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Abstract. On aW∗-algebraM, for given two positive linear formsν, % ∈ M∗+ and algebra elements

a, b ∈ M, a variational expression for the Bures distancedB(ν
a, %b) between the inner derived

positive linear formsνa = ν(a∗ · a) and%b = %(b∗ · b) is obtained. Along with the proof of the
formula, also an earlier result of S. Gudder on noncommutative probability will be slighly extended.
Also, the given expression of the Bures distance relates nicely to the system of seminorms proposed
by D. Buchholz which occurs, along with the problem of estimating the so-called ‘weak intertwiners’,
in algebraic quantum field theory. In the last section, some optimization problem will be considered.
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1. Introduction

1.1. BASIC SETTINGS ON BURES DISTANCE

Throughout the paper, the Bures distance functiondB [11] and related metric con-
cepts on the positive coneM∗+ of the bounded linear formsM∗ over aW∗-algebra
M will be considered. We start by defining the Bures distancedB(M|ν, %) between
ν, % ∈M∗+.

DEFINITION 1. dB(M|ν, %) = inf{π,K},ϕ∈Sπ,M (ν),ψ∈Sπ,M(%) ‖ψ − ϕ‖ .

Instead ofdB(M|ν, %) dB(ν, %) will often be used. For unital∗-representation
{π,K} of M on a Hilbert space{K, 〈·, ·〉} and forµ ∈ M∗+, we let

Sπ,M(µ) = {ξ ∈ K : µ(·) = 〈π(·)ξ, ξ 〉}.
Then, the infimum within the defining formula fordB(ν, %) extends over all those
π relative to whichSπ,M(ν) 6= ∅ andSπ,M(%) 6= ∅ simultaneously hold and, within

? Partially supported by ‘Deutsche Forschungsgemeinschaft’.
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each such representation, the vectorsϕ andψ may be varied through all ofSπ,M(ν)
andSπ,M(%), respectively. The scalar productK ×K 3 {χ, η} 7−→ 〈χ, η〉 ∈ C
on the representation Hilbert space by convention is supposed to be linear with
respect to the first argumentχ , antilinear in the second argumentη, and maps into
the complex fieldC. LetC 3 z 7→ z̄ be the complex conjugation and<z and|z| be
the real part and absolute value ofz, respectively. Greek letters and their labelled
derivates (except forπ , which is reserved for representations only) will be used to
label elements of the complex Hilbert spaces on which the concreteC∗-algebras
π(M) are supposed to act. The norm ofχ ∈ K is given by‖χ‖ = √〈χ, χ〉. For
the relating operator andC∗-algebra theory, the reader is referred to the standard
monographs, e.g. [13, 19, 23].

For simplicity, for theC∗-norm of an elementx ∈ M as well as for the operator
norm of an concrete bounded linear operatorx ∈ B(K), the same notation‖x‖ will
be used. In both these cases, the involution (∗-operation), respectively, the taking of
the hermitian conjugate of an elementx, is indicated by the transitionx 7−→ x∗.
The notions of Hermiticity and positivity for elements are defined as usual inC∗-
algebra theory, andMh andM+ are the Hermitian and positive elements ofM,
respectively. In view to the above, and to make these settings more unambiguous,
Greek letters willnot be used as symbols for linear operators overK or elements
of M. The null and the unit element/operator inM andB(K) will be denoted by0
and1.

For notational purposes generally, we recall some fundamentals relating (bound-
ed) linear forms which subsequently might be of concern within the context of
Definition 1. Recall that the topological dual spaceM∗ of M is the set of all
those linear functionals (linear forms) which are continuous with respect to the
operator norm topology. Equipped with the dual norm‖ · ‖1, which is given by
‖f ‖1 = sup{|f (x)| : x ∈ M, ‖x‖ 6 1} and which is referred to as the functional
norm,M∗ is a Banach space. For each givenf ∈ M∗, the Hermitian conjugate
functionalf ∗ ∈ M∗ is defined byf ∗(x) = f (x∗), for eachx ∈ M. Note that
f ∈ M∗ is Hermitian if f = f ∗ holds andf is termed positive iff (x) > 0
holds, for eachx ∈ M+. Also remember that a bounded linear form overM is
positive if and only if‖f ‖1 = f (1) is fulfilled. For positive linear forms, one has
the following fundamental estimate (Cauchy–Schwarz inequality):

∀ g ∈M∗+ : |g(y∗x)|2 6 g(y∗y) g(x∗x), ∀ x, y ∈ M , (1.1a)

which, accordingly, also holds onC∗-algebras. From this, it is easily inferred that
for eachg ∈M∗+\{0} the subsetIg ⊂ M defined by

Ig = {x ∈ M : g(x∗x) = 0} (1.1b)

is a (proper)left ideal in M. Provided this ideal is trivial,Ig = {0}, the positive
linear formg ∈M∗+ is calledfaithful (positive linear form).

The most important consequence of positivity and (1.1a) is that, for eachg ∈
M∗+, there exists a cyclic∗-representationπg ofM on some Hilbert spaceKg, with
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cyclic vector� ∈ Kg, and obeyingg(x) = 〈πg(x)�,�〉, for all x ∈ M. This
fact is usually referred to as the Gelfand–Neumark–Segal theorem (GNS). Such
a representation (which is unique up to unitary isomorphisms) will be referred to
as ag associated cyclic representation or a GNS-representation ofg, respectively.
Note that considering such a construction in the special case withg = ν + % will
provide a unital∗-representationπ = πg such thatSπ,M(ν) 6= ∅ andSπ,M(%) 6= ∅
hold (we omit the details, all of which are standard). It is exactly this fact which
makes the expression in Definition 1 make sense even in theC∗-algebraic case.

Apart from the functional norm topology, we also mention thew∗-topology on
M∗, which is the weakest locally convex topology generated by the seminorms
ρx, x ∈ M, with ρx(f ) = |f (x)|, for eachf ∈ M∗. Recall that, according to
basic result of Banach space theory (the Alaoglu–Banach theorem), each closed,
bounded subset of the dual Banach spaceM∗ has to bew∗-compact.

Along with Definition 1, an auxiliary metric structure arises which can be com-
pared to the metric structure given by the ‘natural’ distanced1(ν, %) = ‖ν−%‖1 on
M∗+. The relevant basic facts will be stated here without proof and read as follows:

PROPOSITION 1. Let dB: M∗+ ×M∗+ 3 {ν, %} 7−→ dB(M|ν, %) ∈ R+ be given
in accordance with Definition1. Then the following hold:

(1) dB is a distance function on the points ofM∗+;
(2) dB is topologically equivalent tod1 on bounded subsets ofM∗+.

Especially for{ν, %} ∈ M∗+ ×M∗+\{0,0}, one has

c(ν, %)−1 d1(ν, %) 6 dB(M|ν, %) 6
√
d1(ν, %) , (1.2)

with c(ν, %) = √‖ν‖1 +√‖%‖1.

Remark that item (1) and ‘one half’ of the estimate (1.2), from which (2) obvi-
ously can be followed, were anticipated and proved by D. Bures in [11], whereas
the other half of (1.2) can be seen by arguments given by H. Araki in [6, 7], e.g.
omit any details on this matter but remark that D. Bures refers to thestate space
of M, S(M) = {f ∈ M∗+ : f (1) = 1}. This simplifies matters insofar that, in
restriction toS(M), dB gets an unconditionally topologically equivalent withd1.

1.2. PREREQUISITES, USEFUL ESTIMATES AND EXAMPLES

In conjunction with the Bures distancedB, one has the functorP of the (∗-algebraic)
transition probability[25]. For givenW∗-algebraM and positive linear formsν, % ∈
M∗+, the definition reads as follows:

DEFINITION 2. PM(ν, %) = sup{π,K},ϕ∈Sπ,M (ν),ψ∈Sπ,M(%) |〈ψ, ϕ〉|2 .
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Thereby, the range of variables over which the supremum has to be extended
is the same as in Definition 1. With the help ofPM , one then gets a (uniquely
solvable) expression for the Bures distance:

dB(M|ν, %)2 =
{‖ν‖1 −√PM(ν, %)}+ {‖%‖1 −√PM(ν, %)} . (1.3)

Remark thatP is of importance in its own right (and independent of the aforemen-
tioned appearance within (1.3)) since it can be easily adapted to several applications
in (algebraic) quantum physics, non-commutative probability and estimation the-
ory. The latter also was the heuristic intention behind the introduction of this
functor in [25]. For a particular range of applications see, e.g., [4, 27].

Many properties ofP are known. In the following, only a few of these properties
will be explicitly referred to. For instance, essentially, by means of the Cauchy–
Schwarz inequality from the definition ofP , the following fundamental estimates
can be obtained:

|f (1)|2 6 PM(ν, %) 6 ν(a) %(a−1) , (1.4)

wheref can be any linear form of the set

0M(ν, %) =
{
f ∈ M∗ : ∣∣f (y∗x)∣∣2 6 ν(y∗y)%(x∗x), ∀ x, y ∈M} (1.5)

and a can be any invertible, positive elementa ∈ M+. Note that0M(ν, %) is
obviouslyw∗-closed and bounded (

√‖ν‖1‖%‖1 is a common upper bound), and
thus is aw∗-compact subset ofM∗.

For the estimate from above see equation (16) in [25]. Relating the estimate
from below, suppose that a unital∗-representation{π,K} ofM onK with Sπ,M(ν)
6= ∅ andSπ,M(%) 6= ∅ is given. From the standard facts, one then infers that for
givenϕ ∈ Sπ,M(ν), ψ ∈ Sπ,M(ν),

0M(ν, %) =
{〈π(·)kψ, ϕ〉 : k ∈ (π(M) ′)1} (1.6)

has to be fulfilled. In this formula(π(M) ′)1 is the unit ball within the commutant
vN-algebraπ(M) ′. From this and Definition 2 and with the help of the Theorem
of B. Russo and H. Dye [15], the validity of the estimate from below in (1.4) also
follows, see equation (3) in [1].

Apply (1.4) to the special case of two vector states, which is heuristically im-
portant in a quantum physical context of two wave functions:

EXAMPLE 1. LetM = B(H) be the algebra of bounded linear operators on a
Hilbert spaceH . Let µψ = 〈(·)ψ,ψ〉 be the vector form generated byψ ∈ H
onM, and bepϕ the orthoprojection onto the span ofϕ ∈ H . Then, considering
f = 〈(·)ψ, ϕ〉 ∈ 0M(µϕ,µψ) anda = pϕ + ε−1p⊥ϕ , for ε ∈ R+\{0}, and inserting
this into (1.4) provides|〈ψ, ϕ〉|2 6 PM(µϕ,µψ) 6 |〈ψ, ϕ〉|2 + ε‖ϕ‖2µψ(p⊥ϕ ).
From this,

PM(µϕ,µψ) = |〈ψ, ϕ〉|2
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follows for ε→ 0, in any case of two vectorsψ, ϕ ∈ H .

Also, constellations among the positive linear formsν, % ∈ M∗+ are known such
that, for somea > 0, the upper estimate within (1.4) turns into an equality. This
then provides an expression forPM(ν, %).

To explain such stuff, fix some notation first. In all that follows forx ∈ M and
µ ∈ M∗+, a positive linear formµx will be defined byµx(y) = µ(x∗yx), for each
y ∈M. If this situation occurs, the positive linear formµx will be referred to as an
inner derived(from µ) positive linear form. The main result of [25] refers to this
and reads as follows:

THEOREM 1. ∀µ ∈ M∗+, a, b ∈ M, a∗b > 0 : √PM(µa,µb) = µ(a∗b).
For instance, in choosinga > 0, b = 1, the premises of the previous result are

fulfilled in a trivial manner and one thus arrives at the formula

∀µ ∈ M∗+, a ∈ M+ : PM(µa,µ) = µ(a)2 . (1.7)

Remark that Example 1 in the case of nonorthogonal vectors can be seen as a
special case of (1.7) as well. It is interesting that the seemingly very special situ-
ation with the premises of (1.7) addresses itself to a wide range of characteristic
applications. One of these reads as follows:

EXAMPLE 2. By the Radon–Nikodym theorem of S. Sakai [22] we are always
in such a situation if, amongst twonormal positive linear formsν, % ∈ M∗+, a
relation of domination% 6 λν, withλ ∈ R+\{0}, takes place, in which situation the
notation% � ν will be also used. That is, for% � ν, there isa ∈M+ with % = νa.
In view of the above, a in such situation,PM(%, ν) = ν(a)2 especially follows. It is
known thata becomes unique ifs(a) 6 s(ν) is required to hold, with the support
of the operatora and the normal positive linear formν, respectively. One usually
refers to this uniquea as Sakai’s Radon–Nikodym operator of% relative toν, and
then also the notationa = √d%/dν will be used.

Finally, it is interesting that, in any case with the help of the bounds appearing
along with (1.4), the value ofPM(ν, %) can be approximated to an arbitrary degree
of precision from both sides. This and some other relevant information will be the
content of the following result.

THEOREM 2. LetM be aW∗-algebra, and beν, % ∈ M∗+. Then, the following
facts hold:

(1)
√
PM(ν, %) = infx>0

√
ν(x)%(x−1);

(2)
√
PM(ν, %) = supf∈0M(ν,%) |f (1)| .

