Statistical Physics II Problem Set 6

Due: Tuesday, May 20, **before** the lecture

8. Fluctuation-dissipation theorem (FDT)

- a) For a spin $s = \pm 1$ of a paramagnet express the equilibrium correlation function $\langle s(t)s(t')\rangle$ in terms of the conditional expectation values $\langle s(t)\rangle_{s(t')=\pm 1}$.
- b) Consider now the effect of a weak magnetic field

$$h(t) = h\theta(t'-t),$$

where θ is the step function. Determine the probability of measuring $\langle s(t') \rangle = \pm 1$. Express the expectation value $\langle s(t) \rangle$ for t > t' in terms of the conditional expectation values $\langle s(t) \rangle_{s(t')=\pm 1}$.

c) For general (weak) h(t), $\langle s \rangle$ follows from the *linear response func*tion G(t),

$$\langle s(t) \rangle = \int_{-\infty}^{t} \mathrm{d}t'' \, G(t - t'') h(t'') \, .$$

Show that for h(t) of the form given in b),

$$\langle s(t) \rangle = h \int_{-\infty}^{t'} \mathrm{d}t'' \, \frac{\delta \langle s(t) \rangle}{\delta h(t'')} \,,$$

holds and use this relation to show the FDT

$$\langle s(t)s(t')\rangle = k_B T \int_{-\infty}^{t'} dt'' \frac{\delta\langle s(t)\rangle}{\delta h(t'')} \quad \text{for } t > t'$$

What can be said about the behavior of $\langle s(t)s(t')\rangle$ for t < t'?

(6 points)

- 9. Debye-Hückel screening (part I) (4 points + 1 extra point) Consider a gas mixture of charged particles with densities n_{α} and charges z_{α} ($\alpha = \pm$), where $n_{\alpha} = n/2$ and $z_{+} = -z_{-} = z$.
 - a) In the standard density functional $\beta F[n_+, n_-]$ identify the second order of the fluctuations $\delta n_{\alpha}(\vec{r})$ around the reference state of the homogenous ideal gas,

$$\frac{1}{2} \sum_{\alpha,\beta=\pm} \int \mathrm{d}^3 r \int \mathrm{d}^3 r' \,\delta n_\alpha(\vec{r}) G_{\alpha\beta}^{-1}(\vec{r},\vec{r}') \delta n_\beta(\vec{r}') \,,$$

and compute in RPA $G_{\alpha\beta}^{-1}(\vec{r},\vec{r'})$, the structure factor $S_{\alpha\beta}(\vec{q}) = [1 - nc_{\alpha\beta}]^{-1}$ and the pair correlation function $h_{\alpha\beta}(r)$.

b^{*}) Using the appropriate generalized virial equation of state to compute the osmotic pressure of the charged gas.