — ¢~ is operator-
(antjmonotoneousver MV (for generalities on that, see [9, 14]). Singe) =

s(0) holds, from the previous and with the help of (1.1a) for eachk M, one
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easily concludes that

V@) = v(seyse)| < W O) —v(yse)| + [v(yse) — viseyse)|
< 2yl Vv(sx) —so) vl
must be fulfilled. From this, owing to the normality ofand lu.b.{s. : ¢ > 0} =
s(x) = s(0),

VyeM : v@(y) = Iimov(sgysg) (3.7b)

follows. From this and in view of (3.7a) it also follows that both limits within
(3.7a) really exist. Now, remember that, by assumpiois both minimizing and
projective. Hence, in view of Lemma 1 and Definition 3, both (3.4), with: z
andp = s(p), as well as the particular case of the relation in (3.6) &t z, hold.
That is,v(z) = v*©@(z) — 1*@(z) andv(s(0)*zs(0)) = O are fulfilled. From the
latter,

V(@) =@ @) + 20 v(s(0) " 25(0) +@ () = v @)+ (@)
is obtained. This, together with the former, provides the following relation:
V@ () = v(z). (3.7¢)

But then, since owing te(x) = s(o), v*@(x) = v(x) must also be fulfilled and
1¥©@(8) = v(8) can be followed. Recall that(§) = 0 holds. In specializing = §
within (3.7b), in line with what has been previously stated, (3.7a) can be also read
as

Iimov(sgézgl(Ssa) =0. (3.7d)

Also note that by the estimate < (||z|| + ¢) 1, which is valid by triviality,
(Izll + )71 < z;!is implied. But then, since the linear mag > y
s:8yds, € M is positive, from the previous and by the positivity \gfone infers
that v(s.8z;18s.) > (|zll + &) 1v(s:6%s,) > 0. Regarding the limit of the latter
ase — 0, and respecting thalz|| # 0 holds, in view of (3.7d) finally yields
5@ (82) = 0. Owing tos(o) < s(v), from thisés(o) = 0 follows. Hence, since
s(o) = s(x) andz € R, C M, hold, the conclusion is that = x + k has to be
fulfilled, with k = zs(0)* = s(0)*z € s(0)*M_s(0)*. But note that, by (§) = 0,
alsov(k) = 0 follows. By the positivity ofk and ks(0)* = k from this we
conclude thak (v)s(0)‘ks(0)*s(v) = 0, which is equivalent tds(o)*s(v) = 0,
and thust must obey € s(v)* M, s(v)*. This, together with the obvious relation
R[x + k] = R[z] C R, is the assertion of (2).

THEOREM 5. Suppose « v is fulfilled, for normal positive linear forms, ¢ €
M, with faithful v. The following facts hotd

(1) providedR (v, o) exists it obeys
Ru(v, 0) = R[y/do/dv]; (3.8)
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(2) if also g is faithful thenRy, (v, o) exists.

Proof. By Lemma 3(1), one knows tha = R[./dg/dv] is minimizing and
projective. Hence, ifRy, (v, o) is assumed to exist, then by Remark 4(3)—(4), the
minimizing subalgebrar (v, 0) C R[/do/dv] also has to be projective (note
that this conclusion does not rely on the premise on faithfulness).aflence,
Lemma 3(2) can be applied ® = R (v, 0). By the faithfulness ob, one has
s(v)* = 0and then the mentioned application yiel#sc R[./do/dv] and, in
view of the above, formula (3.8) is seen to hold, that is, (1) is valid. To see (2),
note that in this cask = s(v) = s(p) holds, which, via Remark 4(1), implies that
Lemma 3(2) can be applied &achminimizing R. In line with this, R[/dg/dv]
is a minimizing subalgebra of each minimizi®y Thus, it is the least one of this
sort.