The infimum in(1) extends over all positive invertible elements ofM. Moreover, if
{π,K} is any unital∗-representation ofM over some Hilbert spaceK such that
Sπ,M(ν) 6= ∅ andSπ,M(%) 6= ∅ are fulfilled, then the following is fulfilled:
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(3)
√
PM(ν, %) = supψ∈Sπ,M(%) |〈ψ, ϕ〉| , ∀ϕ ∈ Sπ,M(ν) .

Also, the supremum in(2) is a maximum and is attained at somef ∈ 0M(ν, %),
and some maximizingf can be chosen asf = 〈π(·)ψ0, ϕ0〉, for someψ0 ∈
Sπ,M(%), ϕ0 ∈ Sπ,M(ν).

For proofs of (1)–(3) see Corollary 1, Corollary 3 and Theorem 3 in [1], for the
additional informations on the attainability of the supremum in (2), see [7] and [2].
The previous result remains valid even ifM is supposed to be a unitalC∗-algebra.

Remark 1.The question arises whether the functorP in a reasonable manner
(i.e. such that a relation of type (1.3) with a metric distancedB remained true on
its domain of definition) could be extended to some yet more general category of
∗-algebras (including some unbounded operator algebras showing up in relativistic
quantum field theory for example), see [24, 26]. Besides the just-mentionedC∗-
algebraic cases, the answer seems to be in the negative.

1.3. THE MAIN RESULT

Under the premises of Theorem 1, let us suppose now that some unital∗-representa-
tion {π,K} has been chosen in accordance withSπ,M(µ) 6= ∅. Then, for� ∈
Sπ,M(µ), one hasπ(a)� ∈ Sπ,M(µ

a) andπ(b)� ∈ Sπ,M(µ
b). Hence, in making

use of (1.6) in the special case of0M(µ,µ), with ϕ = ψ = �, and in the special
case of0M(µa,µb)withψ = π(b)� andϕ = π(a)�, and respecting the positivity
of a∗b, one easily infers that

µ(a∗b) = ∥∥π(√a∗b)�∥∥2 = sup
g∈0M(µ,µ)

|g(a∗b)| = sup
f∈0M(µa,µb)

|f (1)|

has to be fulfilled. The formula of Theorems 1 and 2(2), together with the previous
result, then show that the following is valid:

COROLLARY 1.

∀µ ∈ M∗+, a, b ∈M, a∗b > 0 :
√
PM(µ

a,µb) = sup
f∈0M(µ,µ)

|f (a∗b)| .

The first goal of the paper will be to extend the assertion of Corollary 1 to
hold true under much weaker premises. More precisely, instead of considering two
positive linear formsν, % which are both inner derived positive linear formsν =
µa and% = µb from one and the same positive linear formµ via operatorsa, b ∈
M, which obey the positivity assumptiona∗b > 0, subsequently two arbitrarily
chosen inner derived positive linear forms are permitted to be considered without



BURES-DISTANCE BETWEEN INNER DERIVED POSITIVE LINEAR FORMS 7

any further restriction. Based on this a variational expression for the Bures distance
function will be derived, under the same premises as the positive linear forms.

THEOREM 3. LetM be aW∗-algebra, and beν, % ∈ M∗+, anda, b ∈ M. Then,
the following facts hold true:

(1)
√
PM
(
νa, %b

) = supf∈0M(ν,%) |f (a∗b)|;
(2) dB(M|νa, %b)2 = supa∗b=y∗x

{
ν(a∗a − y∗y)+ %(b∗b − x∗x)} .

Obviously, (1) is the announced extension of the assertion of Corollary 1, where-
as by (2), which will be shown to be a consequence of (1), the mentioned variational
expression for the distancedB between the two inner positive linear forms derived
from a given pair{ν, %} is given.

Foremost, such an expression as given in (2) can be useful since it allows for
estimating the behavior of the Bures distance at{ν, %} if this pair is undergoing
an inner perturbation towards another pair{νa, %b} of positive linear forms. As
it comes out, the geometry of submanifolds of mutually coordinated (via inner
operations) positive linear forms ofW∗-algebras of use to us, should be based
on this formula. We will not elaborate on this in this paper, but instead we will
be concerned with one particular aspect of this geometry more in detail within
Section 3.

In the course of the derivation of the main result, several other characterizations
of P (and thus ofdB as well) will be obtained.

2. Results and Proofs

2.1. FURTHER CHARACTERIZATIONS OF TRANSITION PROBABILITY

In all what follows? M is aW∗-algebra andν, % ∈M∗+ are fixed but can be arbitrar-
ily chosen positive linear forms. We start with some consequences from Theorem
2. Relating notations, when occurring in conjunction with inf or sup, in each case
of occurrence, the variablesx > 0, {x}, {e} and{y, x} are thought to extend over
all positive invertible elementsx, all finite decompositions{x} = {x1, . . . , xn} of
the unity into positive elements, all finite decompositions{e} = {e1, . . . , en} of the
unity into orthoprojections, and all finite double systems{y, x} = {y1, x1, . . . , yn,

xn} of elements obeying
∑

j y
∗
j xj = 1, respectively, withinM, wheren can range

through the naturals,n ∈ N.

COROLLARY 2. The following properties hold:

(1)
√
PM(ν, %) = inf{x}

∑
j

√
ν(xj )%(xj );

(2)
√
PM(ν, %) = inf{e}

∑
j

√
ν(ej )%(ej );

? Most of the material of Section 2 as well as some parts of Section 3, especially 3.2, are
reproduced from the part ‘foundational material’ of the manuscript [3].
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(3)
√
PM(ν, %) = inf{y,x} 1

2

∑
j

{
ν(y∗j yj )+ %(x∗j xj )

};
(4)

√
PM(ν, %) = inf{1=y∗x} 1

2

{
ν(y∗y)+ %(x∗x)};

(5)
√
PM(ν, %) = infx>0

1
2

{
ν(x)+ %(x−1)

}
.

Proof.Note that according to (1.5) for eachf ∈ 0M(ν, %) and any finite positive
decomposition{x} of the unity, one has

|f (1)| 6
∑
j

|f (xj )| =
∑
j

|f (√xj√xj )| 6
∑
j

√
ν(xj )%(xj ).

According to Theorem 2(2),√
PM(ν, %) 6 inf{x}

∑
j

√
ν(xj )%(xj ) 6 inf{e}

∑
j

√
ν(ej )%(ej ) (?)

can be followed. That is, the validity of (2) will imply that (1) is also true. To
see that (2) holds, letε > 0. According to Theorem 2(1), there exists invertible
x ∈ M+ obeyingν(x)%(x−1) < PM(ν, %) + ε. Since the mapy 7−→ y−1, in
restriction to the invertible elements ofM+, is normcontinuous, and since we are
in a W∗-algebra, we may additionally suppose thatx satisfying the above estimate
is chosen with a finite spectrum, that is,x = ∑n

j=1 λjej is fulfilled with λj > 0,
and some finite decomposition{e1, . . . , en} of the unity into mutually orthogo-
nal orthoprojections ofM. Using this spectral decomposition, one arrives at the
expression

ν(x)%(x−1)

=
∑
j

ν(ej )%(ej )+
∑
j>k

{
λjλ
−1
k ν(ej )%(ek)+ λkλ−1

j ν(ek)%(ej )
}
.

Owing to the strict positivity of theλ’s and the nonnegativity of theν(ej )’s, one
has

λjλ
−1
k ν(ej )%(ek)+ λkλ−1

j ν(ek)%(ej )

> 2
√
ν(ej )%(ej )

√
ν(ek)%(ek)

for eachj > k. In fact, this is trivial for
√
ν(ej )%(ej )

√
ν(ek)%(ek) = 0, whereas in

the other case, the estimate follows from minimizing the positive functionF(t) =
t ν(ej )%(ek)+ t−1 ν(ek)%(ej ) overR+\{0}, which has a solution, since in this case
both coefficients oft and t−1 are strictly positive. By means of this estimate and
the above, one finally arrives at

PM(ν, %)+ ε > ν(x)%(x−1) >
{∑

j

√
ν(ej )%(ej )

}2

. (??)

From this

inf{p}
∑
j

√
ν(pj )%(pj ) 6

√
PM(ν, %)+ ε
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is seen. Sinceε > 0 could have been chosen at will,
√
PM(ν, %) >

inf{p}
∑

j

√
ν(pj )%(pj ) follows with {p} extending over the finite decompositions

of the unity into orthoprojections ofM. From this and (?), follow (1) and (2).
In order to prove (3), to givenε > 0, for eachδ > 0 by means of the decompo-

sition {e1, . . . , en} of the unity into orthoprojectionsej obeying (??) let us define a
double system{y(δ), x(δ)} ⊂ M by settingxj (δ) = µj(δ) ej , yj (δ) = µj(δ)−1 ej ,
with

µj(δ) = 4

√
ν(ej )+ δ
%(ej )+ δ

for eachj 6 n. Then, also
∑

j y
∗
j (δ)xj (δ) = 1 holds, and therefore the double

system{y(δ), x(δ)} is a special case of those double systems considered within the
context of the infimum in (3). Hence, one has1

2 inf{y,x}
∑

j

{
ν(y∗j yj )+ %(x∗j xj )

}
6

F(δ), for eachδ > 0, with the auxiliary functionδ 7→ F(δ) defined by

F(δ) = 1

2

∑
j

{
ν(yj (δ)

∗yj (δ))+ %(xj (δ)∗xj (δ))
}
.

Since with this choice, one easily infers thatF(δ) may be expressed as

F(δ) =
∑

j, ν(ej ) 6=0

1

2

√{%(ej)+ δ}ν(ej )
√

ν(ej )

ν(ej )+ δ +

+
∑

j, %(ej ) 6=0

1

2

√{ν(ej )+ δ}%(ej)
√

%(ej )

%(ej )+ δ ,

in view of the previous and (??), then

lim
δ→0

F(δ) =
∑
j

√
ν(ej )%(ej ) 6

√
PM(ν, %)+ ε (?′)

can be followed. Therefore√
PM(ν, %)+ ε > 1

2
inf{y,x}

∑
j

{
ν(y∗j yj )+ %(x∗j xj )

}
is seen. Since such a procedure can be performed for eachε > 0, one can be
assured that√

PM(ν, %) >
1

2
inf
{y,x}

∑
j

{
ν(y∗j yj )+ %(x∗j xj )

}
is fulfilled, where{y, x} is allowed to run through all finite double systems obeying∑

j y
∗
j xj = 1. On the other hand, for each such double system andf ∈ 0M(ν, %),

one has

|f (1)| 6
∑
j

|f (y∗j xj )| 6
∑
j

√
ν(y∗j yj )%(x

∗
j xj ) .
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Now, for each two elementsx, y ∈M, the estimate
√
ν(y∗y)%(x∗x) 6 1

2

{
ν(y∗y)+

%(x∗x)
}

is inferred from
{√
ν(y∗y) −√%(x∗x)}2 > 0. Hence, the above estimate

relating double systems can be continued accordingly and results in|f (1)| 6
1
2

∑
j

{
ν(y∗j yj ) + %(x∗j xj )

}
. This has to hold for eachf ∈ 0M(ν, %) and finite

double system{y, x} obeying
∑

j y
∗
j xj = 1. Thus, also√

PM(ν, %) 6
1

2
inf
{y,x}

∑
j

{
ν(y∗j yj )+ %(x∗j xj )

}
is seen. In view of the above, equality follows, that is, (3) is seen to hold. Note that
within the context of (?′) if an elementa(δ) ∈ M is defined by means of the above
yj (δ) through the settinga(δ) =∑j yj (δ)

∗yj (δ), one hasa(δ) > 0, invertible with
a(δ)−1 =∑j xj (δ)

∗xj (δ), and then (?′) under the above premises onε equivalently
also shows that

lim
δ→0

1

2

{
ν((a(δ))+ %(a(δ)−1)

} =∑
j

√
ν(ej )%(ej ) 6

√
PM(ν, %)+ ε

has to be fulfilled. Sinceε > 0 can be arbitrarily chosen, from the previous, then
even an estimate√

PM(ν, %) > inf
x>0

1

2

{
ν(x)+ %(x−1)

}
(?′′)

can be seen to be fulfilled, where now the infimum extends over all invertible,
positive elements ofM. On the other hand, for each invertible, positive element
x ∈M, one has the identity

1

2

{√
ν(x)−

√
%(x−1)

}2+
√
ν(x)%(x−1)

= 1

2

{
ν(x)+ %(x−1)

}
. (2.1a)

Taking the infimum over the invertible positivex ∈ M on both sides and respect-
ing the nonnegativity of(1/2) {√ν(x) −√%(x−1)}2, will show that the following
estimate has to be fulfilled:

inf
x>0

√
ν(x)%(x−1) 6 inf

x>0

1

2

{√
ν(x)−

√
%(x−1)

}2+ inf
x>0

√
ν(x)%(x−1)

6 inf
x>0

1

2

{
ν(x)+ %(x−1)

}
. (2.1b)

Hence, from Theorem 2(1) one can conclude that
√
PM(ν, %) 6 infx>0(1/2)

{
ν(x)+

%(x−1)
}

has to hold. From this, in view of (?′′), the validity of (5) follows.
Finally, for eachε > 0 by the proof of (5) there exists an invertiblea > 0

obeying
√
PM(ν, %) + ε > (1/2)

{
ν(a) + %(a−1)

}
. In defining yε = √a and

xε = √a−1
, one has1= y∗ε xε, and the above estimate then turns into

(1/2)
{
ν(y∗ε yε)+ %(x∗ε xε)

}
6
√
PM(ν, %)+ ε.
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On the other hand, according to (3), one has√
PM(ν, %) 6 inf

{1=y∗x}
(1/2)

{
ν(y∗y)+ %(x∗x)} 6 (1/2){ν(y∗ε yε)+ %(x∗ε xε)} .

