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1 Introduction

In times of increasingly complex social networks, environmental problems and when

terms like globalisation or gentrification are explained in school, it is not surprising that

mankind is more than ever fascinated by causality and correlation. For many people

those two expressions mean pretty much the same, nonetheless there is remarkable

difference between the two. While causality describes a reasoned order or relationship

between two phenomena, which often cannot be reduced to a few words or a formula,

correlation on the other hand is in fact measurable and mathematically defined. In

a way it is an expression for the similarity of two observables that depend on some

common parameters. The intent of the following pages is to create and discuss a cor-

relation that shows a power-law behaviour, to identify difficulties and suggest possible

solutions how to overcome them. Power-law exhibiting phenomena are common in

nature and society, e.g. earthquakes, citygrowth or infrastructure. Hence we find a

long-lasting interest in versatile scientific areas such as phase transitions [1], percola-

tion problems [2, 3], communication activity [4] or surface studies [5], that fit well in

this context. The major effort will go into the reproduction and understanding of the

paper by Makse et al. from 1996 [6], as it covers the general method of creating corre-

lated disorder in great detail. Once we have successfully created correlated sequences,

which show the proposed behaviour, the process will be generalized from one to two

dimensions, so that a mapping onto a square lattice can be done. During the discussion

we are going to work with systems of a maximum size of N = 221 for one dimension

and a maximum size per dimension of N = 211 for two dimensions. Since this will

lead to numerical values of the order 106 and larger during some of the calculations we

would need to take care of machine dependant limits, especially for random number

generators as has been emphasized in [7]. Unfortunately deep inquiries on this subject

also require a fair amount of background, testing and care, which is why further con-

sideration of this matter will not be included. For the generation of random numbers

we use the Mersenne Twister 19937 generator (mt19937) which seems to offer decent

results, as shown in the aforementioned publication. A follow-up aspiration would be

to exactly enumerate a random walk in the created disorder-confinement, which is of

particular interest as it offers a similar approach to the problem treated in [8].
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2 Fourier Transform

Simply put, the Fourier transfom is a mathematical tool which transforms data from

its time domain into the frequency domain, or in other words from real space (RS)

to Fourier space (FS). The data itself does not change, rather one can think of two

different ways to represent it. In general, the time domain is the common representation

that is used in everyday life. Nevertheless there is a useful property to the frequency

representation: Every single discrete value in FS is equivalent to a distribution over

the whole RS - and vice versa. Hence any change or operation that is performed on a

single point in FS has an effect upon every point in RS, which is what we are going to

exploit to create the desired power-law correlation.

The Fourier transform for continuous functions is given by

H(f) =

∫ ∞
−∞

h(t) e2πiftdt, (2.1)

where t is the time, f is the frequency and i the imaginary number, i =
√
−1. The

inverse transform to get back into RS is:

h(t) =

∫ ∞
−∞

H(f) e−2πiftdf (2.2)

In most cases, especially for experimental purposes, it is required to work with discrete

data rather than with continuous functions, which raises interest in the discrete Fourier

transform. The aim is to construct the Fourier transform of the function h(t) from a

given number N of sample points, where a constant sampling interval ∆ is assumed.

hk = h(tk), tk = k∆, k = 0, 1, 2, ..., N − 1 (2.3)

From these N points of input data it is intuitively clear to search for no more than

N points of output. There is another fact which needs to be considered, that is the

so called sampling theorem. It gives birth to terminology such as aliasing, bandwith

limitation and the Nyquist critical frequency. The highest frequency possible to sample

with these N points is fc = 1
2∆

, which is plausible if one thinks of a sine: it cannot be

reduced to less than two discrete points per period without giving up information. This

puts certain limitations on the Fourier analysis, for more information see also Ref. [9].
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2 Fourier Transform

Figure 2.1 Both functions sin (x) and sin (5x) have the same functional value of ±1 at
x = π

2 and x = 3π
2 , but only one period of sin (x) can be sampled uniquely with the two

points.

