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1 Motivation

Over the past century computer based statistical methods have evolved from
fresh, new idea to a nowadays well established scientific tool, not only in
physics. They are used regularly to close the gap between analytic predictions
and experimental results [6]. Algorithms based on the Monte Carlo method
e.g. the well known Metropolis [7], are often easier to carry out than a real life
experiment, in which cumbersome external conditions need to be controlled.
Analytical methods on the other hand are mostly limited to approximations
and may rely on a strict range of assumptions. Computer simulations produce
the desired results, are easy to control and financially more efficient than ever.
Having praised the approach, there is of cause, a catch: due to the statistical
sampling that is employed, arises the apparent need to evaluate the quality
of the produced results - or to cite N. B. Wilding [10] “Their value [. . .] does,
on the other hand, agree well with our result, although since no error bars
were quoted it is impossible to tell to what extent the accord is meaningful.”
The treatment of error estimations is not new, many of the (analytical) stan-
dard treatments date back to the time between 1800 and 1930 [3]. One of the
biggest disadvantages at the time was the requirement of an a priori knowl-
edge about the probability distribution from which was sampled, in order
to obtain an error estimate. In 1979 Bradley Efron proposed the Bootstrap
method as an easy to use general method to evaluate the statistic precision of
an estimator [1]. It is similar to the Jackknife method developed in 1949 by
Maurice Quenouille and follows the same idea, called resampling: The single
available sample is used to create many, fictitious samples. Afterwards, the
error estimates are obtained from this set of multiple samples.
Throughout the following pages the Bootstrap method will be explained and
compared to the popular Jackknife. It will become apparent that, although
the concept of resampling is easy to comprehend, it relies heavily on repeating
tasks a multitude of times. Thereby resampling techniques are put into the
computational perspective, under which they were designed.
As a model to work with, the Bivariate Gaussian will be employed, producing
time series that show the characteristics desired to highlight the strengths of
resampling. Although not presented, the methods shown were later tested
on “real” data and are used on regular basis.
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2 Preliminaries

2.1 Notation

For Monte Carlo simulations in physics, it has become common practice to
treat the creation of data and its analysis separately [5]. The intermediate
storage format is a time series of the desired observable Oi, such as illustrated
in Fig. 1. The expectation value is denoted by

〈Oi〉 = O . (2.1)

It is a real number, around which our “best guess” fluctuates. If we have
taken N measurements, the expectation value can be approximated by their
mean value. Hence we choose to denote the estimator by

O =
1

N

N∑
i=1

Oi . (2.2)

In order to have an expression for the magnitude of fluctuations of the esti-
mator we also introduce the variance,

σ2
O =

〈(
O −

〈
O
〉)2〉

. (2.3)

Section 3.3 will be briefly dealing with autocorrelations. Therefore the def-
inition for the integrated autocorrelation time is given in accordance to [5]:

τint =
1

2
+

N∑
k=1

A(k)

(
1− k

N

)
. (2.4)

Where A(k) is the autocorrelation function and k is the time separation be-
tween two measurements, e.g. Oi and Oi+k. It evaluates how similar two
measured observables are, depending on their temporal distance from each
other. If A(k) is equal to zero, all measurements are independent and uncor-
related. Intuitively, measurements are less likely to be similar to each other
for increasing k and the autocorrelation function decays exponentially.
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Figure 1 A time series of the Bivariate Gaussian. The observableOi is obtained
for discrete time steps i.

2.2 Identities

The variance of the estimator (2.3) can be rewritten as

σ2
O =

〈
O2
〉
−
〈
O
〉2

. (2.5)

In a similar fashion rewriting for the fluctuation of the individual measure-
ments yields

σ2
Oi

=
〈
O2
i

〉
− 〈Oi〉2 . (2.6)

As mentioned above, we have no way to calculate an expectation value. This
also applies to the variance. Again using the “standard estimator” 〈∗〉 → ∗,
we obtain an expression for an estimator of the variance:

σ2
Oi

= O2 −O2
(2.7)

=
1

N

N∑
i=1

(
Oi −O

)2
. (2.8)

It can be shown, that this estimator is weakly biased. To correct this system-
atic (in the case at hand) underestimation, a factor can be applied, leading
to the bias corrected estimator

σ2
Oi,corr

=
N

N − 1
σ2
Oi

. (2.9)
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Finally, we can look at the conventional expression for the error :

ε2O = σ2
O . (2.10)

If all N measurements are uncorrelated

ε2O =
σ2
Oi

N
, (2.11)

otherwise we get mixed contributions unequal to zero, when inserting (2.2)
into the second term of (2.5). These are consistently expressed in form of
the autocorrelation time and we arrive at the error estimate for correlated
measurements:

ε2O =
σ2
Oi

N
2 τint . (2.12)

For completeness it has to be mentioned, that these expressions are of cause
estimators. Unfortunately, the notation of many publications neglects to
clarify that the presented results are in fact estimators. Admittedly, even
our own expressions e.g. (2.12) sometimes lack the overbar which would have
been required for consistency.