From these estimates, and sinceε > 0 can be taken at will, the validity of (4)
becomes evident. This completes the proof of all the assertions.

2.2. MISCELLANEOUS COMMENTS

In the following, we will comment on the facts arising from Corollary 2, and will
supplement them with further useful auxiliary results and remarks.

2.2.1. Comments on Corollary 2(1)–(2): Quadratic Means

For normal states,PM(ν, %) is the same as the generalized transition probability
TM(ν, %) given in [12].

The definition of V. Cantoni refers to the two probability measuresν(Ex(dλ))
and%(Ex(dλ)) over the Borel sets ofR1 that can be naturally associated with two
normal statesν, % onM through the projection valued measureEx(dλ) of a self-
adjoint element, sayx ∈ M, with spectral representationx = ∫R1 λEx(dλ) (recall
that within a quantum mechanical context the Hermitian elements are the candi-
dates of bounded observables). In line with a proposal of G. Mackey, see Chapter
2, 2.2, 2.6 in [20] and, in accordance with some physically motivated axioms saying
what properties of a ‘transition probability’ should be considered as indispensable
at all, see [21, 17, 16], e.g. in [12] one defines a generalized transition probability
by

TM(ν, %) = inf
x∈Mh

{∫
R1

QMx(ν, %)(dλ)

}2

, (2.2)

with the quadratic means

QMx(ν, %)(dλ) =
√
ν(Ex(dλ))%(Ex(dλ))

of these measures, which is a Borel measure on the line again. On carefully ana-
lyzing the quadratic means in the special case of two normal states, one of which is
at least faithful, the proof thatPM(ν, %) of Definition 2 equals the expression (2.2)
has been given in [8].

As has been remarked on by S. Gudder (see Theorem 1 in [16]), mathematically
(2.2) amounts to

√
TM(ν, %) = inf{e}

∑
j

√
ν(ej )%(ej ), which is (2) in this special

case.
In summarizing, the information obtained through Corollary 2 on that subject

is the following:
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– the expression in Corollary 2(2) reflects those aspects behind (2.2) which
remain valid forany positive linear forms (not only normal ones) on aW∗-
algebra;

– the expression in Corollary 2(1) can be taken as the common generalC∗-
algebraic essence of the matter around quadratic means.

2.2.2. Comments on Corollary 2(3)–(4): Some Seminorms onM

For normal states, (3) had been conjectured by D. Buchholz, motivated by an appli-
cation to relativistic quantum field theory, and has been proved in the special case
of B(H) in [10], eq. (2.10). But note that there the intention was to deal with certain
vector states of some∗-algebras of (unbounded) operators. In contrast to this, in
the following we will strictly adhere to the (bounded) context of aW∗-algebraM
and positive linear forms.

To start discussions concerning Corollary 2(3)–(4), for givenν, % ∈ M∗+, let us
consider two real-valued functions onM, τν,% andυν,%, which are defined atz ∈ M
by

τν,%(z) = inf
{y,x}⊂M, z=∑j6n y∗j xj

1

2

∑
j

{
ν
(
y∗j yj

)+ %(x∗j xj)} , (2.3a)

υν,%(z) = inf
z=y∗x

1

2

{
ν(y∗y)+ %(x∗x)} . (2.3b)

Thereby, within the former expression, the infimum is to be taken over all finite
double systems{y, x} of operators ofM obeyingz = ∑

j6n y
∗
j xj , with n ∈ N

arbitrarily chosen. For notational simplicity, we subsequently use the shortcut no-
tationz = {y, x} whenever such a type of relation occurs. If we want to consider
only minimal systems of that kind (n = 1), which, e.g., is referred to in (2.3b), the
conditionz = y∗x will be explicitly used.

Note that the assertions of Corollary 2(3)–(4) then read

υν,%(1) = τν,%(1) =
√
PM(ν, %) . (2.3c)

Also, it is obvious from the structure of the expression within definition (2.3a) that
τν,% is a seminorm, whereas from (2.3b) it is obvious thatτν,% is a lower bound for
υν,%:

τν,%(z) 6 υν,%(z) . (2.3d)

Remark that, in relativistic quantum field theory, it was to be hoped that seminorms
of τ -type would be useful in proving the existence of non-trivial (weak) intertwin-
ers between so-called standard representations [10, 29]. These standard representa-
tions roughly correspond to the cyclic∗-representations ofν and% in our bounded
context (for the context, see also [18], especially Definition 2.2.14). Clearly, within
specific settings this is the (highly nontrivial) analog over unbounded observable al-
gebras of the (comparably trivial) task of analyzing the structure of the set0M(ν, %)
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in the bounded case. In case, the above idea reduces to enquiring about the upper
bounds off ∈ 0M(ν, %) which can be read in terms of the seminormτν,%, that is,
one is looking for estimates byτν,% in the form:

∀ z ∈ M : |f (z)| 6 c τν,%(z), (2.3e)

for some real constantc > 0, for instance.
More precisely, the information concerning Corollary 2(3)–(4) consists of the

following:

– the estimate (2.3e) holds with respect to the seminorm (2.3a), withc = 1,
and this estimate, being the best possible in favor of the above task, that is,
0M(ν, %) appears to be trivial,0M(ν, %) = {0}, if and only if τν,% is trivial,
τν,% ≡ 0;

– the seminormτν,% can be calculated exactly, even if{y, x}, under the infimum
in (2.3a), is bent to be varied only through minimal double systems withz =
y∗x, i.e., according to this and (2.3b), one hasτν,% = υν,% to hold;

– when seen in the form of (2.3c), in generalizing from Corollary 2(3) for each
ν, % ∈ M∗+ and, givenz ∈M, an (heuristic useful) interpretation of the values
of the seminormτν,% in terms of ‘transition probability’ (and, thus, in terms of
the Bures distance) between certain inners derived from{ν, %} positive linear
forms can be given.

It is plain to see that the answers to the corresponding items can be read off as
straightforward consequences of the following result:

COROLLARY 3. For eacha, b ∈M andz = a∗b, the following holds:

τν,%(z) = υν,%(z) = sup
f∈0M(ν,%)

|f (z)|

=
√
PM
(
ν, %z

) = √PM(νa, %b) . (2.3f)

Proof. First note that each finite double system{y, x} obeying 1 = {y, x}
through settingỹj = yja and x̃j = xjb, respectively, provides another finite
double system of the same length{ỹ, x̃} with a∗b = {ỹ, x̃} (especially, minimal
double systems will be transformed into minimal ones again). Hence, in view of
Corollary 2(3)–(4) and (2.3a)–(2.3b) one can conclude as follows:√

PM
(
νa, %b

) = (1/2) inf
1={y,x}

∑
j

{
νa
(
y∗j yj

)+ %b(x∗j xj)}
= (1/2) inf

1={y,x}
∑
j

{
ν
(
ỹ∗j ỹj

)+ %(x̃∗j x̃j )}
> (1/2) inf

a∗b={y,x}
∑
j

{
ν
(
y∗j yj

)+ %(x∗j xj )}
= τν,%(a

∗b) .
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Thus, the following estimate has been established:

τν,%(a
∗b) 6

√
PM
(
νa, %b

)
. (◦)

Also, if from the pair{ν, %} a representation{π,K} as in the premises of Theorem
2(3) is chosen, with fixedϕ ∈ Sπ,M(ν) andψ ∈ Sπ,M(%), then obviously also
π(a)ϕ ∈ Sπ,M(ν

a) andπ(b)ψ ∈ Sπ,M(%
b) are fulfilled. Application of (1.6) with

respect to{ν, %}, {νa, %b} and {ν, %z} will yield that 〈π(·)kψ, ϕ〉, 〈π(·)kπ(b)ψ,
π(a)ϕ〉 and〈π(·)kπ(z)ψ, ϕ〉, respectively, will be running through all of0M(ν, %),
0M(ν

a, %b) and0M(ν, %z), respectively, ifk is supposed to be varied through all of
(π(M) ′)1. Now, for eachk ∈ (π(M) ′)1, one has〈kπ(b)ψ, π(a)ϕ〉 = 〈kπ(z)ψ, ϕ〉
= 〈π(z)kψ, ϕ〉. Hence, in line with Theorem 2(2), when the latter is accordingly
applied to these three special situations, under the premise ofz = a∗b the estimate
(◦) can be continued as follows:

τν,%(z) 6
√
PM
(
νa, %b

) = √PM(ν, %z) = sup
f∈0M(ν,%)

|f (z)|. (◦′)

Now, suppose thatz = {y, x}within the context of{ν, %}. By definition of0M(ν, %),
for f ∈ 0M(ν, %), one has

|f (z)| 6
∑
j

|f (y∗j xj )| 6∑
j

√
ν
(
y∗j yj

)
%
(
x∗j xj

)
6 1

2

∑
j

{
ν
(
y∗j yj

)+ %(x∗j xj )}.
From this and in view of (2.3a), supf∈0M(ν,%)|f (z)| 6 τν,%(z) follows, which with
the help of (2.3d) can be turned into

sup
f∈0M(ν,%)

|f (z)| 6 τν,%(z) 6 υν,%(z). (◦′′)

On the other hand, forε > 0, Corollary 2(4) can be applied to the pair{ν, %z} and
yields invertiblea > 0 obeying√

PM(ν, %z)+ ε > (1/2)
{
ν(a)+ %z(a−1)

}
.

Let us definey = √a andx = √a−1
z. Then,z = y∗x and

{
ν(a) + %z(a−1)

} ={
ν(y∗y)+%(x∗x)} are fulfilled. Hence, in view of the above,υν,%(z) 6

√
PM(ν, %z)

+ε can be followed. Sinceε > 0 can be taken at will from the latter in accordance
with (2.3b), we getυν,%(z) 6

√
PM(ν, %z). Upon taking this together with (◦′′) and

(◦′), we can conclude that in fact equality has to occur within (◦′′) and (◦′), i.e.,
(2.3f) holds. This closes the proof of Corollary 3.

Proof of Theorem3. The formula of Theorem 3(1) is given by one of the
particular subequations coming along with (2.3f). Moreover, according to another
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subequation of (2.3f),υν,%(z) = PM(ν
a, %b)1/2 holds. Inserting this into (1.3), in

view of (2.3b), yields

dB(ν
a, %b)2 = ν(a∗a)+ %(b∗b)− inf

z=y∗x
{
ν(y∗y)+ %(x∗x)}

= sup
z=y∗x

{
ν(a∗a − y∗y)+ %(b∗b − x∗x)},

which is Theorem 3(2).

Remark 2.(1) Without proof, we remark thatPM(ν, %) = 0 is equivalent to
ν ⊥ % (see, e.g., [5]). Recall that the orthogonality of twoC∗-algebraic positive
linear formsν, % is defined as‖ν − %‖1 = ‖ν‖1 + ‖%‖1.

(2) Especially for statesν, % occurring along with quantum physical problems
over an algebra of observablesM, one is inclined to givePM(ν, %) a (quantum)
probabilistic interpretation. Corollary 3 within such a context will tell us that an
interpretation which reads in terms of the transition probability, but now between
the ‘perturbed’ statesνa and%b, also extends to the value of the rather abstractly
defined seminormsM 3 z 7−→ τν,%(z) at z = a∗b. Thus, if to given pair{ν, %} of
states and in accordance with (2.3f) and the previous item (1), those operatorsa,b
are considered which are solutions of the equationτν,%(a

∗b) = 0 (and for which
both νa and%b are states again), then these might be interpreted as all possible
elementary ‘operations’ (i.e. inner implementable perturbations) driving{ν, %} into
mutually orthogonal states.

(3) Due to the mentioned interpretation of the values of the seminormτν,% in
terms of

√
PM , which manifests itself by (2.3f), some subadditivity property of√

PM in respect to inner derived positive linear forms can be followed:

a∗b =
∑
j6n

a∗j bj H⇒
√
PM
(
νa, %b

)
6
∑
j6n

√
PM
(
νaj , %bj

)
.

(4) The fact thatτν,% = υν,% holds is mainly due to our restriction tobounded
operator algebras and cannot be expected to extend simply to a context with∗-
algebras of unbounded operators.

2.2.3. Comments on Corollary 2(5): Minimizing Abelian Algebras

That Corollary 2(5) is a notable result on its own rights – and is not something
to be easily abandoned – has been recognized only recently, and as such will be
discussed here (and in more detail in the next section) for the first time.