Taking the beforehand mentioned obstructions into account, one seeks

fn =
n

N∆
, n = −N

2
, ...,

N

2
(2.4)

and defines

Hn =
N−1∑
k=0

hk e
2πik n

N (2.5)

where the relation between the discrete and the continuous Fourier transform can be

written as:

H(fn) ≈ ∆Hn

We see that ∆ can be treated like a unit in the considered domain. Usually one sets

∆ = 1s, which gives seconds as the unit in RS and hertz in FS. For the discrete inverse

transform a normalization factor appears, which follows from Parseval’s theorem. Due

to the periodic behaviour of Hn in n, the sum can be shifted so that both indices, n

and k vary over the same range.

hk =
1

N

N−1∑
n=0

Hn e
−2πik n

N (2.6)
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2.1 Fast Fourier Transform

2.1 Fast Fourier Transform

Having looked at the discrete Fourier transfrom briefly, it becomes apparent that N

multiplications are required to obtain every Hn, which needs to be done exactly N

times, leading to a total complexity of the order N2. The goal of the fast Fourier

transform (FFT) is to deliver the same output - but faster. In fact FFT algorithms

operate as efficient as O
(
N log(N)

)
. This noteworthy performance gain can be achieved

by applying a lemma by Danielson and Lanczos. The ingenious trick is to split the

discrete sum of length N into two sums of length N/2, where the first one contains all

coefficients with even indices and the second sum only contains the coefficients with

odd indices.

Hn =
N−1∑
k=0

hk e
2πik n

N (2.7)

=

N/2−1∑
k=0

h2k e
2πi(2k) n

N +

N/2−1∑
k=0

h2k+1 e
2πi(2k+1) n

N (2.8)

=

N/2−1∑
k=0

h2k e
2πik n

N/2 + e2πi n
N

N/2−1∑
k=0

h2k+1 e
2πik n

N/2 (2.9)

Considering W = e2πi/N = const

Hn =

N/2−1∑
k=0

h2k e
2πik n

N/2 +W n

N/2−1∑
k=0

h2k+1 e
2πik n

N/2 (2.10)

= He
n +W n Ho

n (2.11)

Where He denotes the sum of all even elements and Ho the odd ones. What is left to

do is a multiplication with a constant factor: some power of W n. The beauty of this

method is, it can be done recursively until the sums only have length one, evaluating

merely

Heeo...eoe
n = hk (2.12)

for each k. The challenge for a working algorithm is to get the book keeping right, on

which index to apply the correct factor. Furthermore, this idea of repeatedly splitting

sums into two requires the input data to have length 2n, n ∈ N. Of course there

are ways to work around this limitation, such as padding with zeros, but since the

input data in this particular case is created at random, it might as well just satisfy

the condition. The actual aftermath of the precedent contemplation of the FFT is the
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2 Fourier Transform

way data is stored in FS. Since this is where we are going to manipulate the data, an

exact understanding of the arrangement of frequencies is required. Because different

notations are common, depending on the reference, it becomes very hard to be self

consistent, yet congruent with those references. One important convention about the

storage layout is explained in very much detail in Numerical Recipes [9, p. 612]. We

will mostly stick to it with subtle modifications. It turned out to be useful to work

with complex numbers over treating real and imaginary parts as separate elements in

the storage array. In compliance with Makse et al. [6] the angular frequency q will be

used as the argument of the soon to be introduced spectral density S(q).

q = 2πf, −1

2
≤ f ≤ +

1

2

Where f varies with increments of 1
N

, N being the system size in one dimension.

Another notation is commonly used, that offers an increment size normalized to 1,

which has evident advantages during the implementation.

q =
2π

N
m, −N

2
≤ m ≤ +

N

2
(2.13)

Index RS FS

0 t = 0 f = 0 m = 0

1 t = 1 f = + 1
N

m = 1

2 t = 2 f = + 2
N

m = 2

...

N
2
− 1 t = N

2
− 1 f = +N/2−1

N
m = N

2
− 1

N
2

t = N
2

f = ±1
2

m = ±N
2

N
2

+ 1 t = N
2

+ 1 f = −N/2−1
N

m = −
(
N
2
− 1
)

...