2.3 Bivariate Gaussian Distribution

When presenting time series and their subsequent analysis in this work, it
was a main concern to have control over the simulations as a necessity to
highlighting key aspects of the process of error estimations. While not ideal
in the sense, that it is rather “unphysical”, we chose to use the Bivariate
Gaussian Distribution, as it offers exactly this type of fine tuned control.
It is created from independent, uncorrelated Gaussian random variables e‘i
with expectation value

〈
e‘i
〉

= 0 and
〈
e‘i e

‘
j

〉
= δij. We start with

e0 = e‘0 (2.13)

and apply
ei = ρ ei−1 +

√
1− ρ2 e‘i (2.14)

recursively, to generate the now correlated ei. Here, ρ is a correlation coeffi-
cient, determined from the autocorrelation time via ρ = e−1/τ .
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3 Method

Let us start by going through the Bootstrap method for a simple example,
where we have a time series of length N = 2. The set of all two measurements
- the original time series, shall be denoted by

Õ = {O1,O2} .

The resampling is realized by creating new sets from randomly chosen mea-
surements of the original sample. Individual measurements can be picked
multiple times (drawing with putting back) and the created samples shall
have the original size N = 2. This way we can construct

NR = NN = 4 (3.1)

so called ideal Bootsrap replicas, namely

ÕR,1 = {O1,O1}
ÕR,2 = {O1,O2}
ÕR,3 = {O2,O1}
ÕR,4 = {O2,O2} .

We can see from (3.1) that the amount of ideal replicas quickly exceeds even
modern computer capabilities, as N is typically of order 106 or greater. Hence
we create only a predefined number NR of replicas, following the Monte Carlo
approach. Each Bootstrap sample ÕR,r is created from randomly drawing a
data point of the original pool with probability p = 1

N
.

3.1 Algorithm

There are three steps to the Bootstrap method:

1. Construct NR Bootstrap replicas ÕR,r as outlined above;

2. Evaluate each replica using a chosen estimator, e.g. the mean;

OR,r =
1

N

N∑
i=1

(ÕR,r)i (3.2)

3. Obtain the Bootstrap estimator OR from all the individual estimators
OR,r

OR =
1

NR

NR∑
r=1

OR,r (3.3)
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and an according expression for the standard error

σ2
OR

=
1

NR − 1

NR∑
r=1

(
OR,r −OR

)2
, (3.4)

where σ2
OR

is of cause an estimator;

From (3.4) it becomes clear that the Bootstrap estimator for the error is
genuinely calculated from the fluctuations of all the replicas around their
average. This seemingly trivial convenience actually encapsulates a great
benefit of the Bootstrap: Since all the replicas follow the same empirical
distribution as the original sample, no knowledge about said distribution is
required.

3.2 Choosing the Number of Replicas

Efron and Tibishirani [4] give two rules of thumb for choosing NR, which are
justified by a thorough discussion. Firstly, already small NR ≈ 50 can be
sufficient for obtaining a “good” Boostrap estimatorOR. Secondly, increasing
NR beyond 200 replicas is seldom needed in order to gain reliable estimates
for a standard error.

0.02

0.025

0.03

0 250 500 750 1000

O
R

NR

OR

Figure 2 Bootsrap estimators calculated from increasing numbers of replicas
for a time series with N = 106 measurements (Bivariate Gaussian distribution).

The estimator O = 1
N

∑N
i=1Oi ≈ 0.0256, obtained from the original sample is

indicated on the right.
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Figure 3 Variance of the Bootstrap replicas for increasing numbers of replicas
for a time series with N = 106 measurements (Bivariate Gaussian distribution).
The variance of the original sample σ2

O ≈ 0.995× 10−4 is again indicated on the
right.