In comparing the item in question with Theorem 2(1), one immediately notices
that the essential difference with the latter result lies in the fact that under the
infimum instead of a geometrical means, the arithmetical means of the same two
expressions now enters the equation.



16 P. ALBERTI AND A. UHLMANN

Quite naturally, within the context of Corollary 2(5) (and within the context
of Theorem 2(1) as well), a main interest will be in describing the structure of
those invertiblex ∈ M+ from which, by the expression of12

{
ν(x) + %(x−1)

}
(or

√
ν(x) %(x−1), respectively), the (common) infimum

√
PM(ν, %) is nearly at-

tained. Such problems and related questions will now be discussed. As such, for
the purposes of estimation theory, Corollary 2(5) seems to be better suited than
Theorem 2(1). For instance, the mapx 7−→ 1

2

{
ν(x) + %(x−1)

}
is more sensi-

tive to certain variations of the positive invertible operatorx ∈ M than the map
x 7−→ √

ν(x) %(x−1) is (compare the behavior of both under the changex 7→ λ x,
for realλ > 0, simply).

Relating the quality of the mentioned approximation, one has the following
simple facts (cf. also Theorem 4.4 in [2]).

COROLLARY 4. Let ν, % ∈ M∗+, and be{x} ⊂ M+ a sequence of invertible
elements. The following facts are equivalent:

(1)
√
PM(ν, %) = limn→∞ 1

2 {ν(xn)+ %(x−1
n )};

(2)
√
PM(ν, %) = limn→∞ ν(xn) = limn→∞ %(x−1

n ) .

Moreover, ifComm[M] is the family of all AbelianW∗-subalgebras ofM with the
same unity asM, then one has

(3) PM(ν, %) = infR∈Comm[M] PR(ν|R, %|R) .
Proof. In view of Equations (2.1), the asserted equivalence immediately fol-

lows from Theorem 2(1) and Corollary 2(5). Also (3) can be seen as an obvious
consequence of each of these items.

Now, for a given pair{ν, %} of positive linear forms, a setMinM(ν, %) will be
defined as

MinM(ν, %) =
{
x ∈M+ :

√
PM(ν, %) = 1

2

{
ν(x)+ %(x−1)

}}
.

The elements ofMinM(ν, %)will be calledminimizing(positive invertible) elements
of the pair{ν, %}, where, in this notation Corollary 2(5) is tacitly referred to within
context.

Note that since the set of all invertible positive elements is neither compact nor
closed, it is a nontrivial problem to decide from a concrete pair{ν, %} of positive
linear forms whether or not the infimum within Corollary 2(5) is a minimum.

In fact, general this cannot happen, as the following simple counterexample
shows.

EXAMPLE 3. According to elementary spectral theory for invertibley ∈ M+,
one hasy > ‖y−1‖−11. Hence, for each pair{ν, %} 6= {0,0} of positive linear
forms and for each invertiblex ∈M+ one infers that

{ν(x)+ %(x−1)}/2> {‖ν‖1/‖x−1‖ + ‖%‖1/‖x‖}/2> 0



BURES-DISTANCE BETWEEN INNER DERIVED POSITIVE LINEAR FORMS 17

has to be fulfilled. On the other hand, according to Remark 2(2), in the special case
of ν ⊥ %, one has

√
PM(ν, %) = 0. Thus, in view of the previous estimate in the

case of a nontrivial pair of mutually orthogonal positive linear forms,MinM(ν, %) =
∅ holds.

On the other hand, there also exist classes where this question can be answered
affirmatively. A criterion relating to this matter is easily obtained from Corollary
4(1)–(2) and reads as follows:

x ∈ M+,
√
PM(ν, %) = ν(x) = %

(
x−1) ⇐⇒ x ∈ MinM(ν, %) . (2.4)

EXAMPLE 4. Suppose% = νa, with a ∈ M+ being invertible. Then, in view of
Theorem 1, the criterion (2.4) becomes applicable withx = a and shows that the
infimum in Corollary 2(5) is a minimum.

Let us refer to an AbelianW∗-subalgebraR ⊂ M with 1 ∈ R as theminimizing
Abelian subalgebraif the infimum within Corollary 4(3) is a minimum and is
attained atR. For instance, ifMinM(ν, %) 6= ∅ is fulfilled, then in line with the
above, the infimum is attained at each subalgebraR which is generated by1 and
some particularx ∈ MinM(ν, %). Thus, in generalizing the problem on the existence
of minimizing elements, a more general question on the existence of minimizing
Abelian subalgebras naturally arises.

3. Special Subjects

3.1. MINIMIZING ELEMENTS

In this section we inquire about the existence and uniqueness of minimizing posi-
tive invertible elements, and we derive some results on the structure ofMinM(ν, %).
Let x, z ∈ M+ be any two invertible positive elements. Letδ = (z − x). Then the
following algebraic identity can be easily checked to hold:

z−1 = x−1 − x−1δx−1+1(z, x) , (3.1a)

where1(z, x) = m(z, x)∗m(z, x) holds, andm(z, x) is defined by

m(z, x) = (x−1/2δx−1/2)(x−1/2zx−1/2)−1/2x−1/2 . (?)

By construction of1(z, x) and by invertibility ofz, x from (?), the following can
be followed

1(z, x) ∈M+,with
{
1(z, x) = 0 ⇐⇒ δ = 0

}
. (3.1b)

Also, sincex−1/2δx−1/2 is commuting withx−1/2zx−1/2, yet another expression for
m(z, x) can be obtained from (?). This reads as

m(z, x) = (x−1/2zx−1/2)−1/2x−1/2δx−1 . (3.1c)
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With the help of (3.1a) and the previous notations, one finds

1

2

{
ν(z)+ %(z−1)

}− 1

2

{
ν(x)+ %(x−1)

}
= 1

2

{
ν(δ)− %(x−1δx−1)

}+ 1

2
%(1(z, x)) . (3.1d)

Note that the setM inv+ of all invertible positive elements ofM is an open, nonpointed
subcone within the real Banach space{Mh, ‖ · ‖} of the Hermitian portion ofM.
Hence, for a particularx ∈M inv+ and giveny ∈ Mh, for all t ∈ R sufficiently small,
zt = x+ ty ∈M inv+ has to hold (one might take|t| < ‖x−1yx−1‖−1). In this special
situation formula (3.1d) at such a parametert reads as

1

2

{
ν(zt )+ %(z−1

t )
}− 1

2

{
ν(x)+ %(x−1)

}
= t

2

{
ν(y)− %(x−1yx−1)

}+ t2
2
%(1t(y|x)) , (3.2)

where1t(y|x) = t−21(zt, x) is defined fort 6= 0 and, att = 0, we let

10(y|x) = ‖ · ‖ − lim
t→0

t−21(zt, x) = x−1yx−1yx−1.

We are now ready for the following redefinition ofMinM(ν, %).

PROPOSITION 2.For anyν, % ∈M∗+ the following holds:

MinM(ν, %) =
{
x ∈ M inv

+ : ν(y) = %(x−1yx−1), ∀ y ∈ Mh
}
. (3.3)

Proof. Supposex ∈ MinM(ν, %). Then, for each fixedy ∈ Mh and for all t ∈
R\{0} sufficiently small, in accordance with (3.2)

−∣∣ν(y) − %(x−1yx−1)
∣∣ > −|t|%(1t(y|x))

has to hold. Having in mind that according to the above,t 7→ 1t(y|x) is norm-
continuous att = 0, one then has limt→0 |t|%(1t(y|x)) = 0. In view of the
previous estimate,ν(y) = %(x−1yx−1) is obtained.

On the other hand, assume thatx ∈ M inv+ such that, for eachy ∈ Mh, ν(y) =
%(x−1yx−1) is satisfied. For each otherz ∈ M inv+ , let δ = (z − x) = y. Then one
especially has{ν(δ)− %(x−1δx−1)} = 0. Hence, (3.1d) can be applied and, owing
to the positivity of1(z, x) and%, yields 1

2

{
ν(z)+%(z−1)

}− 1
2

{
ν(x)+%(x−1)

}
> 0.

Hence, sincez can be arbitrarily chosen fromM inv+ , x ∈ MinM(ν, %) follows. This
completes the proof of (3.3).

After these preliminaries, we may now summarize as follows.

THEOREM 4. LetM be aW∗-algebra. Forν, % ∈ M∗+ one has

(1) MinM(ν, %) 6= ∅ ⇐⇒ ∃ a ∈M inv+ : % = νa;
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(2) MinM(ν, %) =
{
x + Iν

} ∩M inv+ , ∀ x ∈ MinM(ν, %);
(3) #MinM(ν, %) = 1 ⇐⇒ ∃ a ∈ M inv+ : % = νa, ν is faithful.

Proof. According to Example 4, for% = νa with a ∈ M inv+ , one hasa ∈
MinM(ν, %). On the other hand, ifMinM(ν, %) 6= ∅ is supposed in line with formula
(3.3) and since linear forms on aC∗-algebra are uniquely determined through their
values for the Hermitian portion,ν = %(x−1(·)x−1) has to be fulfilled for some
x ∈M inv+ . That is,% = νa holds witha = x. In summarizing, (1) is valid.

To see (2), suppose thatx ∈ MinM(ν, %) and bez ∈ M inv+ . According to what
has been said previously% = νx and, therefore, from (3.3) and (3.1d) one infers
that z ∈ MinM(ν, %) happens if and only ifν(x1(z, x)x) = 0 is fulfilled. By
construction of1(z, x), the latter is equivalent withm(z, x)x ∈ Iν, see (1.1b).
According to (3.1c), the latter is the same as(x−1/2zx−1/2)−1/2x−1/2δ ∈ Iν, with
δ = (z − x). SinceIν is a left ideal and(x−1/2zx−1/2)−1/2x−1/2 is invertible, from
this we finally conclude that, forz ∈ M inv+ , the conditionz ∈ MinM(ν, %) has to be
equivalent withδ ∈ Iν . Owing toMinM(ν, %) ⊂ M inv+ this is (2).

In order to see (3), we first remark that for faithfulν one hasIν = {0}. Hence,
from the just proved (2), the uniqueness of a minimizing element evidently follows.
On the other hand, for an eventually existingr ∈ Iν\{0}, owing tor∗r = |r|2, also
|r| ∈ Iν\{0} follows, see (1.1b). Hence, sincea ∈ MinM(ν, %) is invertible, by
standard facts and owing toz > a, alsoz ∈ M inv+ follows for z = a + |r|. By (2)
this, however, then implies thatz ∈ MinM(ν, %). Sincez 6= a holds, we therefore
have #MinM(ν, %) > 1, for nonfaithfulν. Taking this together with what has been
said previously yields (3).

SinceMinM(%, ν) =
{
x−1 : x ∈ MinM(ν, %)

}
holds, from Theorem 4(2), for

MinM(ν, %) 6= ∅, one infers that both positive linear forms have to be faithful or
not, only simultaneously. By reversing this, another class of counterexamples is
easily obtained.

EXAMPLE 5. Letν, % ∈ M∗+. Suppose that one of the two forms is faithful. Then,
the infimum in Corollary 2(5) cannot be attained on the invertible positive elements
of M.

Remark 3.According to Theorem 4(1), minimizing elements can exist if and
only if each of the two positive linear forms of a pair{ν, %} can be inner-derived
by means of some positive invertible element from the other one. All these cases
are covered by Example 4.

As announced at the end of Section 2.2.3, the next best question to be raised
concerns the existence of a commutativeW∗-subalgebraR ofM, with 1 ∈ R, such
that the infimum in Corollary 4(3) could be attained.
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3.2. MINIMIZING COMMUTATIVE SUBALGEBRAS

We start with examples where minimizing abelian subalgebras exist but which are
found to be slighly beyond the bounds of Example 4.

EXAMPLE 6. Suppose% = νa, for a ∈ M+. By functional calculus (use the
spectral representation theorem within theW∗-algebraM) one infers thata(a +
ε 1)−1a 6 a holds, for each realε > 0. Hence,aε = (a + ε 1) ∈ M inv+ with
%(a−1

ε ) 6 ν(a). Owing to this, Theorems 2(1) and 1 (or, equivalently (1.7)),

ν(a) = √PM(ν, %) 6 ν(aε) = ν(a)+ ε ‖ν‖1
as well as

ν(a)2 = PM(ν, %) 6 %(a−1
ε ) ν(aε) 6 ν(a)2 + ε ν(a)‖ν‖1

are obtained. Upon performing the limitε → 0 in both relations and regarding
Corollary 4(1)–(2) will give that theW∗-subalgebra generated bya and1 can be
chosen as minimizing commutative subalgebraR.

The fact that a subalgebraR can be minimizing for a given pair{ν, %} im-
plies that some very specific additional conditions have to be fulfilled. An im-
portant instance of such conditions occurs within the context of those minimizing
subalgebras which come from Example 6.