3.3.3. Ry (v, 0) as a Projective Subalgebra

Suppose « v such that a least-minimizing subalgebra exists. As has been re-
marked in relation to the previous proof, the algel®g (v, ¢) has to be a mini-
mizing projectivesubalgebra. Application of Lemma 3 then yields that, provided
Ry (v, 0) exists, the latter has to equal to

Roo(v, 0) = (1 RL/do/dv +4l. (3.93)

kes(W)EMys(v)+

From Lemma 3(2), everry (v, 0) = R[4/do/dv + k] can be seen to hold for
somek,, € s(v)t*M,s(v)*. In line with (3.9a), the latter especially means that
R[/do/dv + ko] C R[/do/dv + As(v)1] has to be fulfilled for each € R,.
Therefore k., € R, s(v)* has to hold. In summarizing from the latter and (3.9a),
in the general case @f « v the conclusion of Theorem 5(1) and formula (3.8)
generalize to the following implication, which must be fulfilled for sopne R, :

Ry (v, 0) exists— Ry (v, 0)

= () RIYdo/dv + As(v)*]

)\.ER+

= R[/do/dv +y s(v)"] (3.9b)
= Roo(vv Q) .

To summarize from this, for givefv, o} obeyinge « v, the algebrar ., (v, ¢) can
be regarded to be the only candidate #®j; (v, 0). Thereby, they within (3.9b)
will be made more explicit later.

Note that in the special case of « v with s(¢) € MY, one can go a step
further. Then, since owing to Example 8, the assertion of Lemma 3(2) can be
applied to any minimizing subalgebr®, the above can be strengthened to the
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assertion that, depending whether or ®t(v, ¢) is minimizing, either a least-
minimizing Abelian subalgebra will exist which obeyg, (v, 0) = R« (v, 0), OF
a least minimizing Abelian subalgebra cannot exist at all.

LEMMA 4. Suppose <« v, withs(g) € M. ThenR (v, ¢) is minimizing if and
only if a least-minimizing Abelian subalgebra exists.

Having these facts in mind, and knowing that the special case of faithialk
been dealt with in Theorem 5, by providing a complete answer for faithfue
are now going to analyze the family of algebras occurring under the intersection
within (3.9b) more thoroughly in the remaining cases (in particular, those with
nonfaithful v) which are not yet covered by the premises of Theorem 5. Some
auxiliary technical facts on hereditary subalgebras and elementary spectral theory
will be needed for this. Recall some standard facts fugtrtheory first.

Remark 5.1f R[y, y*]is the smallestv*-subalgebra oM generated by € M
andl, then this is ther (M, M,)-closure of all polynomials iry, y* (including the
constants a€ - 1). Here, M, is thepredualof M, which is the Banach (sub)space
of M* (with respect to the functional norm) which is generated bynalimal
positive linear forms (refer also to the elementsMf asnormal (linear) forms.
Theo (M, M,)-topology is the weakest locally convex topology Mnsuch that all
the seminormg ¢, f € M., with p,(x) = | f(x)| for x € M, are continuous.

Suppose now < v, and let an orthoprojection be defined by = s(o) +
s(v)*. On the hereditaryv*-subalgebray M ¢, define another normal positive lin-
ear formsy,, o, by v, = vl,uy ando, = olymq, respectively. Thep, < v,
is fulfilled, with supports ingMgq obeyings(v,) = s(o,) = s(0) ands(v,)* =
s(v)*, with * L’ referring tog Mq or M, accordingly. Also, ifx = /do/dv, x, =
/do,/dv, are the corresponding Radon-Nikodym operators, onehas x as
elements ofM. Also, if spec,(x) and speg(x,) are the point-spectra of and
x, = x with respect taV/ andg Mg, respectively, then the relation

speg,(x,) U {0} = speg,(x) (3.10a)

can be easily seen to hold. Fore (¢gMq)n C My, we let R,[y] be thew*-
subalgebra off Mg generated by and the unityy of gMg. In view of Remark 5,

it is plain to see thaR,[y] = gR[ylg holds. We are going to show that provided
Ru(v, 0) exists, thenr,y, (v4, 0,) €Xists, and obeys

Rymq Vg, 09) = qRM (v, 0)q . (3.10b)