N − 2 t = N − 2 f = − 2
N

m = −2

N − 1 t = N − 1 f = − 1
N

m = −1

Table 2.1 Storing complex numbers at each index leads to arrays of size N instead of 2N . The con-
vention in the very right column where m only takes integer values will be used in the implementation.
Values in RS are in units of ∆ = 1s and in FS 1

∆ = 1
s .
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3 Long-range Power-law Correlated Disorder

3.1 Correlation in One Dimension

“The possibility that the elements in a percolation problem experience a long-range

spatial correlation has been of long-standing interest.” [2] Promising algorithms have

been developed to create such correlations. The usual purpose is to end up with a

correlated sequence of the form below, where γ is the correlation exponent.

〈ηi ηi+l〉 ∝ l−γ (3.1)

The general line of action is the following:

1. Generate a random, uncorrelated spatial normal distribution - {ui}.

2. Bring it into the frequency domain using FFT - {uq}.

3. Multiply every element of data in FS with a factor that depends on the position

within FS - {ηq}.

4. Transform back into real space - {ηi}.

Figure 3.1 A sample of random data of size 211 during the four steps
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3 Long-range Power-law Correlated Disorder

In our case, the factor is the square root of the spectral density S(q), which is nothing

else than the correlation function in Fourier space. It can be obtained by doing the

apparent: applying a Fourier transfrom to the correlation function C(l) in real space.

Starting with an intuitive approach for the correlation function in the form of Eq. 3.1

- as has been done in [2], the so called Fourier filtering method - it becomes evident,

that the integration from −∞ to +∞ during the Fourier transform is not well defined

due to the singularity at l = 0. This causes the asymptotic behaviour to also occur

in FS, leading to a correlation that does not cover the whole system [6]. This can be

circumvented by setting

C(l) =
(
1 + l2

)−γ/2
(3.2)

which exhibits the same behaviour for large l but avoids the singularity.

Figure 3.2 The two different approaches for the correlation function in RS, γ = 0.3

Now, what does the spectral density in Fourier space S(q) look like? By using Mathe-

matica to perform an analytical Fourier transform of C(l) one obtains

S(q) =
√
π 2

3
2
− γ

2 |q|
γ−1
2

K γ−1
2

(|q|)
Γ
(
γ
2

) (3.3)

where K is the modified Bessel function of second kind and Γ denotes the gamma

function. Using β = γ−1
2

we can simplify to

S(q) =
2
√
π

Γ (β + 0.5)

(
|q|
2

)β
Kβ(|q|) (3.4)

and notice that S(q) = S(−q). This is a quite beneficial property, since the data on

which S(q) will be applied in FS shows a similar symmetry, see Table 2.1. By definition
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3.1 Correlation in One Dimension

we also know Kβ = K−β, which determines the domain in which it is appropriate to

define γ, that is 0 < γ < d with d = 1 for one dimension. Furthermore, this equation

is similar to the one by Makse et al. [6]:

S(q) =
2
√
π

Γ (β + 1)

(q
2

)β
Kβ(q) (3.5)

It is worth mentioning, that we concluded the argument of the gamma function in

Eq. 3.5 is β + 1 only due to typing error, which might have been caused by the γ to β

conversion in higher dimensions. As a matter of fact, rewriting Eq. 3.4 in terms of β

does not serve another reason than to give an equation that looks a bit clearer. After

correlating the sequence, we need a measure to ensure the sequence does in fact show

the aspired behaviour. To this extend we calculate C ′(l) for appropriate values of l

C ′(l) =
1

N

∑N
i=0 (xi − µ) (xi+l − µ)

σ2
(3.6)

with expectation value µ and variance σ2.

µ =
1

N

N∑
i=0

xi, σ2 =
1

N

N∑
i=0

(xi − µ)2

The actual measurement of C ′(l) during the analysis has a huge impact on the results.

Though one would assume to achieve a better distribution for exactly evaluted expec-

tation values µ, the contrary turns out to be true. Only setting µ to zero in Eq. 3.6

altogether - consistent with the intitially created Gaussian - allowed for the intended

outcome. This is non-trivial, since applying the correlation to the initial input data is

quite a strong modification and it is not directly deducible that the expectation value

would remain unchanged. An empirical argument is shown in Fig. 3.3, where we see in-

deed that the correlated data is on average normally distributed around zero, although

individual realizations for different seeds are not. Increased detail in this matter will

be given for the two dimensional case.