LEMMA 1. Supposeν, % ∈ M∗+ and letR be aW∗-subalgebra ofM such that
%|R = (ν|R)a holds for somea ∈ R+. Then, wheneverR is minimizing for{ν, %},
the relation

νp(a)− νp⊥(a) = ν(a) (3.4)

holds for each orthoprojectionp ∈M obeyingp⊥ ∈ I%.
Proof. Let P = PM(ν, %). The assumption thatR can be minimizing together

with the reasoning of Example 6 when applied in respect of{ν|R, %|R} overR,
prove that foraε = a + ε 1 with ε > 0, one has
√
P = ν(a) = lim

ε→0
ν(aε) = lim

ε→0
%(a−1

ε ).

Now, let u = p + λp⊥, with realλ 6= 0. Defineaε(λ) = u∗aεu. Then, for each
ε > 0, one hasaε(λ) ∈ M inv+ . Note also that the assumption onp saying that
p⊥ ∈ I% is fulfilled together with the special structure ofu imply

%(y) = %(pyp) = %(u∗yu) = %(u−1yu−1∗)

to be fulfilled for eachy ∈ M. Hence, by construction ofaε(λ), lim
ε→0

%(aε(λ)
−1) =

lim
ε→0

%(a−1
ε ) =

√
P especially follows. On the other hand, since

ν(aε(λ)) = νp(aε)+ 2λ< ν(p⊥aεp)+ λ2νp
⊥
(aε)
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is fulfilled, in view of the above, one arrives at

lim
ε→0

ν(aε(λ)) = νp(a)+ 2λ< ν(p⊥ap)+ λ2νp
⊥
(a).

Note that, according to Theorem 2(1), the estimate limε→0 ν(aε(λ)) %(aε(λ)
−1) >

P has to be fulfilled, which in view of the previous, amounts to requiring
√
P {νp(a)+ 2λ< ν(p⊥ap)+ λ2νp

⊥
(a)}

> P = √P {νp(a)+ 2<{ν(p⊥ap)} + νp⊥(a)},
for all realsλ 6= 0. That is,

2
√
P(λ− 1)

{
< ν(p⊥ap)+ 1

2
(λ+ 1) νp

⊥
(a)

}
> 0

has to be fulfilled, for each realλ 6= 0.
SupposeP 6= 0 first. In considering the previous estimate forλ > 1, one infers

that< ν(p⊥ap) + 1
2(λ + 1) νp

⊥
(a) > 0 has to be fulfilled, whereas forλ < 1 we

see that< ν(p⊥ap) + 1
2(λ + 1) νp

⊥
(a) 6 0 has to be fulfilled. Upon performing

the limitsλ ↘ 1 andλ ↗ 1 within the mentioned relations forλ > 1 andλ < 1,
respectively, and then comparing the results will show thatνp

⊥
(a) = −< ν(p⊥ap)

has to be fulfilled. By means of this,

ν(a) = νp(a)+ 2< ν(p⊥ap)+ νp⊥(a) = νp(a)− νp⊥(a)
is seen. This proves the result in case ofP 6= 0.

Finally, for P = 0, one hasν(a) = 0. Owing toa > 0, a ∈ Iν . Hence, also
0= ν(pa) = ν(ap) and therefore from

νp
⊥
(a) = ν(a)− 2< ν(ap)+ νp(a),

one getsνp(a)−νp⊥(a) = 0 which is in accordance with (3.4) in this special case.

Bearing Example 5 in mind, we remark that, for faithfulν and% = νa, with a ∈
M+ and kera 6= {0}, the most simple situations arise where Example 6 provides
cases which go beyond the bounds of Example 4. Less trivial situations of that kind
arise from generalizing Example 2 and modifying those arguments, along the lines
of which we have been following within Example 6. The result in question, which
will be proved here in a sketchy way, reads as follows:

PROPOSITION 3. Let {ν, %}, with normal ν, % ∈ M∗+, and support orthopro-
jections which are mutually6-comparable, says(%) 6 s(ν), be fulfilled. Then a
minimizing commutativeW∗-subalgebraR ofM exists.

Sketch of proof.We remark first that fornormalpositive linear formsν, % with
supports obeyings(%) 6 s(ν), the problem in question by way of an appro-
priately chosennormal ∗-representation{π,K} which obeysSπ,M(ν) 6= ∅ and
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Sπ,M(%) 6= ∅, can always be reduced to the analogous problem over thevN-
algebraN = π(M) ′′. In this setting, with givenϕ ∈ Sπ,M(ν), the assumption
about the supports can be shown to ensure the existence of some (possibly un-
bounded) selfadjoint positive linear operatorA which is affiliated toN and which
obeysψ = Aϕ ∈ Sπ,M(%). Note that sinceA is affiliated toN , the operatorA
can be chosen to be independent of the particularly chosenϕ within Sπ,M(ν). Let
νπ and%π be the vector functionals generated byϕ andψ over thevN-algebra
N . Extending the notion ‘inner derived positive linear form’ slighly to include at
least such situations with vector forms onN and (unbounded) positive selfadjoint
linear operators affiliated withN , for %π = νAπ , one easily proves that formula
(1.7) remains true in the sense of

√
PN(νπ , %π) = νπ(A) = 〈Aϕ, ϕ〉. Since then

also the arguments raised within the context of Example 6 are easily justified to
remain valid withAε = A + ε 1 instead ofaε, following along the same line of
conclusions as in Example 6, will providePN(νπ, %π) = PR(νπ |R, %π |R), with R
being the commutativevN-subalgebra ofN generated by the spectral resolution of
A. Finally, sincePN(νπ, %π) = PM(ν, %) is always fulfilled (note thatνπ ◦ π = ν
and%π ◦ π = % hold), in view of thenormality of π , which implies that even
N = π(M) holds, the just-mentioned result aboutνπ ,%π overN can be easily
rewritten into one overM.

3.3. LEAST MINIMIZING COMMUTATIVE SUBALGEBRA

3.3.1. Generalities on the Problem

It is plain to see (from each of the items of Corollary 2, for instance) that the map
R 7−→ √

PR(ν|R, %|R), ν, % ∈ M∗+, with respect to the inclusion⊂ betweenW∗-
subalgebras ofM behaves6-(anti-)monotoneous. Hence, if there is a minimizing
commutative subalgebraR, then also each commutative subalgebra larger than this
has to be minimizing.

Going the other way around within this context is less trivial. For instance, one
might ask for the existence of aleast-minimizing commutativeW∗-subalgebra of
M with the same unit. In the case of the existence of a least-minimizing subalgebra,
the latter will be denoted byRM(ν, %).

Note that a least-minimizing subalgebra must not exist in either case of a pair
{ν, %}where a minimizing commutative subalgebra exists. To formulate a result for
this, for the following, make use ofR[x] as the notation for the commutativeW∗-
subalgebra ofM which is generated by1 and the Hermitian elementx ∈Mh. Then,
the simplest counterexamples against the existence of a least-minimizing algebra
can be generated from the following auxiliary construction:

LEMMA 2. Suppose% = νx holds withx ∈ M+. Then, for eachk ∈ Iν ∩M+,
R[x + k] is a minimizing Abelian subalgebra to{ν, %}. In the case where

% 6∈ R+ ν ,
⋂

k∈Iν∩M+
R[x + k] = C · 1 (3.5)
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is fulfilled, there cannot exist a least-element among all minimizing commutative
subalgebras to the pair{ν, %}.

Proof. It is easily inferred from (1.1a) and (1.1b) that% = νx+k holds also for
eachk ∈ Iν ∩M+. By Example 6,R[x + k] will be a special minimizing commu-
tative subalgebra. Also, from Definition 2 and with the help of known properties of
the Cauchy–Schwarz inequality, one easily infers that, for each pair{ν, %} of posi-
tive linear forms,

√
PM(ν, %) 6

√‖ν‖1‖%‖1 is fulfilled, with equality occurring if
and only if% = λ ·ν happens for some nonnegative realλ. On the other hand, from
the structure of Corollary 2(5) it is easily seen that

√
PM(ν, %) = √‖ν‖1‖%‖1 is

equivalent to the fact thatC ·1 is among the minimizing subalgebras. Now, assume
ν, % as in (3.5). Then, according to the first of the previously-mentioned facts,
the second condition in (3.5), in the case of the existence of a least-minimizing
subalgebra, implied the latter to be trivial, whereas by the first condition in (3.5)
and owing to the second of the above-mentioned facts, the trivial algebraC·1 is ex-
cluded from being a minimizing subalgebra. Thus, a least-minimizing subalgebra
cannot exist in this case.

Unfortunately, condition (3.5) can be easily satisfied, e.g. it can be shown to
be fulfilled for any two noncommuting pure states (the following 2× 2 case can
exemplarily stand for any situation of this kind; we omit the details).

EXAMPLE 7. LetM = M2(C) be the full algebra of 2×2-matrices with complex
entries,p, q ∈ M one-dimensional orthoprojections, with[p, q] = pq − qp 6= 0.
Let x = p + ε p⊥, with 0 < ε < 1, and beν ∈ M∗+\{0} with ν(q) = 0 (such
positive linear form trivially exists). Define% = νx . Thenq ∈ Iν ∩M+ and, in line
with the first part of Lemma 2 for bothx andy = x + q, one has thatR[x] and
R[y] are minimizing commutative subalgebras which, owing to the assumptions,
obey[x, y] 6= 0 and, therefore, both have to be nontrivial as well as not being the
same,R[x] 6= R[y]. Since each nontrivial commutative subalgebra ofM2(C) can
be generated by exactly two atoms, thenR[x] ∩ R[y] = C · 1 has to be followed.
This especially means that condition (3.5) is fulfilled and, thus, in accordance with
the other assertion of Lemma 2, a least-minimizing subalgebra cannot exist.

The above negative result and the previous counter-example, together with some
view on the structure of condition (3.5), indicate that the existence of a least-
minimizing Abelian subalgebra seems to depend on the size as well as on the
mutual position of the kernel idealsIν and I% in relation to each other (cf. also
Lemma 1). Recall that the kernel idealIν in a W∗-algebra becomes manageable,
especially ifν is supposed to benormal. In this case,Iν = Ms(ν)⊥ holds, where
s(ν) is the support orthoprojection of the normal positive linear formν (be careful
about the context; the same notations(x) will be also used for the support of a
Hermitian elementx ∈ Mh which will subsequently also play a rôle). Unfortu-
nately, even in the normal case, only very few answers are known on this subject,
except when we are in the special case with% � ν which relates to Example 2, and
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where sufficiently many examples of minimizing Abelian subalgebras are known.
Before going into details, some auxiliary notion relating to the general pair{ν, %}
of normalpositive linear forms will be introduced:

DEFINITION 3. LetR ⊂ M be aW∗-subalgebra ofM which contains the unity
of M. R is called{ν, %}-projectiveprovided the condition

∀y ∈ R : νs(%)(y) = ν(ys(%)) (3.6)

is fulfilled (R will be simply referred to as aprojective subalgebraif the ordered
pair is unambiguously given by the context).

EXAMPLE 8. For a normal, positive linear formν, the unital subalgebraMν

defined by

Mν = {x ∈ M : ν(xy) = ν(yx), ∀ y ∈M}
is a W∗-subalgebra ofM, which is usually called aν-centralizer. Obviously, if
the supports(%) of another normal positive linear form% obeyss(%) ∈ Mν , then
relation (3.6) is automatically fulfilled for eachW∗-subalgebraR of M. Hence, in
this case, each suchR is {ν, %}-projective.

Remark 4.(1) Since, for each normal positive linear formν, one hass(ν) ∈
Mν , according to Example 8 in the case of normalν, % ∈ M∗+ with equal supports,
s(ν) = s(%), each subalgebraR of M is both{ν, %}- and{%, ν}-projective.

(2) Obviously, for given{ν, %}, the set of all{ν, %}-projective subalgebras ofM
is nonvoid and each subalgebra of a projective subalgebra is projective again. Also,
the set of all projective subalgebras ofM is closed with respect to intersections.

(3) Suppose% = νx , for a pair {ν, %} of normal positive linear forms, with
x ∈ M+ obeyingxs(%) = s(%)x. Then, according to Example 6 and since (3.6)
is obviously fulfilled forR = R[x], the latter subalgebra is an example of a
minimizing Abelian projective subalgebraof M for {ν, %}.

(4) Suppose under the conditions of (3) that a least-minimizing Abelian subalge-
braRM(ν, %) exists. According to the previous two items, it follows thatRM(ν, %)

has to be projective, too.

3.3.2. Radon–Nikodym Theorem and Minimizing Projective Subalgebras

For the following recall that in case of% � ν the Radon–Nikodym operatorx =√
d%/dν of % relative toν is understood to be the unique elementx ∈ M+ which

obeys both% = νx ands(x) 6 s(ν).

LEMMA 3. Supposeν, % ∈M∗+ are normal, with% � ν. LetR be any minimizing
Abelian projective subalgebra of M for{ν, %}. Then the following facts are valid:

(1) ∀ k ∈ s(ν)⊥M+s(ν)⊥ : R[√d%/dν + k] is minimizing, projective;
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(2) ∃ k ∈ s(ν)⊥M+s(ν)⊥ : R[√d%/dν + k] ⊂ R .

