Statistical Physics II
 Problem Set 4

Due: Tuesday, May 6, before the lecture

5. Gaussian Chain

The Gaussian chain is a standard model for the large-scale behavior of polymers. It consists of N monomers, located at the (in general time dependent) positions $\mathbf{R}_{1}, \ldots, \mathbf{R}_{N}$ and connected via harmonic springs. In thermal equilibrium, the statistical distribution of bond vectors $\mathbf{b}_{n}=$ $\mathbf{R}_{n+1}-\mathbf{R}_{n}$ reads

$$
\psi\left(\left\{\mathbf{b}_{i}\right\}\right)=\prod_{i=1}^{N-1}\left(\frac{3}{2 \pi b^{2}}\right)^{3 / 2} \exp \left(-\frac{3}{2 b^{2}} \mathbf{b}_{i}^{2}\right)
$$

a) Compute the distribution of monomer-monomer distances,

$$
\Phi\left(\mathbf{R}_{n}-\mathbf{R}_{m}\right)=\int \delta\left(\sum_{l=m+1}^{n} \mathbf{b}_{l}-\left(\mathbf{R}_{n}-\mathbf{R}_{m}\right)\right) \psi\left(\left\{\mathbf{b}_{i}\right\}\right) \mathrm{d}\left\{\mathbf{b}_{i}\right\}
$$

as well as the mean square distance $\left\langle\left(\mathbf{R}_{n}-\mathbf{R}_{m}\right)^{2}\right\rangle$.
Hint: The end result of the former is

$$
\Phi\left(\mathbf{R}_{n}-\mathbf{R}_{m}\right)=\left(\frac{3}{2 \pi b^{2}|n-m|}\right)^{3 / 2} \exp \left(-\frac{3}{2 b^{2}} \frac{\left(\mathrm{R}_{n}-\mathrm{R}_{m}\right)^{2}}{|n-m|}\right)
$$

b) The radius of gyration measures the overall size of the polymer coil and is defined as follows,

$$
R_{\mathrm{g}}^{2}=\frac{1}{N} \sum_{n=1}^{N}\left\langle\left(\mathbf{R}_{n}-\mathbf{R}_{\mathrm{cm}}\right)^{2}\right\rangle
$$

where $\mathbf{R}_{\mathrm{cm}}=\sum_{n} \mathbf{R}_{n} / N$ denotes the center of mass. Show that $R_{\mathrm{g}}^{2}=\sum_{n, m=1}^{N}\left\langle\left(\mathbf{R}_{n}-\mathbf{R}_{m}\right)^{2}\right\rangle / 2 N^{2}$ and use this relation to calculate R_{g}^{2}.
Hint: All sums can be evaluated explicitly, but may be approximated by integrals. Estimate the order of the approximation error.
c) Calculate the structure factor

$$
S_{\mathbf{q}}=\frac{1}{N} \sum_{n, m=1}^{N}\left\langle\mathrm{e}^{i \mathbf{q}\left(\mathbf{R}_{n}-\mathbf{R}_{m}\right)}\right\rangle
$$

for the Gaussian chain and rewrite it in the scaling form $S_{\mathbf{q}}=$ $N f\left(\mathbf{q}^{2} R_{\mathrm{g}}^{2}\right)$. Analyze its asymptotic behavior in the limits $\mathbf{q}^{2} R_{\mathrm{g}}^{2} \ll$ 1 and $\mathbf{q}^{2} R_{\mathrm{g}}^{2} \gg 1$. Sketch $S_{\mathbf{q}}$ qualitatively and give reasons why $S_{\mathbf{q}} \approx N /\left(1+\mathbf{q}^{2} R_{\mathrm{g}}^{2} / 2\right)$ provides an acceptable approximation.

