Statistical Physics II Problem Set 13

Due: Tuesday, Juli 8, before the lecture

19. Harmonic oscillator (part II)

Again, consider the following equation of motion,

$$
m \ddot{x}(t)+m \omega_{0}^{2} x(t)+\zeta \dot{x}(t)=\xi(t) .
$$

$\left.\mathrm{a}^{*}\right)$ Show for the external force $\xi(t)=f_{0} \cos (\omega t)$ that

$$
x(t)=f_{0}|\chi(\omega)| \cos (\omega t-\phi(\omega))
$$

is a stationary solution of the oscillator equation, where the phase shift ϕ is determined by $\tan (\phi(\omega))=\chi_{\mathrm{im}}(\omega) / \chi_{\mathrm{re}}(\omega)$. Show that the average power $P=\int_{0}^{T} \mathrm{~d} W(t) / T$ dissipated during one period $T=2 \pi / \omega$ is proportional to $\omega \chi_{\mathrm{im}}(\omega)$, where $W(t)$ is the work done by the external force. What is the meaning of the positivity of $\omega \chi_{\mathrm{im}}(\omega)$ in thermodynamic equilibrium?
b) Calculate the correlation function $C_{x x}(\omega)$ for the case that $\xi(t)$ is a random force with white noise $\left(\langle\xi(t)\rangle=0,\left\langle\xi(t) \xi\left(t^{\prime}\right)\right\rangle=\right.$ $\left.2 \zeta k_{B} T \delta\left(t-t^{\prime}\right)\right)$. Establish the relation between your result and the function $\chi_{\mathrm{im}}(\omega)$, determined in 17b). What is the physical interpretation of this relation?
20. Langevin equation
($8+2^{*}$ points)
Consider the 1-dimensional Langevin equation

$$
m \dot{v}(t)+\zeta v(t)=\xi(t)
$$

as a model for a Brownian particle, where $\xi(t)$ is a Gaussian random force, for which $\langle\xi(t)\rangle=0$ and $\left\langle\xi(t) \xi\left(t^{\prime}\right)\right\rangle=2 \zeta k_{B} T \delta\left(t-t^{\prime}\right)$ holds.
a) Determine $v(t)$ for the initial condition $v(t=0)=v_{0}$. Calculate the conditional average values $\langle v(t)\rangle_{v_{0}}$ and $\left\langle v(t) v\left(t^{\prime}\right)\right\rangle_{v_{0}}$, and sketch them as a function of t.
b) Show that the steady state is reached for long times $t, t^{\prime} \gg m / \zeta$, that is, the initial condition is „forgotten", the velocity correlation function becomes time-translation invariant, and the equipartition theorem is recovered.
c) Calculate the mean position $\langle x(t)\rangle_{v_{0} x_{0}}$ of a Brownian particle, that starts with the velocity $v(t=0)=v_{0}$ at $x(t=0)=x_{0}$, and the mean-square displacement $\Delta x\left(t, t^{\prime}\right) \equiv\left\langle\left[x(t)-x\left(t^{\prime}\right)\right]^{2}\right\rangle_{v_{0}}$ for $t-t^{\prime}>0$. Determine the variance $\Delta_{x}(t) \equiv\left\langle[x(t)-\langle x(t)\rangle]^{2}\right\rangle$ by reducing it to known quantities.
$\left.\mathrm{d}^{*}\right)$ Analyse the long-time behavior $\left(t, t^{\prime} \gg m / \zeta\right)$ of $\Delta x\left(t, t^{\prime}\right)$ and distinguish the cases $\left|t-t^{\prime}\right| \gg m / \zeta$ and $\left|t-t^{\prime}\right| \ll m / \zeta$. Show that the diffusion coefficient defined via a reasonable limit fulfills the Einstein relation.