Proof.According to Examples 2 and 6, one knows that the assumptions ensure
that minimizing Abelian subalgebras have, in fact, to exist. Sinceν is normal, as
mentioned above,Iν = Ms(ν)⊥ holds. Hence,Iν ∩M+ = s(ν)⊥M+s(ν)⊥ holds
and then by Lemma 2 we know that the formula in (1) provides minimizing Abelian
subalgebras. Moreover, since% � ν implies s(

√
d%/dν) = s(%) 6 s(ν), one

obviously has that each of
√

d%/dν + k, with k ∈ s(ν)⊥M+s(ν)⊥, commutes with
s(%). Hence, by Remark 4(3), all the subalgebras given in accordance with (1)
also are projective. Thus, it remains to be shown that each minimizing Abelian
projective subalgebraR has a subalgebra as given in line with (1). Note that the
assertion holds for% = 0 since thenC · 1 is minimizing. In line with this, we are
going to prove the previous assertion in the nontrivial case withν, % 6= 0.

LetR be any minimizing Abelian projective subalgebra to the given pair{ν, %}.
Note that by their very definitions, the conditions of normality for a positive linear
form, as well as the relation� among normal positive linear forms, are hereditary
conditions when considered in restriction toW∗-subalgebras ofM. Thus, espe-
cially we also find%|R � ν|R onR. Therefore we have unique Radon–Nikodym
operatorsx = √d%/dν andz = √d%|R/dν|R. As mentioned above, we especially
haves(x) = s(%) 6 s(ν) and since% 6= 0 is supposed in this case, we also have
z 6= 0. The assumption thatR should be minimizing together with the reasoning of
Example 6 when applied for{ν, %} overM, and for{ν|R, %|R} overR, respectively,
prove that forxε = x + ε 1 andzε = z+ ε 1, with ε > 0, one has

lim
ε→0

ν(xε) = lim
ε→0

%(x−1
ε ) = ν(x) =

√
PM(ν, %) =

√
PR(ν|R, %|R)

= ν(z) = lim
ε→0

ν(zε) = lim
ε→0

%(z−1
ε ).

Hence, sinceδ = (zε − xε) = (z − x) and% = νx hold, upon taking the limit
ε→ 0 within the relations which occur if (3.1d) is considered forzε, xε instead of
z, x, we will arrive at

0= − lim
ε→0

ν(xx−1
ε δx−1

ε x)+ lim
ε→0

ν(xx−1
ε δz−1

ε δx
−1
ε x) , (3.7a)

where also the special form ofm(zε, xε) arising along with (3.1c) has been taken
into account. Also note that by elementary facts on spectral theory,sε = xx−1

ε =
x−1
ε x is positive for eachε. Also, if positive reals are regarded as a directed set

in its descending ordering, then{sε} ⊂ M+ turns into an ascendingly directed net
of positive elements ofM, with sε 6 s(x), and has the support orthoprojection
s(x) of x as the least upper bound, that is, l.u.b.{sε : ε > 0} = s(x) is fulfilled.
In passing, note that the assertion on monotonicity can be understood as a special
consequence of the fact saying that the functionR+\{0} 3 t 7→ t−1 is operator-
(anti)monotoneousoverM inv+ (for generalities on that, see [9, 14]). Sinces(x) =
s(%) holds, from the previous and with the help of (1.1a) for eachy ∈ M, one
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easily concludes that

|νs(%)(y)− ν(sεysε)| 6 |νs(%)(y)− ν(ysε)| + |ν(ysε)− ν(sεysε)|
6 2‖y‖√ν(s(x) − sε) ‖ν‖1

must be fulfilled. From this, owing to the normality ofν and l.u.b.{sε : ε > 0} =
s(x) = s(%),
∀ y ∈M : νs(%)(y) = lim

ε→0
ν(sεysε) (3.7b)

follows. From this and in view of (3.7a) it also follows that both limits within
(3.7a) really exist. Now, remember that, by assumptionR is both minimizing and
projective. Hence, in view of Lemma 1 and Definition 3, both (3.4), witha = z

andp = s(%), as well as the particular case of the relation in (3.6) aty = z, hold.
That is,ν(z) = νs(%)(z)− νs(%)⊥(z) andν(s(%)⊥zs(%)) = 0 are fulfilled. From the
latter,

ν(z) = νs(%)(z)+ 2< ν(s(%)⊥zs(%))+ νs(%)⊥(z) = νs(%)(z)+ νs(%)⊥(z)
is obtained. This, together with the former, provides the following relation:

νs(%)(z) = ν(z) . (3.7c)

But then, since owing tos(x) = s(%), νs(%)(x) = ν(x) must also be fulfilled and
νs(%)(δ) = ν(δ) can be followed. Recall thatν(δ) = 0 holds. In specializingy = δ
within (3.7b), in line with what has been previously stated, (3.7a) can be also read
as

lim
ε→0

ν(sεδz
−1
ε δsε) = 0 . (3.7d)

Also note that by the estimatezε 6 (‖z‖ + ε)1, which is valid by triviality,
(‖z‖ + ε)−1 1 6 z−1

ε is implied. But then, since the linear mapM 3 y 7→
sεδyδsε ∈ M is positive, from the previous and by the positivity ofν, one infers
that ν(sεδz−1

ε δsε) > (‖z‖ + ε)−1ν(sεδ
2sε) > 0. Regarding the limit of the latter

as ε → 0, and respecting that‖z‖ 6= 0 holds, in view of (3.7d) finally yields
νs(%)(δ2) = 0. Owing tos(%) 6 s(ν), from thisδs(%) = 0 follows. Hence, since
s(%) = s(x) andz ∈ R+ ⊂ M+ hold, the conclusion is thatz = x + k has to be
fulfilled, with k = zs(%)⊥ = s(%)⊥z ∈ s(%)⊥M+s(%)⊥. But note that, byν(δ) = 0,
also ν(k) = 0 follows. By the positivity ofk and ks(%)⊥ = k from this we
conclude thats(ν)s(%)⊥ks(%)⊥s(ν) = 0, which is equivalent toks(%)⊥s(ν) = 0,
and thusk must obeyk ∈ s(ν)⊥M+s(ν)⊥. This, together with the obvious relation
R[x + k] = R[z] ⊂ R, is the assertion of (2).

THEOREM 5. Suppose% � ν is fulfilled, for normal positive linear formsν, % ∈
M∗+, with faithfulν. The following facts hold:

(1) providedRM(ν, %) exists it obeys
RM(ν, %) = R

[√
d%/dν

]; (3.8)
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(2) if also% is faithful thenRM(ν, %) exists.

Proof. By Lemma 3(1), one knows thatR = R
[√

d%/dν
]

is minimizing and
projective. Hence, ifRM(ν, %) is assumed to exist, then by Remark 4(3)–(4), the
minimizing subalgebraRM(ν, %) ⊂ R

[√
d%/dν

]
also has to be projective (note

that this conclusion does not rely on the premise on faithfulness ofν). Hence,
Lemma 3(2) can be applied toR = RM(ν, %). By the faithfulness ofν, one has
s(ν)⊥ = 0 and then the mentioned application yieldsR ⊂ R

[√
d%/dν

]
and, in

view of the above, formula (3.8) is seen to hold, that is, (1) is valid. To see (2),
note that in this case1= s(ν) = s(%) holds, which, via Remark 4(1), implies that
Lemma 3(2) can be applied toeachminimizing R. In line with this,R

[√
d%/dν

]
is a minimizing subalgebra of each minimizingR. Thus, it is the least one of this
sort.

3.3.3. RM(ν, %) as a Projective Subalgebra

Suppose% � ν such that a least-minimizing subalgebra exists. As has been re-
marked in relation to the previous proof, the algebraRM(ν, %) has to be a mini-
mizing projectivesubalgebra. Application of Lemma 3 then yields that, provided
RM(ν, %) exists, the latter has to equal to

R∞(ν, %) =
⋂

k∈s(ν)⊥M+s(ν)⊥
R[√d%/dν + k] . (3.9a)

From Lemma 3(2), evenRM(ν, %) = R[√d%/dν + k∞] can be seen to hold for
somek∞ ∈ s(ν)⊥M+s(ν)⊥. In line with (3.9a), the latter especially means that
R[√d%/dν + k∞] ⊂ R[√d%/dν + λ s(ν)⊥] has to be fulfilled for eachλ ∈ R+.
Therefore,k∞ ∈ R+ s(ν)⊥ has to hold. In summarizing from the latter and (3.9a),
in the general case of% � ν the conclusion of Theorem 5(1) and formula (3.8)
generalize to the following implication, which must be fulfilled for someγ ∈ R+:

RM(ν, %) existsH⇒ RM(ν, %)

=
⋂
λ∈R+

R[√d%/dν + λ s(ν)⊥]

= R[√d%/dν + γ s(ν)⊥] (3.9b)

= R∞(ν, %) .

To summarize from this, for given{ν, %} obeying% � ν, the algebraR∞(ν, %) can
be regarded to be the only candidate forRM(ν, %). Thereby, theγ within (3.9b)
will be made more explicit later.

Note that in the special case of% � ν with s(%) ∈ Mν , one can go a step
further. Then, since owing to Example 8, the assertion of Lemma 3(2) can be
applied to any minimizing subalgebraR, the above can be strengthened to the
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assertion that, depending whether or notR∞(ν, %) is minimizing, either a least-
minimizing Abelian subalgebra will exist which obeysRM(ν, %) = R∞(ν, %), or
a least minimizing Abelian subalgebra cannot exist at all.

LEMMA 4. Suppose% � ν, with s(%) ∈Mν . ThenR∞(ν, %) is minimizing if and
only if a least-minimizing Abelian subalgebra exists.

Having these facts in mind, and knowing that the special case of faithfulν has
been dealt with in Theorem 5, by providing a complete answer for faithful%, we
are now going to analyze the family of algebras occurring under the intersection
within (3.9b) more thoroughly in the remaining cases (in particular, those with
nonfaithful ν) which are not yet covered by the premises of Theorem 5. Some
auxiliary technical facts on hereditary subalgebras and elementary spectral theory
will be needed for this. Recall some standard facts fromW∗-theory first.

Remark 5.If R[y, y∗] is the smallestW∗-subalgebra ofM generated byy ∈ M
and1, then this is theσ(M,M∗)-closure of all polynomials iny, y∗ (including the
constants asC · 1). Here,M∗ is thepredualof M, which is the Banach (sub)space
of M∗ (with respect to the functional norm) which is generated by allnormal
positive linear forms (refer also to the elements ofM∗ asnormal (linear) forms).
Theσ(M,M∗)-topology is the weakest locally convex topology onM such that all
the seminormspf , f ∈M∗, with pf (x) = |f (x)| for x ∈M, are continuous.

Suppose now% � ν, and let an orthoprojectionq be defined byq = s(%) +
s(ν)⊥. On the hereditaryW∗-subalgebraqMq, define another normal positive lin-
ear formsνq, %q by νq = ν|qMq and%q = %|qMq , respectively. Then%q � νq
is fulfilled, with supports inqMq obeyings(νq) = s(%q) = s(%) ands(νq)⊥ =
s(ν)⊥, with ‘⊥’ referring toqMq orM, accordingly. Also, ifx = √d%/dν, xq =√

d%q/dνq are the corresponding Radon–Nikodym operators, one hasxq = x as
elements ofM. Also, if specp(x) and specp(xq) are the point-spectra ofx and
xq = x with respect toM andqMq, respectively, then the relation

specp(xq) ∪ {0} = specp(x) (3.10a)

can be easily seen to hold. Fory ∈ (qMq)h ⊂ Mh, we letRq[y] be theW∗-
subalgebra ofqMq generated byy and the unityq of qMq. In view of Remark 5,
it is plain to see thatRq[y] = qR[y]q holds. We are going to show that provided
RM(ν, %) exists, thenRqMq(νq, %q) exists, and obeys

RqMq(νq, %q) = qRM(ν, %)q . (3.10b)

In fact, since owing tos(x) = s(%) for eachk ∈ s(ν)⊥Ms(ν)⊥ alsox + k ∈
qMq holds, one hasRq[xq + k] = qR[x + k]q. Hence, in accordance with (3.9a)
and (3.9b), one has

qRM(ν, %)q =
⋂
λ>0

Rq[xq + λ s(ν)⊥] = Rq[xq + γ s(ν)⊥] =
⋂
k

Rq[xq + k],
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for some realγ > 0. We may apply formula (3.9a) with respect to the hereditary
algebraqMq and normal positive linear formsνq, %q . The result isR∞(νq, %q) =⋂
k Rq[xq + k], with k running throughs(νq)⊥M+s(νq)⊥ = s(ν)⊥M+s(ν)⊥ (see

above). Hence, in view of the previous, one has

qRM(ν, %)q = Rq[xq + γ s(ν)⊥] = R∞(νq, %q).
Especially, application of Lemma 3(1) forνq, %q on qMq shows thatR∞(νq, %q)
is minimizing. But, sinces(νq) = s(%q) and%q � νq hold, when considering
Lemma 4, Remark 4(1) and (3.9b) forνq, %q on qMq, one getsR∞(νq, %q) =
RqMq(νq, %q). From this, in view of the above, (3.10b) follows.