At first sight one might guess the more replicates created, the better. While
Figures 2 and 3 seem to justify this assumption, one can also see that there
must exist a limit on how precise Bootstrap estimates can possibly be. Since
all the replicas are created from one original sample, they must have the same
statistical flaws. If the data at hand - unluckily - only samples a small part of
the whole distribution, so will the replicas. This outlines why the Bootstrap
method is no panacea, but like other resampling techniques, a convenient
way to check the self consistency of available data.

3.3 Autocorrelation and Binning

When dealing with Monte Carlo simulations to produce time series, it is al-
ways a difficult task to decide how long a simulation needs to run. More
so in the vicinity of a phase transition, where the correlation length of the
system diverges, as the transition is approached. If presented with raw data
one cannot be sure if the simulation covered all phase space or just a small
subsection. Running any resampling technique on such a subset would yield
good errors and seemingly consistent estimates for observable - even though
they might be far away from the truth. Unfortunately there is no way other
than running a longer simulation, to judge if this was the case. This “suffi-
ciently long” simulation needs to be much greater than the autocorrelation
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Figure 4 Qualitative plot of two time series of the Bivariate Gaussian for
which the autocorrelation time can be set as a parameter. The correlated sample
(τ = 10) was shifted to improve readability.

time, which is beforehand unknown.
So, how can one judge if the errors calculated by resampling account for an
appropriate value of the autocorrelation time? See again (2.12) and (2.4),
as well as Figure 4 for a qualitative comparison between correlated and un-
correlated data. As far as the author is concerned, the most popular ansatz
to examine autocorrelations is the Binning method. It is often assumed to
be used in conjunction with Jackknifing but can also be combined with the
Bootstrap.
Instead of resampling individual data points of the original sample with
length N , said time series is grouped into NB equally long bins, each con-
taining k individual measurements:

k =
N

NB

(3.5)

Without discussing the issue in further detail, we want to mention that this
ostensibly simple step is more subtle, since there is no universal way to deal
with non-integer values for k. As depicted in Figure 5, each of the created
bins or blocks is evaluated separately, using the chosen estimator. Ordinarily
the block average

OB,n =
1

k

k∑
i=1

Ok(n−1)+i (3.6)
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is used, where n = 1, ... , NB. Next, we acquire an average over all the bins

OB =
1

NB

NB∑
n=1

OB,n . (3.7)

We can see that
OB = O (3.8)

- under the condition, that the chosen estimators were in fact the arithmetic
mean, and k was integer. Furthermore one can apply the bias corrected
estimator for the variance (2.9) to obtain an error expression from the binning

σ2
O = σ2

OB,n
/NB (3.9)

σ2
O =

1

NB(NB − 1)

NB∑
n=1

(
OB,n −OB

)2
. (3.10)

−4

−2
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O
i

i

OB,n

Figure 5 The time series is split into NB blocks of length k, each one with a
distinguished estimate OB,n.

It is important to note, that (3.9) assumes, that the created bins are larger
than the autocorrelation time, hence all blocks are uncorrelated, which is the
only justification why the factor 2 τint does not appear. The same assumption
will be made in the following section, which will show how the Binning is
merged with the Jackknife and Bootstrap in comparison.
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4 Binned Bootstrap and Jackknife

4.1 Comparison between both Methods

As the derived expressions are very similar we will present them at once
with a consequential discussion. The starting point shall be, that the block
averages OB,n were created successfully as in (3.6) with n = 1, ... , NB.

For the Jackknife:

OJ,n =
1

NB − 1

NB∑
i 6=n

OB,i (4.1)

OJ =
1

NB

NB∑
n=1

OJ,n (4.2)

σ2
OJ

=
NB − 1

NB

NB∑
n=1

(
OJ,n −OJ

)2
(4.3)

For the Bootstrap:

OR,r =
1

NB

NB∑
i=1

OB,n (4.4)

OR =
1

NR

NR∑
r=1

OR,r (4.5)

σ2
OR

=
1

NR − 1

NR∑
r=1

(
OR,r −OR

)2
(4.6)

From (4.1) and (4.4) we see that both, Jackknife and Bootstrap combine
multiple bins into NB larger samples, namely Jackknife bins and Bootstrap
replicas, respectively. The OJ,n are of size NB − 1, as can be seen from the
normalization and the OR,r are of size NB. Also, while the former method-
ically contain every bin except one, the latter are constructed from picking
bins randomly, as already described in Section 3. To emphasize this a bit
more, it is pointed out, that a different amount of those larger blocks is