Once measured, the correlation values are plotted together with the reference C(l) in

the same graph. When observing Fig. 3.4, a discrepancy between measured values

and the C(l) is notable for small γ. We examined that strong correlations with small

exponents γ react delicately to the way the singularity S(0) is treated, which originates

in the Bessel function. While the fluctuation for large γ is coherent with [6, 10], the

general trend that those sequences tend to be overcorrelated beyond a certain l is

not. In one dimension we will comply with Makse et al. [6] by “assigning a suitable
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3 Long-range Power-law Correlated Disorder

Figure 3.3 The distribution of 50 realizations of correlated sequences in 1D for N = 221:
the average (red) and individual seeds (dashed).

numerical value 0 < m0 < 1”.

Figure 3.4 Measured correlations and according references C(l) for different γ and 1D
systems of size N = 221. The singularity S(0) was treated with m0 = 0.1. Averages were
taken over 50 samples.
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3.2 Correlation in Two Dimensions

3.2 Correlation in Two Dimensions

Figure 3.5 3D plot of the spectral density for a system size of 25 × 25 and γ = 1.2. Note
the symmetry for S(q) that arises from the FFT. S(0) has great impact on the correlation
in RS, although there exist no analytical solution.

The general procedure for higher dimensions builds upon the one dimensional case, even

though one needs to be aware of some additional circumstances. For one, the FFT in

higher dimensions is computationally more intensive. This causes us to decrease the

system size to N = 211 in each of the two dimensions. In terms of storage we will stick

to the convention from Numerical Recipies [9, p. 629] “store by rows”, with complex

numbers. Moreover, C(l) and S(q) defined in Eq. 3.2 and Eq. 3.4 need to be generalized

to higher dimensions. Following Makse et al. [6] and considering periodic boundary

conditions, the correlation function is given by

C
(
~l
)

=

(
1 +

d∑
i=1

l2i

)−γ/2
(3.7)

which leads to

S( ~q ) =
2 πd/2

Γ
(
γ
2

) (q
2

) γ−d
2
K γ−d

2
(q) (3.8)

or

S( ~q ) =
2 πd/2

Γ
(
βd + d

2

) (q
2

)βd
Kβd(q) (3.9)

for the spectral density. Again, the argument of the gamma function appears to be

13



3 Long-range Power-law Correlated Disorder

inconsistent in the paper but seems correct for d = 2.

βd =
γ − d

2
, q = | ~q |, ~q =

2π

N
~m, −N

2
≤ mi ≤ +

N

2

For now we will use the Euclidean norm for | ~q |, but some future inquiries could go into

using a different definiton e.g. the Manhattan norm. It follows for two dimensions:

q =
2π

N

√
m2
i +m2

j

a) N = 24, γ = 0.2 b) N = 24, γ = 1.2

c) N = 28, γ = 0.2 d) N = 28, γ = 1.2

Figure 3.6 Shown are distributions of correlated 2D sequences for two different system
sizes: an average of 50 seeds (red) and example seeds (dashed). Note that individual
realizations are closer to the average for larger systems.

Before we discuss the measurement of C ′(l) in 2D, it seems sensible to back up the

claim, that after correlating a Gaussian, the given set is still normally distributed, since

this assumption will be used not only while measuring the correlation itself, but also

when deriving the mapping algorithm. On that account 50 realizations of correlated

sequences in 2D were created for different system sizes and different correlation expo-

nents γ. The system size was varied between 24 and 28 per dimension and γ was in

the range from 0.2 (strong correlation) to 1.8 (weak correlation). Fig. 3.6 shows some

examples. In each case, the average distribution is centered around µ = 0. Further-
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3.2 Correlation in Two Dimensions

more we see that the fluctuation of individual seeds around the average is dependant

on both, γ and the system size.

Next, the way the created correlation is measured has to be adopted to 2D. To this

end there are two possibilities, either one can simply measure C ′‖(l) in one component

- keeping the other one constant, which should reproduce the results from 1D - or

one determines a radial correlation. Admittedly we were not able to come up with

a satisfactory algorithm to measure the correlation for a given length in an arbitrary

direction. The problem lies within the discrete lattice, one would have to check which

lattice points are connectable with that given length at some angle. Thus we settled

for a more pragmatic solution, in which we investigate only in diagonal directions and

call this C ′⊥(l). The clue is not trying to achieve an exact distance from xij to xi
′

j′ but to

adjust the argument l afterwards. We will start with the former case, in this notation

i and j are the indicies of the matrix element, equivalent to the positions on a square

lattice. xij is the corresponding value, analogeous to 1D.

