Statistical Physics II
 Problem Set 6

Due: Tuesday, May 20, before the lecture
8. Fluctuation-dissipation theorem (FDT)
a) For a spin $s= \pm 1$ of a paramagnet express the equilibrium correlation function $\left\langle s(t) s\left(t^{\prime}\right)\right\rangle$ in terms of the conditional expectation values $\langle s(t)\rangle_{s\left(t^{\prime}\right)= \pm 1}$.
b) Consider now the effect of a weak magnetic field

$$
h(t)=h \theta\left(t^{\prime}-t\right),
$$

where θ is the step function. Determine the probability of measuring $\left\langle s\left(t^{\prime}\right)\right\rangle= \pm 1$. Express the expectation value $\langle s(t)\rangle$ for $t>t^{\prime}$ in terms of the conditional expectation values $\langle s(t)\rangle_{s\left(t^{\prime}\right)= \pm 1}$.
c) For general (weak) $h(t),\langle s\rangle$ follows from the linear response function $G(t)$,

$$
\langle s(t)\rangle=\int_{-\infty}^{t} \mathrm{~d} t^{\prime \prime} G\left(t-t^{\prime \prime}\right) h\left(t^{\prime \prime}\right) .
$$

Show that for $h(t)$ of the form given in b),

$$
\langle s(t)\rangle=h \int_{-\infty}^{t^{\prime}} \mathrm{d} t^{\prime \prime} \frac{\delta\langle s(t)\rangle}{\delta h\left(t^{\prime \prime}\right)},
$$

holds and use this relation to show the FDT

$$
\left\langle s(t) s\left(t^{\prime}\right)\right\rangle=k_{B} T \int_{-\infty}^{t^{\prime}} \mathrm{d} t^{\prime \prime} \frac{\delta\langle s(t)\rangle}{\delta h\left(t^{\prime \prime}\right)} \quad \text { for } t>t^{\prime}
$$

What can be said about the behavior of $\left\langle s(t) s\left(t^{\prime}\right)\right\rangle$ for $t<t^{\prime}$?
9. Debye-Hückel screening (part I) (4 points +1 extra point)

Consider a gas mixture of charged particles with densities n_{α} and charges $z_{\alpha}(\alpha= \pm)$, where $n_{\alpha}=n / 2$ and $z_{+}=-z_{-}=z$.
a) In the standard density functional $\beta F\left[n_{+}, n_{-}\right]$identify the second order of the fluctuations $\delta n_{\alpha}(\vec{r})$ around the reference state of the homogenous ideal gas,

$$
\frac{1}{2} \sum_{\alpha, \beta= \pm} \int \mathrm{d}^{3} r \int \mathrm{~d}^{3} r^{\prime} \delta n_{\alpha}(\vec{r}) G_{\alpha \beta}^{-1}\left(\vec{r}, \vec{r}^{\prime}\right) \delta n_{\beta}\left(\vec{r}^{\prime}\right)
$$

and compute in RPA $G_{\alpha \beta}^{-1}\left(\vec{r}, \vec{r}^{\prime}\right)$, the structure factor $S_{\alpha \beta}(\vec{q})=$ $\left[1-n c_{\alpha \beta}\right]^{-1}$ and the pair correlation function $h_{\alpha \beta}(r)$.
b^{*}) Using the appropriate generalized virial equation of state to compute the osmotic pressure of the charged gas.