We close our preliminaries with the following auxiliary result which matters in
some elementary spectral theory.

LEMMA 5. Supposex ∈ M+, s(x) < 1, with point spectrumspecp(x). Depend-
ing on the latter, the following cases may occur for the commutativeW∗-subalgebra
R0(x) =⋂λ∈R+ R[x + λ s(x)⊥], whereγ can stand for any nonnegative real:

R0(x)


= R[x] if specp(x)\{0} = ∅,
= R[x + λ0 s(x)

⊥] if specp(x)\{0} = {λ0},
6= R[x + γ s(x)⊥] if #specp(x)\{0} > 2.

Especially,R0(x) = R[x] holds if and only ifspecp(x)\{0} = ∅ is fulfilled.
Proof.Some preliminary results will be derived first. Let{Ex(t) : t ∈ R} be the

spectral resolution ofx within the projection lattice ofM. Then the eigenprojection
of the positive elementx + λ s(x)⊥ to the spectral valueλ ∈ R+ is given by

Ex+λ s(x)⊥({λ}) =
{
s(x)⊥ + Ex({λ}) for λ ∈ R+\{0} ,
s(x)⊥ for λ = 0 .

(?)

In fact, by assumption,Ex({0}) = s(x)⊥ holds and thus the part of (?) relating
to λ = 0 is valid. Also, forλ ∈ R+\{0} it is clear fromEx({0})Ex({λ}) = 0
and the above thatp = s(x)⊥ + Ex({λ}) is an orthoprojection inM which obeys
(x + λ s(x)⊥)p = λp. Note, within this context, thatEx({λ}) is nonvanishing iff
λ ∈ specp(x). Also, for an orthoprojectionq > p, one has(q − p) s(x)⊥ =
0 and (q − p)Ex({λ}) = 0. Hence, assuming(x + λ s(x)⊥) q = λ q yields
x (q − p) = λ (q − p), which according to spectral theory necessarily implies
(q − p) 6 Ex({λ}). In view of the above,(q − p) = 0. Thus, there is no
larger thanp orthoprojectionq in M with (x + λ s(x)⊥) q = λ q, which means
p = Ex+λ s(x)⊥({λ}). This is (?).

Next, it is useful to note that the following alternatives exist:

R[x + λ s(x)⊥]
{ = R[x] if λ 6∈ specp(x)\{0} or λ = 0,

$ R[x] else.
(??)
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To see (??), first note that obviouslyR[x + λ s(x)⊥] ⊂ R[x]. Since, forλ 6∈
specp(x)\{0}, one hasEx({λ}) = 0, from (?), thenEx+λ s(x)⊥({λ}) = s(x)⊥ is
seen and thus bothx + λ s(x)⊥ and s(x)⊥ have to belong toR[x + λ s(x)⊥],
and so doesx. In view of the above,R[x + λ s(x)⊥] = R[x], which is triv-
ially valid for λ = 0, is seen to hold forλ 6∈ specp(x)\{0}. In the case ofλ ∈
specp(x)\{0}, the elementx+λ s(x)⊥ has full support and, according to (?), s(x)⊥
is apropersubprojection of the eigenorthoprojectionEx+λ s(x)⊥({λ}) to the spectral
valueλ ∈ specp(x + λ s(x)⊥). Since each spectral eigenprojection has to be a
minimal orthoprojection of the generated commutativeW∗-algebraR[x+λ s(x)⊥],
from the previouss(x)⊥ 6∈ R[x + λ s(x)⊥] has to be followed. Hence, in this case,
R[x + λ s(x)⊥] $ R[x], which completes the proof of (??).

After these preparations, we are going to prove the assertions of our results on
R0(x). Note that the validity in the case of specp(x)\{0} = ∅ or specp(x)\{0} =
{λ0} is straightforward from (??). Thus, we have to explicitly consider only the case
with #specp(x)\{0} > 2. From (??), R0(x) $ R[x] obviously follows. Especially
this also means that the assertion is valid forγ = 0. Now, in line with this, but
in contrast with the assertion, we assumeR0(x) = R[x + γ s(x)⊥], with γ > 0.
Then, since #specp(x)\{0} > 2 is fulfilled, there has to existλ ∈ specp(x)\{0}
with λ 6= γ . Thus,

Ex+λ s(x)⊥({λ}) ∈ R[x + λ s(x)⊥], and Ex+γ s(x)⊥({γ }) ∈ R0(x)

by assumption. Since by definition ofR0(x) one hasR0(x) ⊂ R[x + λ s(x)⊥],
bothEx+λ s(x)⊥({λ}) andEx+γ s(x)⊥({γ }) have to be inR[x + λ s(x)⊥]. From (?)
and sinceγ 6= λ is fulfilled, we see that

s(x)⊥ = Ex+γ s(x)⊥({γ }) Ex+λ s(x)⊥({λ}) ∈ R[x + λ s(x)⊥]
and therefore alsox ∈ R[x+λ s(x)⊥] holds. From this andR[x+λ s(x)⊥] ⊂ R[x],
R[x+λ s(x)⊥] = R[x] had to be followed. Owing to the choice ofλ in accordance
with λ ∈ specp(x)\{0}, this is in contradiction with (??). Thus, also in the case of
γ > 0, a relationR0(x) = R[x + γ s(x)⊥] cannot happen. Finally, note that by
the just proven, allowance is made for any situations withR0(x) that might occur.
Particularly, from this and (??), one also infers thatR0(x) = R[x] cannot happen
unless specp(x)\{0} = ∅, whereas in the latter case this then, in fact, occurs. Thus,
also the final assertion is seen to be true.

3.3.4. The Main Result for% � ν and withs(%) ∈ Mν

Suppose% � ν such thatRM(ν, %) exists. Then we derive a formula ofRM(ν, %)

which generalizes (3.8) to this context. In addition, partial answers on the existence
problem forRM(ν, %) will be also given.

THEOREM 6. LetM be aW∗-algebra, and let two normal positive linear forms
ν, % be given onM and obeying% � ν. Let a nonnegative realλ0 be defined by

λ0 = sup
{
λ : λ ∈ specp(

√
d%/dν) ∪ {0}} . (3.11a)
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The following facts hold true.

(1) ProvidedRM(ν, %) exists, it obeys

RM(ν, %) = R
[√

d%/dν + λ0 s(ν)
⊥] , (3.11b)

with the additional condition

#specp(
√

d%/dν)
{ 6 2 if s(%) = s(ν),
= 1 else

(3.11c)

fulfilled in the case of nonfaithfulν.
(2) Assume{ν, %} with s(%) ∈ Mν . Then, ifν is faithful, or in all cases with

nonfaithfulν obeyingdims(ν)⊥Ms(ν)⊥ < ∞ and% respecting(3.11c), a
least minimizing Abelian subalgebra exists.

Proof. Let x = √d%/dν and assume thatRM(ν, %) exists. Then (3.9b) yields
thatRM(ν, %) = R[x+γ s(ν)⊥] has to be fulfilled for someγ ∈ R+. We are going
to determine the realγ in terms ofx. Let q = s(%)+ s(ν)⊥. According to (3.10b)
and by using the notations introduced within the context of Equations (3.10), with
respect to the hereditaryW∗-subalgebraqMq and normal positive linear forms
νq, %q , RqMq(νq, %q) also exists and obeysRqMq(νq, %q) = Rq[xq + γ s(ν)⊥]. On
the other hand, an application of (3.9b) onqMq with νq, %q yieldsRqMq(νq, %q) =
R0(xq), with the algebraR0(xq) constructed as in Lemma 5 in terms ofxq =√

d%q/dνq and with respect toqMq. Since boths(xq) = s(%q) = s(νq) = s(%) and
s(νq)

⊥ = s(ν)⊥ hold onqMq, in view of the above, we therefore conclude that,
providedRM(ν, %) has been assumed to exist, thenR0(xq) = Rq[xq + γ s(xq)⊥]
has to be fulfilled for someγ ∈ R+. But then, in the case ofs(%) = s(xq) < q,
Lemma 5 can be applied onqMq and gives that #specp(xq)\{0} < 2 has to
be fulfilled, with γ = sup{λ : λ ∈ specp(xq) ∪ {0}}. Note that the condition
s(%) = s(xq) < q is equivalent tos(ν) < 1, and that in this case, 0∈ specp(x)
holds. Hence, by (3.10a) in this case #specp(xq)\{0} = #specp(x)\{0}. Espe-
cially, the previously givenγ then obeysγ = λ0, with λ0 as given in accordance
with (3.11a). Thus, in summarizing from this and the previous, and assuming
that RM(ν, %) exists for nonfaithfulν, implies that (3.11b) and #specp(x) 6 2
hold. Now, supposes(%) < s(ν) < 1. Then, assumingλ0 > 0 would imply
q⊥ ∈ R[x + λ0 s(ν)

⊥], for q⊥ is the eigenprojection ofx + λ0 s(ν)
⊥ to eigenvalue

0. But at the same time, certainlyq⊥ 6∈ R[x] since by supposition of this case,
q⊥ < s(%)⊥ has to hold ands(%)⊥ has to be a minimal orthoprojection ofR[x].
Thus,R[x + λ0 s(ν)

⊥] cannot be a subalgebra ofR[x] in this case. In view of the
meaning ofRM(ν, %) and sinceR[x] is minimizing, the latter contradicts the just-
derived formula (3.11b) in the case of nonfaithfulν. Hence, fors(%) < s(ν) < 1,
one must haveλ0 = 0. In view of (3.11a) and since for nonfaithfulν, one has
0 ∈ specp(x) it is then inferred that specp(x) = {0} holds. This completes the
proof of (3.11c). That (3.11b) remains true also for faithfulν follows since, owing
to s(ν)⊥ = 0, formula (3.11b) simply reduces to formula (3.8), which according to
Theorem 5(1) is true, however, and completes the proof of (1).



32 P. ALBERTI AND A. UHLMANN

To see (2), note that for faithfulν, formula (3.9a) yieldsR∞(ν, %) = R[√d%/dν].
Hence, according to Lemma 3, the algebraR∞(ν, %) is minimizing. But then, since
% obeyss(%) ∈ Mν , from Lemma 4 we may also conclude thatRM(ν, %) exists.
This proves the part of (2) relating to a faithfulν.

Suppose now thatν is nonfaithful, but with dims(ν)⊥Ms(ν)⊥ < ∞ fulfilled,
and% such thats(%) ∈ Mν holds and condition (3.11c) is respected. Note that
0 ∈ specp(x) holds in this case. Also, by the assumption of finite-dimensionality,
spec(k) = specp(k) holds for eachk ∈ s(ν)⊥M+s(ν)⊥, and if pλ is the eigen-
projection ofk to λ ∈ specp(k), we have

∑
λ∈specp(k)

pλ = s(ν)⊥. By the same
kind of auxiliary arguments as for elementary spectral theory, which have been
used in the proof of Lemma 5 in some special case, in literally the same way (the
details of which therefore will not be mentioned) can also be applied in order to
compare the spectral structures ofx + k andx (these facts will be tacitly made
use of below). Supposeλ0 = 0 first. Then, zero is the only eigenvalue ofx, and
therefore one infers that specp(x + k) = specp(k) ∪ {0} for s(%) < s(ν), and
specp(x + k) = specp(k) for s(%) = s(ν). Owing to this and tos(x) 6 s(ν),
whereas each of the abovepλ for λ ∈ specp(k)\{0} will be also the corresponding
eigenprojection to the sameλ ∈ specp(x + k) with respect tox + k, the projection
p0 + {s(ν) − s(%)}, or {s(ν) − s(%)} respectively, will be the eigenprojection of
x + k to the eigenvalue zero in the case of 0∈ specp(x + k) ∩ specp(k), and
in the case of 0∈ specp(x + k) but with 0 6∈ specp(k), respectively. Therefore,
pλ ∈ R[x + k] for eachλ ∈ specp(k)\{0}, andp0 + {s(ν) − s(%)} ∈ R[x + k]
in the case of 0∈ specp(x + k) ∩ specp(k) or {s(ν) − s(%)} ∈ R[x + k] in the
case of 0∈ specp(x + k) but with 0 6∈ specp(k). But then in view of the above,
in each case, also their sums(ν)⊥ + {s(ν) − s(%)} has to be inR[x + k], that
is, s(%)⊥ ∈ R[x + k] has to hold. From this and owing tos(x) = s(%) 6 s(ν),
x = s(%){x + k} ∈ R[x + k] is seen. Hence,R[x + k] ⊃ R[x] follows for
eachk ∈ s(ν)⊥M+s(ν)⊥ and, therefore, one hasR∞(ν, %) = R[x]. From Lemma
3 it follows thatR∞(ν, %) is minimizing. Thus, since% obeyss(%) ∈ Mν , we
may conclude from Lemma 4 thatRM(ν, %) exists. Hence, for nonfaithfulν and
#specp(x) = 1, the assertion of (2) is true.