C ′‖(l) =
1

N2

∑N
i,j=0

(
xij − µ

) (
xi+lj − µ

)
σ2

(3.10)

Notice j′ = j and i′ = i + l, hence the correlation is only measured in the dimension

corresponding to i. For the diagonal correlation we use:

C ′⊥

(√
2 l
)

=
1

2N2

∑N
i,j=0

{(
xij − µ

) (
xi+lj+l − µ

)
+
(
xij − µ

) (
xi+lj−l − µ

)}
σ2

(3.11)

On account of shifting both i and j by an amount l in the latter equation, the correlation

that is evaluated is not C ′⊥(l) but C ′⊥(
√

2 l). Once again periodic boundary conditions

were implemented in the algorithm. It turned out, that both C ′‖(l) and C ′⊥(
√

2 l) yield

comparably good results, which made us use the diagonal, more sophisticated version.

When looking at Fig. 3.8, we can identify the same issues as in the 1D case, remember

that γ is varied in the range 0 < γ < d, in d dimensions. For one, sequences with

strong correlations 0 < γ < 0.5 tend to be undercorrelated. This is adressed in the

section “Difficulties” and arises from the singularity. Secondly, sequences with weak

correlations 1.5 < γ < 2 start to spread heavily for large l, occasionally C ′(l) even

attains negative values, hence is not shown in the logarithmic plot.

15



3 Long-range Power-law Correlated Disorder

Figure 3.7 Simplified illustration of the measurement of a) C ′
⊥(
√

2 l) and b) C ′
‖(l).

Figure 3.8 Measured correlations for 2D systems of size 211 × 211 and different γ. To
avoid the singularity, the approach that will be discussed in the section “Difficulties” was
used. See Eq. 3.14.
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3.3 Mapping Disorder

3.3 Mapping Disorder

In preparation for a potential enumeration of a 2D random walk (RW) in the correlated

disorder, it is necessary to translate the disorder into a confinement on a square lattice.

There are only two possibilities on the lattice, either the RW is allowed to access a

particular position or not. Since we have a real value for each lattice point in the

correlated sequence, that could hypothetically be anything between −∞ and ∞ the

straightforward approach is to introduce a threshold θ and compare it to the value of

each point. Anything below θ is mapped to zero, everything else to one.

Figure 3.9 The mapping of a 1D correlated sequence (blue) is shown. Every point is
mapped to either zero or one (red squares) depending on the threshold θ (red line). On the
right, the unmapped sequence is given as a distribution.

It would be desirable to set the amount of accessible and non-accessible lattice sites

via a probabilty to find an occupied site

p =
n1

N2
(3.12)

where n1 is the number of sites that are not allowed and N2 is the size of the 2D

grid. Fortunately we have already seen that the correlated sequence has a normal

distribution.

P (xi) =
1

σ
√

2π
e−

(xi−µ)2

2σ2

For the mapping it is not required to differentiate between the two dimensions, hence

we can omit the second index j and only work with xi. Further we assume µ = 0

and σ = 1 for N → ∞. We need to be aware that this cannot be assumed for small

systems, in which case σ has to be adjusted.

p =

∫ θ

−∞
P (xi) dxi =

1

2
erfc

(
µ− θ
σ
√

2

)
(3.13)
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3 Long-range Power-law Correlated Disorder

As p is an input parameter and the complementary error function erfc is a well-defined

function f(θ), it is possible to determine θ for any p with 0 < p < 1 using the bisection

method.

One interesting topic to discuss is the combination of mapping and correlation. To this

end we can vary the two parameters, the correlation γ and the probability to occupy a

lattice point p, hence create some sort of transition table. See Fig. 3.13. What we see

is, that very densely occupied areas can be created by either increasing the correlation

or the occupation probabibility. Likewise, many unpopulated areas can be achieved

using small p, but this does not work analogeously for weakening the correlation, simply

because we start with a random Gaussian noise for the sequence. The mapping is done

afterwards. Therefore a very even distribution is genereated as in the left column of

the figure and the only way to get very light areas, even for weak correlations, is to use

a small p, too. This consideration gives reason to think about how the probabibility

influences the correlation of points of the mapped lattice. Clearly the same correlation

measurements for C ′⊥(
√

2 l) can be done for the discrete lattice. The results are shown

in Fig. 3.10. What we see in the figure is that the mapping decreases the correlation.