In fact, since owing ta(x) = s(o) for eachk e s(v)*Ms(v)* alsox + k €
gMgq holds, one ha®,[x, + k] = qR[x + k]g. Hence, in accordance with (3.9a)
and (3.9b), one has

qRu(v, 0)q = [ Rylxg + Asw)" 1= Rylxg + v s)" 1= (") Rylx, + &I,
2>0 k
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for some realy > 0. We may apply formula (3.9a) with respect to the hereditary
algebrag Mg and normal positive linear forms,, o,. The result isR,(v,, 0,) =

M Rylx, + k1, with k running throughs (v,)* M s(v,)* = s(v)* M s(v)* (see
above). Hence, in view of the previous, one has

qRM(V,0)q = Rylx, +y s()F] = Ruo(vy, 04)-

Especially, application of Lemma 3(1) foy, o, ongMg shows thatR(v,, 0,)
is minimizing. But, sinces(v,) = s(o,) andg, < v, hold, when considering
Lemma 4, Remark 4(1) and (3.9b) foy, o, on gMgq, one getsRy(v,, 04) =
Rqymq(vg, 04). From this, in view of the above, (3.10b) follows.

We close our preliminaries with the following auxiliary result which matters in
some elementary spectral theory.

LEMMAS. Supposer € M., s(x) < 1, with point spectrunspeg, (x). Depend-
ing on the latter, the following cases may occur for the commutstixsubalgebra
Ro(x) = ﬂkeﬂh R[x + A s(x)*], wherey can stand for any nonnegative real

= R[x] if speg, (x)\{0} = 0,
Ro(x) { = Rlx + hos(x)*] if speg, (x)\{0} = {%o},
# R[x +ys(x)*]  if #speg(x)\(0} > 2.

Especially,Ro(x) = R[x] holds if and only ifspec, (x)\{0} = @ is fulfilled.

Proof. Some preliminary results will be derived first. Udi, (¢) : t € R} be the
spectral resolution of within the projection lattice oM. Then the eigenprojection
of the positive element + A s(x)* to the spectral valug € R, is given by

s+ E((h)  for i e Ri\(0),

s(x)* fora =0. )

Ex+)»s(x)i({)"}) = {
In fact, by assumptionE, ({0}) = s(x)* holds and thus the part of) relating
to » = 0 is valid. Also, forr € R,\{0} it is clear fromE,({OHE,({r}) = O
and the above thai = s(x)* + E,({A}) is an orthoprojection i/ which obeys
(x + As(x)Y)p = A p. Note, within this context, thak, ({1}) is nonvanishing iff
A € speg(x). Also, for an orthoprojection; > p, one has(g — p)s(x)t =
0 and (g — p) Ec({r}) = 0. Hence, assumingx + As(x)*)g = Agq yields
x(g — p) = X(g — p), which according to spectral theory necessarily implies
(g — p) < E.({1}). In view of the above(q — p) = 0. Thus, there is no
larger thanp orthoprojectiong in M with (x + As(x)*)g = A ¢, which means
p = Ex+)\s(x)i({)‘})- This is ).

Next, it is useful to note that the following alternatives exist:

= R[x] if 1 & speg,(x)\{0} or A =0,
S Rlx] else

R[x +As(x)l]{ (%)
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To see ), first note that obviousiyR[x + As(x)*] C R[x]. Since, forx ¢
speg, (x)\{0}, one hask, ({1}) = O, from (x), thenE, ; ;)1 ({A}) = s(x)tis
seen and thus both 4+ A s(x)* ands(x)* have to belong taR[x + As(x)*],
and so does:. In view of the aboveR[x + As(x)*] = R[x], which is triv-
ially valid for A = 0, is seen to hold foik ¢ spec,(x)\{0}. In the case of. €
speg,(x)\ {0}, the element + 4 s(x)* has full support and, according t€){s (x)"
is apropersubprojection of the eigenorthoprojectidn., ; ;). ({1}) to the spectral
value . € speg(x + A s(x)1). Since each spectral eigenprojection has to be a
minimal orthoprojection of the generated commutatvealgebraR[x +A s (x)*],
from the previous (x)* ¢ R[x + A s(x)*] has to be followed. Hence, in this case,
R[x + As(x)*] ; R[x], which completes the proof o).