Supposes(%) = s(ν) and #specp(x) = 2, with nonfaithfulν. Then,λ0 > 0, and
for eachk ∈ s(ν)⊥M+s(ν)⊥, one haspλ ∈ R[x+k] for λ ∈ specp(k)\{λ0}. If λ0 6∈
specp(k), s(ν)

⊥ ∈ R[x+k] follows from this, and soR[x] ⊂ R[x+k] is seen. For
λ0 ∈ specp(k), however,pλ0+Ex({λ0}) is theλ0 corresponding eigenprojection of
x+k, and therefore instead ofpλ0 ∈ R[x+k], one findspλ0+Ex({λ0}) ∈ R[x+k].
Summing up yieldss(ν)⊥ + Ex({λ0}) ∈ R[x + k] instead. But then also

k + λ0Ex({λ0}) = (s(ν)⊥ + Ex({λ0}))(x + k) ∈ R[x + k].
Hence, sincex + λ0 s(ν)

⊥ can be combined together from the mentioned elements
as

x + λ0 s(ν)
⊥ = (x + k)− (k + λ0Ex({λ0}))+ λ0(s(ν)

⊥ + Ex({λ0})),
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x + λ0 s(ν)
⊥ ∈ R[x + k]

is seen. Note that owing tos(ν)⊥ ∈ R[x], in any case one hasx + λ0 s(ν)
⊥ ∈

R[x]. We may summarize these facts and conclude that, for nonfaithfulν with
s(%) = s(ν) and #specp(x) = 2, R[x + λ0 s(ν)

⊥] ⊂ R[x + k] holds for each
k ∈ s(ν)⊥M+s(ν)⊥. Hence,R∞(ν, %) = R[x + λ0 s(ν)

⊥], and thus according
to Lemma 3, in this case the algebraR∞(ν, %) is also minimizing. Sinces(%) =
s(ν) ∈ Mν holds, Lemma 4 can be applied once more and yields thatRM(ν, %)

exists. This closes the proof of (2) and at the same time also completes the proof
of the theorem.

3.3.5. Examples and Consequences

We start by discussing Theorem 6 in the finite-dimensional case.

EXAMPLE 9. Suppose that 26 dimM < ∞, andν, % are two nonzero positive
linear forms obeying% � ν, but which are not mutually proportional. Then, the
corresponding Radon–Nikodym operator cannot be proportional to the support of
ν,
√

d%/dν 6∈ R+ s(ν). Sinces(%) 6 s(ν) is the support of
√

d%/dν, from these
facts # spec(

√
d%/dν) > 2 follows. Hence, since by finite-dimensionality, one has

specp(
√

d%/dν) = spec(
√

d%/dν), the condition (3.11c) in the case of nonfaithful
ν could be satisfied only if # spec(

√
d%/dν) = 2 and s(%) = s(ν) < 1 were

fulfilled. But then
√

d%/dν, as a Radon–Nikodym operator had to be proportional
with s(%) = s(ν), which contradicts the above-mentioned fact. Thus, in view of
Theorem 6(1) for nonfaithfulν and under the above premises, a least-minimizing
algebra cannot exist in the finite-dimensional case. Especially, from the latter and
by formula (3.11b), one also infers that, provided a least-minimizing algebra exists,
RM(ν, %) = R[√d%/dν] will occur, in any case. From Theorem 6(2), one infers
that the latter case really can happen, e.g. in the case of faithfulν and% obeying
% � ν ands(%) ∈ Mν .

As the previous example shows, the deviation from the law (3.8) as indicated
by (3.11b) could be observed only for dimM = ∞. That this deviation really can
occur is seen from the following example.

EXAMPLE 10. LetM = L∞(I,m′), where{I,m′} is the unit intervalI = [0,1]
with a measurem′ = (m + δ0)/2, wherem is the Lebesgue measure andδ0 is
concentrated on{0}, with δ0({0}) = 1. Letν correspond to the class of the charac-
teristic functionχ(0,1] of (0,1] via ν(·) = ∫

(0,1](·)dm′, and bef a strictly increasing
function, which is continuous on[0,1], except for one pointt0 > 0 where it is only
left-continuous withf (t0) = λ0 > 0, and which obeys 0< f (t) 6 1 for t > 0,
andf (0) = 0. Define%(·) = ∫

I
(·)f dm′. Then,% � ν (even% 6 ν holds) and

s(ν) = s(%) = χ(0,1] < χ[0,1] = 1, with Radon–Nikodym operatorx = f obeying
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{0, λ0} = specp(x). Hence, condition (3.11c) is fulfilled in this case. Since, owing
toMν = M, one hass(%) ∈ Mν to be fulfilled by triviality, Theorem 6(2) can be
applied and formula (3.11b) then yieldsRM(ν, %) = R[f + λ0χ{0}].

Along with Theorem 6(1) comes another necessary condition forRM(ν, %) to
exist which will often be useful. To explain this, in the following letAut(M) denote
the group of all∗-automorphisms ofM, and fory ∈ M we let Auty(M) be those
∗-automorphisms which leave the elementy fixed. Clearly, since we have to do
with ∗-automorphisms, one hasAuty(M) = Auty∗(M), for eachy ∈ M.

Remark 6.Recall that a∗-isomorphism8 from oneW∗-algebraM onto an-
otherW∗-algebraN is automaticallyσ(M,M∗)-σ(N,N∗) continuous. From this
and Remark 5 follows that8 ∈ Auty(M) ⇐⇒ 8 ∈ Autx(M), ∀ x ∈ R[y, y∗], is
valid for eachy ∈ M.

COROLLARY 5. For the pair {ν, %} of normal positive linear forms suppose
% � ν, with Radon–Nikodym operatorx = √d%/dν, and letλ0 be defined in
accordance with formula(3.11a). Then the existence ofRM(ν, %) implies that the
following holds

∀ k ∈ s(ν)⊥M+s(ν)⊥ : Autx+k(M) ⊂ Autx+λ0 s(ν)
⊥(M) . (3.12)

Proof.In view of (3.9a) and Theorem 6(1), the premises implyR[x+λ0 s(ν)
⊥] ⊂

R[x + k] to be fulfilled for eachk ∈ s(ν)⊥M+s(ν)⊥. From this, it is evident that
by each∗-automorphisms8 leaving pointwise invariant all elements ofR[x + k],
in particular also each element ofR[x + λ0 s(ν)

⊥] is left invariant. This is (3.12).

We will show that among the assumptions in Theorem 6(2), also the condition
dims(ν)⊥Ms(ν)⊥ <∞ is a sensitive one. For simplicity, this will be demonstrated
by such an example which, by its construction and owing to the procedure applied,
can stand for a whole class of analogous (even noncommutative) situations where
(3.12) fails and thus a least-minimizing subalgebra cannot exist then.

EXAMPLE 11. LetM = L∞(I,m), where{I,m} is the unit intervalI = [0,1]
with Lebesgue measurem. Let τ ∈ M∗+ be the standard tracial state given onM
by τ(x) = ∫

I
dmx, for x ∈ M. Supposeν = τ(χ0(·)), whereχ0 corresponds

to the class of the characteristic function of the interval[0,1/2]. Assume% =
τ(f (·)), where we letf correspond to the class of some continuous, monotoneous
function f on [0,1], with 1 > f (t) > 0 for t < 1/2 andf (t) = 0 else. We
then have% � ν, s(ν) = χ0 < 1 and x = √d%/dν = f . Let us consider
the ∗-automorphism8g which is induced onM by the measure-preserving point-
transformationg : I 3 t 7→ (1 − t) ∈ I of the unit interval, that is, in the
sense of the equivalence of functions,8g(x) = x ◦ g is fulfilled. Obviously,8g

is idempotent, that is, a symmetry. Note that8g(χ0) = χ1 holds, whereχ1 stands
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for the class of the characteristic function of the interval[1/2,1] withinM, that is,
8g(χ0) = χ⊥0 is fulfilled. From 06 f 6 χ0, 8g(f ) ∈ χ⊥0 M+χ⊥0 follows. Let us
definek = 8g(f ). Owing to idempotency of8g,8g ∈ Autx+k(M) follows. On the
other hand, according to the above and sinceχ0 ∈ R[x] holds, we certainly must
have8g 6∈ Autx(M). In fact, otherwise according to the equivalence mentioned
in Remark 6, in contrast to the above we also hadχ0 to be a fixed point of8g,
a contradiction. Now, the Radon-Nikodym operatorx = f by choice off obeys
specp(x) = {0}. Hence,λ0 = 0. But then the existence of the above constructed
8g proves that condition (3.12) is violated, and thus in view of Corollary 5, this
means thatRM(ν, %) cannot exist in the case to hand.

3.3.6. Does Each Minimizing Subalgebra Dominate a Minimizing Projective
Subalgebra?

Note that, according to Theorem 6(1) and Lemma 3(1), the existence of the least-
minimizing subalgebra also means that each minimizing subalgebraR possesses a
minimizing projective subalgebra. One finds the following useful auxiliary charac-
terization of this fact:

COROLLARY 6. Letν, % be normal positive linear forms with% � ν and Radon–
Nikodym operatorx. LetR be a minimizing AbelianW∗-subalgebra, and letz ∈
R+ be theR-relative Radon–Nikodym operator achieving%|R = ν|zR. The follow-
ing items are mutually equivalent:

(1) R1 ⊂ R, for some minimizing projective subalgebraR1;
(2) νs(%)(z) = ν(z).

In the latter case,R1 = R[x+k] can be chosen in(1) for somek ∈ s(ν)⊥M+s(ν)⊥.
Proof.For a minimizingR, the conditionνs(%)(z) = ν(z) implies, the existence

of k ∈ s(ν)⊥M+s(ν)⊥ with R[x + k] ⊂ R. This can be seen exactly in the same
way as demonstrated in the course of the proof of Lemma 3(2) (see from (3.7c)
onward). In view of Lemma 3(1),R1 = R[x+k] can be chosen from (1). To see the
other direction, assumeR1 ⊂ R with some minimizing projective subalgebraR1.
From Lemma 3(2), one knows thatk ∈ s(ν)⊥M+s(ν)⊥ exists withR[x+ k] ⊂ R1.
ThenR[x + k] ⊂ R also holds, and thusx + k ∈ R. Owing tos(%|R) ∈ R and
sinceR is commutative, one hasy = s(%|R)(x + k) = (x + k)s(%|R) ∈ R+. From
this and% = νx = ν(x+k), then%|R = ν(x+k)|R = ν(x+k)s(%|R)|R = νy |R = ν|yR
is seen. In view ofs(y) 6 s(%|R) and by the uniqueness of the Radon–Nikodym
operatorz in R, z = y follows. Now,s(%|R) > s(%) ands(x) = s(%) 6 s(ν) hold.
Hence,s(%)z = s(%)y = s(%)s(%|R)(x + k) = s(%)(x + k) = x must be fulfilled,
and therefore alsos(%)z = zs(%) = s(%)zs(%). SinceR is minimizing, from the
previous, together with Lemma 1 (putp = s(%) anda = z in (3.4)) by literally
the same arguments which led us to see (3.7c) within the proof of Lemma 3(2) the
desired relationνs(%)(z) = ν(z) is seen to also hold in the situation to hand.
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Remark 7.(1) The conditions(%) ∈ Mν within Theorem 6(2) makes that
Corollary 6(2) is trivially satisfied and then, in line with Remark 4(1), each mini-
mizing subalgebra is projective.

(2) Suppose% � ν but with s(%) 6∈ Mν (thusM cannot be commutative). It
is an open question whether other minimizing subalgebras than those respecting
Corollary 6(2) could exist at all.

(3) Note thatM = M2(C) is the least case where the previous question might
be nontrivial (cf. Example 9). But in this case, the characteristic configuration of
a pair {ν, %} to be dealt with for a decision in the usual canonical manner, may
be reduced to pairs{a, p} of 2 × 2-matrices, with positive definitea and one-
dimensional orthoprojectionp obeyingpa 6= ap. Thus, calculations can be carried
out explicitly (we omit the details) and, in fact, show thatR = R[x] = R[p] is
the only minimizing subalgebra. This also completes the analysis of Example 9
in the 2× 2 case: forν, % which are not mutually proportional and which obey
% � ν the least minimizing subalgebra exists iffν is faithful. In view of Example
7, it follows that, for a general pair of mutually nonproportional positive linear
forms onM = M2(C), RM(ν, %) exists if and only if at least one of the two forms
is faithful. Thus, in this case we have a complete solution of the problem for a
noncommutativeM, even without imposing the condition% � ν.

(4) Suppose{ν, %} such that Corollary 6(2) is fulfilled in each case of a mini-
mizing subalgebra. Then the problem of the existence of a least-minimizing sub-
algebra will be reduced to the question of whether or notR∞(ν, %) were equal to
R[x + λ0 s(ν)

⊥] (see Lemma 4 for a special case). As Example 11 shows, for the
latter to happen both (3.11c) and (3.12) are necessary conditions and are rather
independent from each other.

(5) The method by means of which the assertion on equality of the intersec-
tion algebraR∞(ν, %) of (3.9a) to one of the intersecting minimizing subalgebras
R[x+λ0 s(ν)

⊥] has been disproved, and which is based on considering symmetries,
seems to be very effective and in a modified form is a common method to disprove
the uniqueness of optimizing elements (algebras, decompositions, etc.) in similar
∗-algebraic optimization problems, see, e.g., [28].
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