Further, p = 0.5 gives the strongest mapped correlation, while any deviation in p from

one half leads to weaker correlations.

Figure 3.10 Measured correlations of mapped 2D systems for different p and γ = 0.8,
as a reference the unmapped value is given. The mapping with p = 0.5 is closest to the
unmapped case, the further the probabibility is changed away from 0.5 in either direction,
the weaker the correlation.
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3.3 Mapping Disorder

a) γ = 1.4 b) γ = 1.8

Figure 3.11 For weak correlations where γ gets closer to d = 2, the mapped values start
to be overcorrelated for certain length scales.

Another effect is shown in Fig. 3.11. This was only observable for weaker correlations,

i.e. d/2 < γ < d: For length scales beyond some l, the correlation was almost constant

in l, but this regime was influenced by γ and p. Possibly the mapping smoothes out the

fluctuations in C ′(l), that were already observable in the unmapped data for according

γ. See again Fig. 3.4 for 1D and Fig. 3.8 for 2D. During the process of eliminating causes

for possibly wrong correlations, we tried setting the imaginary part of the sequence in

FS to zero, while applying S(q) only to the real part. Retrospectively, this had no

effect on the measured correlation values but caused a point symmetry in RS.

a) b)

Figure 3.12 Two mapped sequences of size 27×27, both were created using the same seed
for the random number generator. During the correlation, in case a) the imaginary part in
FS was set to zero, while in b) S(q) was applied to both parts of the complex numbers.
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3 Long-range Power-law Correlated Disorder

a) γ = 1.2, p = 0.3 b) γ = 0.8, p = 0.3 c) γ = 0.4, p = 0.3

d) γ = 1.2, p = 0.5 e) γ = 0.8, p = 0.5 f) γ = 0.4, p = 0.5

g) γ = 1.2, p = 0.7 h) γ = 0.8, p = 0.7 i) γ = 0.4, p = 0.7

j) γ = 1.2, p = 0.9 k) γ = 0.8, p = 0.9 l) γ = 0.4, p = 0.9

Figure 3.13 A system of size 211 × 211 for increasing correlation - left to right - and
increasing occupation probability p - top to bottom. Occupied sites are black, unoccupied
ones white. The same seed has been used for the random number generator of the initial
uncorrelated data.
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3.4 Difficulties

3.4 Difficulties

After ensuring that any obvious mistakes like the implementation of the FFT, proper

normalization and correct indexing when applying S(q) were avoided, a few major

issues arose that required further thought. For one, even though C(l) is well defined

in RS, S(q) in FS still has the analytical solution +∞ for q = 0, which is caused by

the Bessel function. This numerically impractical obstacle could be tackled in various

ways, the most innate approach was to use a very small substitue value for q close

to zero, as suggested in the reference [6]. The problem with this ansatz is, that the

resulting correlation is heavily dependant on the particular value chosen, especially for

strong correlations, i.e. small γ. See Fig. 3.14.

Figure 3.14 Comparison of the resulting correlations in a 1D system of size 221 for dif-
ferent substitute arguments at the singularity. The influence of S(0) is strongest for small
γ and decreases as γ ≈ d, from top to bottom: γ = 0.1, 0.4, 0.9.

We tried several other methods to settle with an analytical expression for S(0) that

would deliver correct results, independant of system size and correlation but none

would work sufficently. Here, we denote the spectral density by:

Sm = S

(
2π

N
m

)
= S(q)
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3 Long-range Power-law Correlated Disorder

First, a simple cut off, which might be promising for N → ∞, where S(0) = S1, the

next neighbouring element in the array, gave undercorrelated results for our realizable

system sizes. Similarly using an approach where S(0) was determined by a linear

interpolation of S1 and S2, was undercorrelated, too. A third ansatz, that works

decently well for 2D systems d = 2 of size N = 211 was to define:

S(0) = S1 c
γ−d, c = 0.5 (3.14)

While c was determined purely by trial and error, the general form of this equation

was deduced regarding two arguments. On the one hand, we know that

S(q) ∝ qγ−d, q → 0

which is explicitly given in [6] for 1D. On the other hand, S1 seems to be a modest

prefactor of the right magnitude, as it is undoubtedly dependant upon the system size

and γ.