After these preparations, we are going to prove the assertions of our results on
Ro(x). Note that the validity in the case of spge)\{0} = ¢ or speg (x)\{0} =
{Ao} is straightforward fromxx). Thus, we have to explicitly consider only the case
with #speg,(x)\{0} > 2. From gx), Ro(x) ; R[x] obviously follows. Especially
this also means that the assertion is validjfo= 0. Now, in line with this, but
in contrast with the assertion, we assuRigx) = R[x + y s(x)*], with y > 0.
Then, since #spec¢x)\{0} > 2 is fulfilled, there has to exist € speg,(x)\{0}
with A £ y. Thus,

Ex+)»s(x)i({)"}) € R[x +)"S(x)l]a and Ex+ys(x)i({y}) € Ro(x)

by assumption. Since by definition & (x) one hasRy(x) C R[x + As(x)'],
both £, ; ;- ({A}) and E, ,, ;)1 ({y'}) have to be inR[x + A s(x)*]. From &)
and sincey # A is fulfilled, we see that

$C) = Ev iy st (0D Expaswt (M) € RIx +As(x)7]
and therefore also € R[x+A s(x)*] holds. From this an®[x+X s(x)*] C R[x],
R[x+As(x)*] = R[x] had to be followed. Owing to the choice ofn accordance
with A € speg,(x)\{0}, this is in contradiction with«x). Thus, also in the case of
y > 0, arelationRy(x) = R[x + y s(x)*] cannot happen. Finally, note that by
the just proven, allowance is made for any situations Righx) that might occur.
Particularly, from this andxf), one also infers thaky(x) = R[x] cannot happen
unless spelg(x)\{O} = (J, whereas in the latter case this then, in fact, occurs. Thus,
also the final assertion is seen to be true.

3.3.4. The Main Result fop <« v and withs(o) € M"

Suppose < v such thatR (v, o) exists. Then we derive a formula &y, (v, 0)
which generalizes (3.8) to this context. In addition, partial answers on the existence
problem forR, (v, 0) will be also given.

THEOREM 6. Let M be aw*-algebra, and let two normal positive linear forms
v, 0 be given oM and obeying « v. Let a nonnegative realy be defined by

Ao =sup{A : A € speg,(y/do/dv) U {0}}. (3.11a)
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The following facts hold true.

(1) ProvidedR (v, o) exists, it obeys

Ru(v, 0) = R[\/do/dv + ros() "], (3.11b)
with the additional conditiozn .
< = ,
#speg,(y/do/dv) { 1 ;I:S) $(v) (3.11¢c)

fulfilled in the case of nonfaithful.

(2) Assumev, o} with s(0) € M". Then, ifv is faithful, or in all cases with
nonfaithfulv obeyingdims(v)* Ms(v)* < oo andp respecting(3.11c) a
least minimizing Abelian subalgebra exists.

