Statistical Physics II Problem Set 7

Due: Tuesday, May 27, **before** the lecture

9. Debye-Hückel screening (part II)

(6 points)

c) Now consider the following electrostatic potential,

$$\phi_{\alpha}(\vec{r}) = \sum_{\beta=\pm} \int \mathrm{d}^3 r' \, \frac{z_{\alpha} z_{\beta} l_{\mathrm{B}}}{|\vec{r} - \vec{r'}|} n_{\beta}(\vec{r'}) \,,$$

where $\phi_{+}(\vec{r}) = -\phi_{-}(\vec{r}) = \phi(\vec{r})$. Using the extremum principle for the RPA density functional, derive the Poisson-Boltzmann equation $\Delta\phi(\vec{r}) = \kappa^2 \sinh(\phi(\vec{r}))$. Furthermore, show that the densities are given by $n_{\pm}(\vec{r}) = n \exp(\mp \phi(\vec{r}))/2$.

d) Solve the Poisson-Boltzmann equation for a neutral ion mixture in the half space z > 0 over an infinitely large charged surface. Compute and plot the resulting densities $n_{\pm}(z)$.

10. Phase boundaries

(5 points)

a) Calculate the order parameter profile on a plane phase boundary (near the critical point) via minimization of the Landau-Ginzburg functional

$$L_G = n_c k_B T_c \int_V \mathrm{d}\mathbf{r} \,\mathcal{L}_G \qquad \mathcal{L}_G = \frac{\ell^2}{2} (\nabla \psi)^2 + \frac{t}{2} \psi^2 + \frac{g}{4} \psi^4$$

- b) Discuss the result from a) $[\psi(z) = \psi_1 \tanh(z/\xi)]$, in particular the form and role of the parameters ψ_1 and ξ .
- c) Calculate the surface tension by integrating the surface contribution to the free energy L_G resulting from \mathcal{L}_G for the solution found in a) through the phase boundary. Discuss your result.

Total score: 11 points