11



created in the two methods. For the Jackknife, there always exist NB large
Jackknife bins, which is directly related to the block length k. The Bootstrap
on the other hand employs a second parameter NR, the number of replicas.
Consistently, the only difference in calculating the average over all replicas
OJ and OR is the normalization. These two are again the estimators ap-
proximating the expectation value of the observable we aim to find out from
the original sample. Again with reference to (2.9), one can also obtain errors
for the estimates. In accordance with expectations, the binned Bootstrap
variance (4.6) is almost identical to the non binned expression (3.4), only
the OR,r are now created from the bins instead the individual measurements.
The Jackknife variance (4.3) however has to include the so called “inflation
factor” (NB − 1)2. As mentioned earlier, the Jackknife bins OJ,n are cre-
ated in a systematic way contrasting to the random Bootstrap approach.
Hence all these newly created samples are by construction very similar to
each other. Taking also into account that the new sample size is exactly one
block smaller than the original time series, one can deduce that the Jackknife
bins follow a different - narrower - distribution. The inflation factor simply
takes care of this when obtaining the variance, which is of cause the width of
said distribution. Section 4.3 provides a made up example to illustrate this
a bit further.

4.2 Choosing the Number of Bins

A significant question that remains to be discussed, is the choice of how
many bins the initial time series is split into. Using the same example of
the Bivariate Gaussian as before, Figure 6 shows how the respective error
estimates from Jackknife and Bootstrap behave for increasing block sizes k.
Firstly it is noteworthy that k = 1, equivalent to the unblocked treatment,
shows matching results to Figure 3. Secondly, no qualitative difference can
be seen between Jackknife and Bootstrap, assuming the number of replicas
NR was chosen large enough.
It is very characteristic that too small choices of k systematically underes-
timate the error. It is clear, that small blocks cannot be larger than the
autocorrelation time - but which was assumed during Binning. On the other
hand, increasing block sizes imply a decreasing amount of blocks NB, hence
less summands that contribute to the Jackknife bins OJ,n and Bootstrap
replicas OR,r. The consequence are the strong fluctuations as seen on the
right of the figure, which keep increasing until the scale of the actual error
contributions become irrelevant.
So we can conclude that the “ideal” choice for the block size is neither 1
nor the other extreme N − 1, but rather a sensible intermediate. The grey
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Figure 6 Behaviour of the estimates for variance from Jackknife and Boot-
strap method for increasing block sizes k. The autocorrelation time was known
beforehand to be τ = 10, again utilizing the Bivariate Gaussian.

guide line in Figure 6 indicates k ≈ 6 τ , which is only known explicitly for
this example, since τ = 10 was possible to be set as a parameter. For one,
this choice of k is justified through another ansatz that tries to calculate the
autocorrelation time directly. Usually the very long summation (2.4) isself
consistently aborted at this point. Heuristically we see, that a steady plateau
is reached here before more severe fluctuations start.
One can also estimate that the plotted value for the variance near k ≈ 60 is
approximately twenty times the value for no Binning i.e. k = 1, corresponding
nicely to the factor 2 τ that distinguishes between correlated and uncorrelated
error estimates.
For a more realistic example it is of cause more difficult to find an appro-
priate choice of k and NB. While it is informative to do error analysis for
different block sizes as shown above it also very expensive or labour intense,
and can seldom be repeated for every simulation in a day to day workflow.
A suggested compromise is to evaluate the made choice for a few limited
examples of desired simulations and then implementing those consistently.

4.3 An Example

Let us have a closer look at the error expressions introduced in Section 4.1
and the replicas created via resampling, by means of the following example.
We generate a time series of length N = 106 and in an unusual manner,
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repeat this “experiment” M = 1000 times, everyone with different random
numbers. This will give as much more precise estimate of the expectation
value, than ordinary available. Hence we assume to know 〈O〉 from the many
simulations m = 1, ... ,M :

〈O〉 =
1

M

M∑
m=1

Om . (4.7)

Next, we focus on only one single of the thousand simulations and perform
the Jackknife analysis utilizing NB = M bins. Hence we obtain the Jackknife
bins OJ,m and another estimate for 〈O〉, namely OJ :

OJ =
1

M

M∑
m=1

OJ,m (4.8)

Analogously the Bootstrap analysis is performed, also with NB = M but also
NR = M to have the same normalization to deal with:

OR =
1

M

M∑
m=1

OR,m , (4.9)

where OR,m are clearly the Bootstrap replicas and OR another estimator for
the expectation value.
Without calculating the variances, Figure 7 depicts the explicit distribution
counted for the repetition (4.7) and the Bootstrap (4.9) as a smooth his-
togram. To be more precise, shown are the distributions of the difference
between all the replicas and the best guess available for each method, re-
spectively.
The aim of this example is to motivate the following simplifications:

σ2
OR
≈ σ2

Om
= ε2O , (4.10)

in words, we assume that the variance from the Bootstrap is a good approx-
imation of the variance we would get from a much larger simulation. This
also justifies:

OR ≈ 〈O〉 . (4.11)

When now repeating (4.6),

σ2
OR

=
1

NR − 1

NR∑
r=1

(
OR,r −OR

)2
(4.12)
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Figure 7 Histogram of the fluctuations: Replica estimators around the “best”
estimator, for the M = 1000 repetitions of the simulation (grey) and the Boot-
strap (blue).

we may say, that after some rearranging

OR,r − 〈O〉 ∼ εO . (4.13)

Which is, as intended, the relation illustrated in Figure 7. The Bootstrap
replicas have the same fluctuation and variance around the Bootstrap esti-
mate, as a repetition of the simulation would have.
If one now is to repeat the reasoning from equation (4.10) onwards for the
Jackknife, we would get:

σ2
OJ
≈ σ2

Om
= ε2O (4.14)

OJ ≈ 〈O〉 (4.15)

σ2
OJ

=
NB − 1

NB

NB∑
r=n

(
OJ,n −OJ

)2
(4.16)

OJ,n − 〈O〉 ∼
εO√
NB

. (4.17)

This is illustrated in Figures 8 and 9. One can now see what has been said
before, that is, that Bootstrap samples the same distribution as a longer sim-
ulation would provide. Jackknife on the other hand provides - by construction
- a narrower distribution that is compensated by the inflation factor.
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Figure 8 Histogram of the fluctuations of replicas: Repetition (grey), Boost-
rap (blue), Jackknife (red).

Figure 9 Histogram of the fluctuations of replicas: Repetition (grey), Boost-
rap (blue), Jackknife with correction (red).

5 Concluding Remarks

While the exercise of the previous section only highlights an admittedly small
advantage of the Bootstrap over the Jackknife, it serves to emphasize the
simple, yet effective idea behind resampling schemes. Instead of rerunning
a simulation thousands of times, which would be utterly expensive, the re-
sampled series often provide an equally effective and cheaper way to obtain
reliable errors.
Having said that, the main assumption highlighted multiple times, still holds:
We need to make sure, that the bins - and therefore the initial simulation
- are larger than the autocorrelation time. Also, while seemingly favoured
throughout this work, the Bootstrap method still requires careful attention
to tune the two parameters NB and NR, while Binning and Jackknife suffice
with the former.
Finally, we want to give a few remarks about the literature used. The no-
tation and procedure presented was inspired by - and largely based upon
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- the very detailed lecture on Data Correlations and Error Estimates by
W. Janke [5]. For an in-depth treatment of the Bootstrap method including
bias and confidence intervals, see the book by B. Efron and R. J. Tibshi-
rani [4]. A thorough comparison between Jackknife and Bootstrap is provided
online by K.Rummukainen [9].
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[6] W. Janke. Monte Carlo Simulations in Statistical Physics - From Basic
Principles to Advanced Applications. In Y. Holovatch, editor, Order,
Disorder and Criticality: Advanced Problems of Phase Transition The-
ory, volume 3, pages 93–166. World Scientific, 2012.

[7] N. Metropolis et al. Equation of State Calculations by Fast Computing
Machines. The Journal of Chemical Physics, 21:1087–1092, 1953.

[8] K. Reimer. Bootstrapping und andere Resampling-Methoden. In
S. Albers et al., editors, Methodik der empirischen Forschung. Springer
Fachmedien, 2009.

[9] K. Rummukainen. Lecture notes on Monte Carlo simulation methods,
2011.

[10] N. B. Wilding. Critical-point and coexistence-curve properties of the
lennard-jones fluid: A finite-size scaling study. Phys. Rev. E, 52:602–
611, Jul 1995.

17


	Motivation
	Preliminaries
	Notation
	Identities
	Bivariate Gaussian Distribution

	Method
	Algorithm
	Choosing the Number of Replicas
	Autocorrelation and Binning

	Binned Bootstrap and Jackknife
	Comparison between both Methods
	Choosing the Number of Bins
	An Example

	Concluding Remarks
	References