Proof. Let x = /do/dv and assume thaR (v, o) exists. Then (3.9b) yields
thatRy (v, 0) = R[x+y s(v)*] has to be fulfilled for somg € R... We are going
to determine the reat in terms ofx. Letg = s(o) + s(v)*. According to (3.10b)
and by using the notations introduced within the context of Equations (3.10), with
respect to the hereditany*-subalgebrag Mg and normal positive linear forms
Vs 0gr Ramqg(vg, 04) AlSO exists and obeyR, i, (vy, 04) = Rylx, +v s(1)*]. On
the other hand, an application of (3.9b)@# g with v,, o, yields R, (v, 04) =
Ro(x,), with the algebraRq(x,) constructed as in Lemma 5 in terms qf =
/do,/dv, and with respect tg M q. Since bothy (x,) = s(0,) = s(v,) = s(0) and
s(vy)t = s(v)* hold ongMgq, in view of the above, we therefore conclude that,
providedRy (v, o) has been assumed to exist, thegix,) = R,[x, + v s(xq)i]
has to be fulfilled for some € R,. But then, in the case of(o) = s(x,) < ¢,
Lemma 5 can be applied opMg and gives that #spgcx,)\{0} < 2 has to
be fulfilled, with y = supgAz : A € speg(x,) U {O}}. Note that the condition
s(0) = s(x;) < g is equivalent tas(v) < 1, and that in this case, @ speg,(x)
holds. Hence, by (3.10a) in this case #speg)\{0} = #speg(x)\{0}. Espe-
cially, the previously givery then obeyss = Ao, with 1o as given in accordance
with (3.11a). Thus, in summarizing from this and the previous, and assuming
that Ry (v, 0) exists for nonfaithfulv, implies that (3.11b) and #spgx) < 2
hold. Now, supposa(p) < s(v) < 1. Then, assuming, > 0 would imply
gt € R[x + Ags(v)*], for g+ is the eigenprojection of + Aqs(v)* to eigenvalue
0. But at the same time, certaindy- ¢ R[x] since by supposition of this case,
g+ < s(o)* has to hold and(p)* has to be a minimal orthoprojection &fx].
Thus,R[x + Lo s(v)*] cannot be a subalgebra 8fx] in this case. In view of the
meaning ofR (v, ) and sinceR[x] is minimizing, the latter contradicts the just-
derived formula (3.11b) in the case of nonfaithfulHence, fors(o) < s(v) < 1,
one must have,, = 0. In view of (3.11a) and since for nonfaithful one has
0 € speg,(x) it is then inferred that spg¢x) = {0} holds. This completes the
proof of (3.11c). That (3.11b) remains true also for faithfdbllows since, owing
tos(v)*+ = 0, formula (3.11b) simply reduces to formula (3.8), which according to
Theorem 5(1) is true, however, and completes the proof of (1).
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To see (2), note that for faithful, formula (3.9a) yieldR . (v, 0) = R[+/do/dv].
Hence, according to Lemma 3, the algeBra(v, o) is minimizing. But then, since
o obeyss(p) € M", from Lemma 4 we may also conclude thag, (v, o) exists.
This proves the part of (2) relating to a faithfiul

Suppose now that is nonfaithful, but with diny(v)*Ms(v)*t < oo fulfilled,
and ¢ such thats(¢) € M" holds and condition (3.11c) is respected. Note that
0 € speg (x) holds in this case. Also, by the assumption of finite-dimensionality,
speck) = speg,(k) holds for eachk € s(v)*M s(v)*, and if p; is the eigen-
projection ofk to A € speg,(k), we havezxespeg,(k) pi = s(v)*. By the same
kind of auxiliary arguments as for elementary spectral theory, which have been
used in the proof of Lemma 5 in some special case, in literally the same way (the
details of which therefore will not be mentioned) can also be applied in order to
compare the spectral structuresxofi- k andx (these facts will be tacitly made
use of below). Supposky = O first. Then, zero is the only eigenvalue xgfand
therefore one infers that spge + k) = speg (k) U {0} for s(0) < s(v), and
Speg,(x + k) = speg (k) for s(0) = s(v). Owing to this and ta(x) < s(v),
whereas each of the aboyg for 1 € speg, (k)\{0} will be also the corresponding
eigenprojection to the samee speg, (x + k) with respect tor + k, the projection
po + {s(v) — s(0)}, or {s(v) — s(o)} respectively, will be the eigenprojection of
x + k to the eigenvalue zero in the case ofcOspeg (x + k) N speg, (k), and
in the case of Oc speg,(x + k) but with O ¢ speg,(k), respectively. Therefore,
P € Rlx + k] for eachi € speg, (k)\{0}, and po + {s(v) — s(0)} € R[x + k]
in the case of 0= speg, (x + k) N speg, (k) or {s(v) — s(0)} € R[x + k] in the
case of Oe speg,(x + k) but with O ¢ spec, (k). But then in view of the above,
in each case, also their susv)* + {s(v) — s(o)} has to be inR[x + k], that
is, s(0)* € R[x + k] has to hold. From this and owing t@x) = s(0) < s(v),
x = s(o){x + k} € R[x + k] is seen. HenceR[x + k] O R[x] follows for
eachk € s(v)*M_s(v)* and, therefore, one hag, (v, o) = R[x]. From Lemma
3 it follows that R, (v, ¢) is minimizing. Thus, since obeyss(o) € M”, we
may conclude from Lemma 4 the® (v, o) exists. Hence, for nonfaithful and
#speg,(x) = 1, the assertion of (2) is true.

