Statistical Physics II Problem Set 5

Due: Tuesday, May 13, before the lecture

6. Functional derivatives

(4 points)

The functional derivative $\delta F[\phi]/\delta \phi$ of a functional F of the function $\phi(\mathbf{r})$ is defined via

$$\frac{\mathrm{d}}{\mathrm{d}\varepsilon}F[\phi+\varepsilon\eta]\bigg|_{\varepsilon=0} = \int \mathrm{d}^d r \frac{\delta F[\phi(\mathbf{r})]}{\delta\phi(\mathbf{r})}\eta(\mathbf{r}).$$

Calculate the functional derivative with respect to $\phi(\mathbf{r})$ for the following examples:

i)
$$F[\phi] = \phi(\mathbf{r}')$$

ii)
$$F[\phi] = \int \mathrm{d}^d r' \, V(\phi(\mathbf{r}'))$$

iii)
$$F[\phi] = \frac{1}{2} \int \mathrm{d}^d r' \, [\nabla \phi(\mathbf{r}')]^2.$$

Choose a suitable test function $\eta(\mathbf{r})$, e.g. a δ -function. If necessary, use integration by parts, where the variation on the boundary of the volume (at infinity) vanishes.

7. Density functional theory (4 points + 4 additional points)

a) Direct correlation function

Derive from the definition of the direct correlation function,

$$c(\vec{r},\vec{r}') = \frac{1}{n(\vec{r})}\delta(\vec{r}-\vec{r}') - \beta \frac{\delta\mu(\vec{r}')}{\delta n(\vec{r}')},$$

the Ornstein-Zernicke integral equation.

Hint: Use $G(\vec{r}, \vec{r'}) = n(\vec{r})h(\vec{r}, \vec{r'})n(\vec{r'}) + n(\vec{r})\delta(\vec{r} - \vec{r'})$, the generalization of the known relation g(r) = h(r) + 1 between the corresponding quantities in homogeneous fluids.

b) Barometer equation

Calculate for the boundary condition $n(0) = n_0$ the chemical potential μ and the position-dependent density $n(\vec{r})$ of an inhomogeneous temperature-controlled ideal gas in the one-particle potential $\mu(\vec{r}) = \mu - u(\vec{r})$ with u(0) = 0. Take as a starting point the known density functional for the free energy of an inhomogeneous ideal gas and the minimum condition on the grand-canonical potential.

c^{*}) Microphase separation in "random phase approximation" (RPA) In the so-called RPA-approximation, the free energy $F^{(0)}$ of the reference system (containing short range interactions, $r \simeq \sigma$) is expanded on by the term

$$F_{\rm ex}(\delta(\mathbf{r})) = \frac{1}{2} \int d^3r \, d^3r' \, \nu_1(\mathbf{r} - \mathbf{r}') \delta n(\mathbf{r}) \delta n(\mathbf{r}') \, d\mathbf{r}'$$

where the weak long range pair-potential ν_1 is considered as a perturbation. For a homogeneous fluid show that $S_q^{-1} = (S_q^{(0)})^{-1} + n\beta\nu_{1q}$ holds and that the structure factor, for the perturbation potential

$$\nu_1(r) = u_1 e^{-\varkappa_1 r} - u_2 e^{-\varkappa_2 r},$$

where $\varkappa_1 < \varkappa_2 \ll \sigma^{-1}$, $0 < \beta u_1 < \beta u_2 \ll 1$, develops a smallangle peak with

$$S_{q \to 0}^{-1} \sim a + b(q^2/q_0^2 - 1)^2$$
.

Discuss its physical relevance and the contribution of the long range interaction to the isothermal compressibility, as a function of the potential parameters.