Conjectures aside, when reapplying this idea to smaller system sizes and 1D we had to

realize that it was not satisfactory and had to conclude for now, that the only reliable

way to create a correlation that gives exact power-law behaviour is to estimate S(0)

empirically. In Table 3.1 you see this applied to a small 1D systems of size N = 64

where the value was altered by guessing and checking, until agreeable results were

produced.

γin γfit error min

0.1 0.098 0.002 0.0055

0.2 0.204 0.005 0.017

0.3 0.307 0.008 0.03

0.4 0.402 0.010 0.04

0.5 0.501 0.012 0.05

0.6 0.594 0.015 0.055

0.7 0.692 0.016 0.06

0.8 0.801 0.017 0.07

0.9 0.908 0.017 0.08

Table 3.1 Overview of the γ-dependance of substitute m values needed for S(0) in a small

1D system of size 26. To estimate m, fits of the form C ′(l) = (1 + l2)
−γfit

2 were done with
γfit as the fit parameter.
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3.4 Difficulties

While looking at the distribution of correlated sequences earlier, we did not discuss

the standard deviation of the normal distribution but explicitly assumed σ = 1 for

N → ∞ in Eq. 3.13. To fortify this claim, Fig. 3.15 shows the dependance of the

standard deviation of correlated 2D sequences upon the system size. It is noteworthy

that γ ≈ d/2 yields values for σ closest to 1. Larger γ produce values in the range of

the ones for 0.3 < γ < 0.9, which have not been included to keep the figure clear. As

we see, the data shows the presumed bias, but for systems of small sizes, the standard

deviation is not of the described scale. This has the following effect on the mapped

sequences: The occupation probabibility of a site, that can be measured after mapping

- by counting in the spirit of Eq. 3.12 - is different from the probabibility desired and

given as an input parameter. A way to fix this for such “small” systems would be,

to generate the needed amount of differently seeded sequences first, then calculate the

average σ during runtime and use it to adjust the mapping. Having said that, using

such a method in a real world application quickly leads to very calculation and memory

intensive programs, as either the whole set of sequences has to stay in memory before

the mapping can be done or each sequence has to be generated twice - which is the

most expensive part since two FFTs are performed during this step.

Figure 3.15 σ-dependance on the system size of 2D correlated sequences. Average values
were taken from 1000 samples with different seeds for the random number generator.
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4 Outlook

In the course of this bachelor thesis a large part of work was put into understanding

and reproducing the publications by Makse et al. [6, 10]. Due to the extensiveness

and amount of detail involved with generating long-range correlations, this became a

very conceptual study and had to be done with comparably small sets of underlying

data. Therefore it would be nice to check whether observations made so far remain

unchanged for systems of greater sizes and averages taken from a larger basis, which

requires the source code to be optimized. Undoubtedly the challenge of finding a way

to treat the singularity S(0) remains. It seems highly inconvenient to determine any

parameter in a computer simulation by trial and error or best guess. If no basic ansatz

can be found, an approach similar to the one proposed for σ in the previous section

could be considered. That is to monitor during runtime how accurate the currently

used substitute value is and to adjust accordingly. Even though this would not be

scientific in the sense of solving problems by understanding them, it could still give

the desired correlation, which is the initial objective after all. Future effort could go

into the treatment of 3D or even higher dimensional systems, but there is also room

to improve the techniques used in 2D. The correlation C ′(l) could be measured in

arbitrary directions or one could create anisotropic correlations. As a final outlook

we want to mention the interest in exactly enumerating a random walk in the power-

law correlated confinement. Study of this matter would link the rather theoretical

topic of correlation to a more everyday application, since random walks are commonly

used to simulate polymers, for instance. Whereas enumerations of such walkers on a

plain square lattice have been done for years, there is still a great interest to date and

vast studies of related and subsequent problems, such as adding confinement to the

lattice.
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