Suppose(e) = s(v) and #speg(x) = 2, with nonfaithfulv. Then,Ao > 0, and
for eachk € s(v)* M, s(v)*, one hap; € R[x+k] for i € speg,(k)\{ro}. If o &
speg, (k), s(v)*t € R[x +k] follows from this, and s®[x] C R[x + k] is seen. For
Lo € speg,(k), however,p,, + E,({Ao}) is theio corresponding eigenprojection of
x+k, and therefore instead pf, € R[x+k], one findsp,,+ E ({Xo}) € R[x+k].
Summing up yields (v)* + E,({Xo}) € R[x + k] instead. But then also

k + 20 Ex({o}) = (s() + Ex({o))(x + k) € Rlx +k].

Hence, sinca + A¢s(v)* can be combined together from the mentioned elements
as

X+ rosW)t = (x + k) — (k + 20 Ex({Ao})) + Ao(s(W) + E ({o})),
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x4+ Aos(v)T € Rlx + k]

is seen. Note that owing to(v)* € R[x], in any case one has+ ios(v)* €

R[x]. We may summarize these facts and conclude that, for nonfaithfuith

s(0) = s(v) and #speg(x) = 2, R[x + Aos(v)"] C R[x + k] holds for each

k € s(w)*M_s(v)*. Hence,R.(v,0) = R[x + Aos(v)*], and thus according

to Lemma 3, in this case the algebRa, (v, ¢) is also minimizing. Since(p) =

s(v) € M” holds, Lemma 4 can be applied once more and yields&atv, o)

exists. This closes the proof of (2) and at the same time also completes the proof
of the theorem.

3.3.5. Examples and Consequences

We start by discussing Theorem 6 in the finite-dimensional case.

EXAMPLE 9. Suppose that £ dimM < oo, andv, ¢ are two nonzero positive
linear forms obeying <« v, but which are not mutually proportional. Then, the
corresponding Radon—Nikodym operator cannot be proportional to the support of
v, J/do/dv ¢ R, s(v). Sinces(p) < s(v) is the support of,/do/dv, from these

facts # spe¢,/do/dv) > 2 follows. Hence, since by finite-dimensionality, one has
spe(;,(./ag/av) = sped./do/dv), the condition (3.11c) in the case of nonfaithful

v could be satisfied only if #spégdo/dv) = 2 ands(p) = s(v) < 1 were
fulfilled. But then,/do/dv, as a Radon—Nikodym operator had to be proportional
with s(¢) = s(v), which contradicts the above-mentioned fact. Thus, in view of
Theorem 6(1) for nonfaithfub and under the above premises, a least-minimizing
algebra cannot exist in the finite-dimensional case. Especially, from the latter and
by formula (3.11b), one also infers that, provided a least-minimizing algebra exists,
Ry (v, 0) = R[4/do/dv] will occur, in any case. From Theorem 6(2), one infers
that the latter case really can happen, e.g. in the case of faitldnbtl o obeying

o K vands(p) e M".

As the previous example shows, the deviation from the law (3.8) as indicated
by (3.11b) could be observed only for divh = co. That this deviation really can
occur is seen from the following example.

EXAMPLE 10. LetM = L*(I,m’), where{l, m’} is the unit intervall = [0, 1]
with a measuren’ = (m + &9)/2, wherem is the Lebesgue measure afylis
concentrated o0}, with 55({0}) = 1. Letv correspond to the class of the charac-
teristic functiony o 1) of (0, 1] viav(:) = f(o.l](‘) dm’, and bef a strictly increasing
function, which is continuous oi), 1], except for one poiny > 0 where it is only
left-continuous withf (z5) = 1o > 0, and which obeys & f(r) < 1fort > 0O,
and f(0) = 0. Defineo(-) = [,(-)f dm’. Then,o < v (eveng < v holds) and
s(v) = s(0) = x0.11 < x0.1 = 1, with Radon—-Nikodym operator = f obeying
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{0, 2o} = speg,(x). Hence, condition (3.11c) is fulfilled in this case. Since, owing
to MY = M, one has(p) € M" to be fulfilled by triviality, Theorem 6(2) can be
applied and formula (3.11b) then yield®y, (v, 0) = R[f + X0 x(0}]-

Along with Theorem 6(1) comes another necessary conditiomRfg(v, o) to
exist which will often be useful. To explain this, in the following kett(A/) denote
the group of alk-automorphisms oM, and fory € M we letAut,(M) be those
x-automorphisms which leave the elementixed. Clearly, since we have to do
with s-automorphisms, one hasit,(M) = Aut,«(M), for eachy € M.

