Statistical Physics II Problem Set 13

Due: Tuesday, Juli 8, before the lecture

19. Harmonic oscillator (part II)

 $(3+3^* \text{ points})$

Again, consider the following equation of motion,

$$m\ddot{x}(t) + m\omega_0^2 x(t) + \zeta \dot{x}(t) = \xi(t) \,.$$

a^{*}) Show for the external force $\xi(t) = f_0 \cos(\omega t)$ that

$$x(t) = f_0 |\chi(\omega)| \cos\left(\omega t - \phi(\omega)\right)$$

is a stationary solution of the oscillator equation, where the phase shift ϕ is determined by $\tan(\phi(\omega)) = \chi_{\rm im}(\omega)/\chi_{\rm re}(\omega)$. Show that the average power $P = \int_0^T dW(t)/T$ dissipated during one period $T = 2\pi/\omega$ is proportional to $\omega\chi_{\rm im}(\omega)$, where W(t) is the work done by the external force. What is the meaning of the positivity of $\omega\chi_{\rm im}(\omega)$ in thermodynamic equilibrium?

b) Calculate the correlation function $C_{xx}(\omega)$ for the case that $\xi(t)$ is a random force with white noise $\langle \langle \xi(t) \rangle = 0$, $\langle \xi(t)\xi(t') \rangle = 2\zeta k_B T \delta(t-t')$). Establish the relation between your result and the function $\chi_{\rm im}(\omega)$, determined in 17b). What is the physical interpretation of this relation?

20. Langevin equation

$(8 + 2^* \text{ points})$

Consider the 1-dimensional Langevin equation

$$m\dot{v}(t) + \zeta v(t) = \xi(t)$$

as a model for a Brownian particle, where $\xi(t)$ is a Gaussian random force, for which $\langle \xi(t) \rangle = 0$ and $\langle \xi(t)\xi(t') \rangle = 2\zeta k_B T \delta(t-t')$ holds.

- a) Determine v(t) for the initial condition $v(t = 0) = v_0$. Calculate the conditional average values $\langle v(t) \rangle_{v_0}$ and $\langle v(t)v(t') \rangle_{v_0}$, and sketch them as a function of t.
- b) Show that the steady state is reached for long times $t, t' \gg m/\zeta$, that is, the initial condition is "forgotten", the velocity correlation function becomes time-translation invariant, and the equipartition theorem is recovered.
- c) Calculate the mean position $\langle x(t) \rangle_{v_0 x_0}$ of a Brownian particle, that starts with the velocity $v(t = 0) = v_0$ at $x(t = 0) = x_0$, and the mean-square displacement $\Delta x(t, t') \equiv \langle [x(t) - x(t')]^2 \rangle_{v_0}$ for t - t' > 0. Determine the variance $\Delta_x(t) \equiv \langle [x(t) - \langle x(t) \rangle]^2 \rangle$ by reducing it to known quantities.
- d*) Analyse the long-time behavior $(t, t' \gg m/\zeta)$ of $\Delta x(t, t')$ and distinguish the cases $|t - t'| \gg m/\zeta$ and $|t - t'| \ll m/\zeta$. Show that the diffusion coefficient defined via a reasonable limit fulfills the Einstein relation.