Remark 6.Recall that ax-isomorphism® from onew*-algebraM onto an-
otherw*-algebraN is automaticallyoc (M, M,)-o (N, N,) continuous. From this
and Remark 5 follows thab € Aut,(M) <= & € Aut,(M), Yx € R[y, y*], is
valid for eachy € M.

COROLLARY 5. For the pair {v, o} of normal positive linear forms suppose
o < v, with Radon—-Nikodym operator = ./dp/dv, and letiy be defined in
accordance with formulé3.11a) Then the existence &, (v, o) implies that the
following holds

Vk € s()Mys(v)h 1 Auty (M) C AU, 4,50y (M) . (3.12)

Proof.In view of (3.9a) and Theorem 6(1), the premises imply +ios(v)*] C
R[x + k] to be fulfilled for eachk e s(v)*M_s(v)*‘. From this, it is evident that
by eachx-automorphismspb leaving pointwise invariant all elements Bfx + k],
in particular also each element Bfx 4+ Aqs(v)*] is left invariant. This is (3.12).

We will show that among the assumptions in Theorem 6(2), also the condition
dims(v)t Ms(v)* < oois asensitive one. For simplicity, this will be demonstrated
by such an example which, by its construction and owing to the procedure applied,
can stand for a whole class of analogous (even noncommutative) situations where
(3.12) fails and thus a least-minimizing subalgebra cannot exist then.

EXAMPLE 11. LetM = L*°(I, m), where{l, m} is the unit intervall = [0, 1]
with Lebesgue measure. Let t € M be the standard tracial state given @
by t(x) = f, dm x, for x € M. Supposes = t(xo(-)), Where xo corresponds
to the class of the characteristic function of the interi@ll/2]. Assumep =
7(f(-)), where we letf correspond to the class of some continuous, monotoneous
function f on [0, 1], with 1 > f(r) > Ofortr < 1/2 andf(r) = O else. We
then havep <« v, s(v) = xo < 1andx = /do/dv = f. Let us consider
the *-automorphismd, which is induced onV/ by the measure-preserving point-
transformationg : I > ¢+ +— (1 —t) € I of the unit interval, that is, in the
sense of the equivalence of functiors,(x) = x o g is fulfilled. Obviously, ®,

is idempotent, that is, a symmetry. Note tldat(xo) = x1 holds, wherey; stands
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for the class of the characteristic function of the intefdgR, 1] within M, that is,
®,(x0) = xg is fulfilled. From 0< f < xo, ®,(f) € xg- M, x5 follows. Let us
definek = &, (f). Owing to idempotency ob,, ¢, € Aut,, (M) follows. On the
other hand, according to the above and sigpge= R[x] holds, we certainly must
have®, ¢ Aut,(M). In fact, otherwise according to the equivalence mentioned
in Remark 6, in contrast to the above we also hgdo be a fixed point ofb,,

a contradiction. Now, the Radon-Nikodym operatoe= f by choice of f obeys
speg,(x) = {0}. Hence, Ao = 0. But then the existence of the above constructed
®, proves that condition (3.12) is violated, and thus in view of Corollary 5, this
means thatr y; (v, ¢) cannot exist in the case to hand.

3.3.6. Does Each Minimizing Subalgebra Dominate a Minimizing Projective
Subalgebra?

Note that, according to Theorem 6(1) and Lemma 3(1), the existence of the least-
minimizing subalgebra also means that each minimizing subalgebmssesses a
minimizing projective subalgebra. One finds the following useful auxiliary charac-
terization of this fact:

COROLLARY 6. Letv, ¢ be normal positive linear forms wiih <« v and Radon—
Nikodym operatorc. Let R be a minimizing Abelianw*-subalgebra, and let €
R, be theR-relative Radon—Nikodym operator achieviagkz = v|5. The follow-
ing items are mutually equivalent

(1) R:1 C R, for some minimizing projective subalgebRa;
(2) v@(z2) =v(2).

In the latter caseR; = R[x+k] can be chosen ifl) for somek € s(v)* M s(v)* .

Proof. For a minimizingR, the conditionv*© (z) = v(z) implies, the existence
of k € s(v)*M_s(v)* with R[x + k] C R. This can be seen exactly in the same
way as demonstrated in the course of the proof of Lemma 3(2) (see from (3.7c)
onward). In view of Lemma 3(1)®1 = R[x+k] can be chosen from (1). To see the
other direction, assumg; C R with some minimizing projective subalgebrs.
From Lemma 3(2), one knows thate s(v)* M,s(v)* exists withR[x + k] C R;.
ThenR[x + k] C R also holds, and thus + k € R. Owing tos(o|z) € R and
sinceR is commutative, one has= s(o|z)(x + k) = (x + k)s(o|r) € R,. From
this ande = v* = v&* thenp|p = V&R |p = VTSR |, = VY|p = v]}
is seen. In view of(y) < s(o|g) and by the uniqueness of the Radon—Nikodym
operatorz in R, z = y follows. Now,s(o|z) > s(0) ands(x) = s(0) < s(v) hold.
Hence,s(0)z = s(0)y = s(0)s(o|r)(x + k) = s(0)(x + k) = x must be fulfilled,
and therefore als®(0)z = zs(0) = s(0)zs(e). SinceR is minimizing, from the
previous, together with Lemma 1 (ppt= s(¢) anda = z in (3.4)) by literally
the same arguments which led us to see (3.7c¢) within the proof of Lemma 3(2) the
desired relation*©(z) = v(z) is seen to also hold in the situation to hand.
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Remark 7.(1) The conditions(¢) € M" within Theorem 6(2) makes that
Corollary 6(2) is trivially satisfied and then, in line with Remark 4(1), each mini-
mizing subalgebra is projective.

(2) Suppose <« v but withs(o) ¢ MY (thus M cannot be commutative). It
is an open question whether other minimizing subalgebras than those respecting
Corollary 6(2) could exist at all.

(3) Note thatM = M,(C) is the least case where the previous question might
be nontrivial (cf. Example 9). But in this case, the characteristic configuration of
a pair{v, o} to be dealt with for a decision in the usual canonical manner, may
be reduced to pairga, p} of 2 x 2-matrices, with positive definite and one-
dimensional orthoprojectiop obeyingpa # ap. Thus, calculations can be carried
out explicitly (we omit the details) and, in fact, show that= R[x] = R[p] is
the only minimizing subalgebra. This also completes the analysis of Example 9
in the 2x 2 case: forv, ¢ which are not mutually proportional and which obey
o0 < v the least minimizing subalgebra existsiiffs faithful. In view of Example
7, it follows that, for a general pair of mutually nonproportional positive linear
forms onM = M,(C), Ry (v, o) exists if and only if at least one of the two forms
is faithful. Thus, in this case we have a complete solution of the problem for a
noncommutativel/, even without imposing the conditign<« v.

(4) Supposdv, o} such that Corollary 6(2) is fulfilled in each case of a mini-
mizing subalgebra. Then the problem of the existence of a least-minimizing sub-
algebra will be reduced to the question of whether orRQ{(v, o) were equal to
R[x + Aos(v)*] (see Lemma 4 for a special case). As Example 11 shows, for the
latter to happen both (3.11c) and (3.12) are necessary conditions and are rather
independent from each other.

(5) The method by means of which the assertion on equality of the intersec-
tion algebraR. (v, o) of (3.9a) to one of the intersecting minimizing subalgebras
R[x+Xos(v)1]has been disproved, and which is based on considering symmetries,
seems to be very effective and in a modified form is a common method to disprove
the uniqueness of optimizing elements (algebras, decompositions, etc.) in similar
x-algebraic optimization problems, see, e.qg., [28].
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