RENORMALIZED SUPERSYMMETRY

The Perturbation Theory of N = 1 Supersymmetric Theories
in Flat Space-time

Olivier Piguet

Département de Physique Thedrique
Universite de Geneve

Klaus Sibold

Max-Planck-Institut fir Physik und Astrophysik
- Werner-Heisenberg-Institut fiir Physik -
Minchen



Dedicated to our wives, Frangoise and Elke



PREFACE

The present book grew out of lecture notes prepared for a “Cours
du troisiéme cycle de Ta Suisse Romande", 1983 in Lausanne. The original
notes are considerably extended and brought up to date. In fact the
book offers at many instances completely new derivations. Half-way
between textbook and research monograph we believe it to be useful
for students in elementary particle physics as well as for research
workers in the realm of supersymmetry.

In writing the book we looked back not only on ten years of super-
symmetry but also on ten years of-our own life and work. We realize
how deeply we are indebted to many friends and colleagues. Some shared
our efforts, some helped and encouraged us, some provided the facili-
ties to work. Their 1ist comprises at least C. Becchi, S. Bedding,
P. Breitenlohner, T.E. Clark, S. Ferrara, R. Gatto, M. Jacob, W. Lang,
J.H. Lowenstein, D. Maison, H. Nicolai, J. Prentki, A. Rouet, H. Ruegg,
M. Schweda, R. Stora, J. Wess, W. Zimmermann, B. Zumino. During the
last ten years we had the privilege to work at CERN (Geneva), Departement
de Physique Théorique (University of Geneva), Institut fiir Theoretische
Physik (University of Karlsruhe) and at the Max-Planck-Institut fiir
Physik und Astrophysik (Munich) for which we are most grateful. Grate-
fully acknowledged is also the support we received by "the Swiss National
Science Foundation" (0.P.), the "Deutsche Forschungsgemeinschaft"
(Heisenberg-Fellowship; K.S.).

!
Last but not least we express our gratitude to Mrs. R. Jurgeleit

for her heroic efforts in typing: she transformed a difficult manuscript
into a pleasantly looking book.

Olivier Piguet Klaus Sibold
Département de Physique Théorique - Max-Planck-Institut fiir Physik
Universite de Genéve und Astrophysik, Werner-Heisenberg-
Geneva Institut fiur Physik

Munich

February 1986



TABLE OF CONTENTS

INTRODUCTION

Sect.
Sect.

Sect.

Sect.

Sect.

Sect.

CHAPTER I

THE SUPERSYMMETRY ALGEBRA AND ITS REPRESENTATION OF FIELDS

1 The supersymmetry algebra, superspace, superfields
2 The superconformal algebra

CHAPTER I1
SPECIFIC MODELS IN THE TREE APPROXIMATION

Chiral models

.1 The free chiral field
Interacting chiral fields
.3 The 0'Raifeartaigh model

wwww
n

Abelian gauge models

Free abelian gauge fields
SQED

S'QED and S'QED’

B
W N =

Non-abelian gauge models

Non-abelian gauge transformations
BRS-invariance

General solution of the Slavnov identity
Interpretation of the parameters 2,
Gauge independence
Summary of section 5

(SO NS NSNS NS S ]
YT D W N

Supercurrents

Generalities

Chiral models

Massless Wess-Zumino model

Massive Wess-Zumino model

General chiral model

Abelian gauge theory

Non-abelian gauge theory

Identification of component currents
Superfield form of internal symmetry currents

YOOI OY O
Y U S WO NN R
W PN

CHAPTER 11
PERTURBATION THEORY IN SUPERSPACE

Sect. 7 A simple example

Sect. 8 Feynman rules and power counting
Sect. 9 The subtraction scheme

Sect. 10 Normal products

Sect. 11 The action principle

Sect. 12 Symmetric operators

- 112

112
119
128
143
152
161



CHAPTER IV
RENORMALIZATION: HARD ANOMALIES

.17
. 18

Rigid symmetries ) .
ig.l Cogsistgncy conditions, the algebraic technique
13.2 Symmetry breaking
13.3 Supersymmetry
13.3.1 Wess-Zumino model
13.3.2 0'Raifeartaigh model
13.3.3  SQED
13.3.4  S'QED
13.3.5 SYM '

13.4 Rigid gauge invariance

13.5 R-invariance

13.5.1  Wess-Zumino model

13.5.2 0'Raifeartaigh model

13.5.3  SQED

13.5.4  S'QED

13.5.5 SYM

14 Abelian gauge invariance

14.1 SQED

14.2 S'QED

15 Non-Abelian gauge invariance

15.1 Statement of the problem

15.2 The consistency condition

15.3 Solution of the consistency condition: the anomaly

15.4 The anomaly in the Slavnov-identity

16 Renormalized Supercurrents

16.1 The Wess-Zumino model

16.1.1  The massless case

16.1.2  The massive case

16.1.3  Summary

16.2 Supersymmetric QED

16.2.1 Massless vector field

16.2.2 Massive vector field

16.2.3 Massive vector field, massless matter fields

16.2.4  The gauge invariance of the supercurrent

16.2.5 The non-renormalization of the axial anomaly

16.3 Supersymmetric Yang-Mills theory

16.3.1  General preparation

16.3.2  The BRS-invariance of current and breaking

16.3.3 Renormalized supercurrent and Callan-Symanzik
equation

16.3.4  The "conserved" supercurrent

CHAPTER V

RENORMALIZATION: SOFT ANOMALIES

Mass generation - the 0'Raifeartaigh model

The off-shell infrared problem in SYM
18.1 Statement of the problem. Tree approximation
18.2 Higher orders: Solution of the cohomology

167

168
168
170
171
174
175
177
178
179
180
181
182
184
185
185
185

186
186
191

193
193

" 197

200
207

212
213
215
216
222
223
225
231
234
236
243
249
249
251

259
263

267

267

278
278
286



18.3 Higher orders: The absence of infrared anomalies
and the Callan-Symanzik equation

18.4 Discussion of the result. Open guestions
Appendix A Notations, conventions and useful formulae
Appendix B Generating functionals
Appendix C ﬁo—cohomology
Appendix D Symmetric insertions and differential operators
Appendix E Solution of some superfield constraints
References

Subject index



INTRODUCTION

After a decade of supersymmetry a thorough exposition and critical
assessment of the results obtained so far does not seem to be inappro-
priate. The present book attempts to give such an account in the very
Timited and yet astonishingly rich area of renormalized perturbation
theory of models which have only one supersymmetry and are defined in
flat four-dimensional space-time. Hence, we exclude from our considerat-
ions supergravity and extended supersymmetries and even for simple super-
symmetry we shall not dwell with the efforts of phenomenological appli-
cations. Since at the moment quite a few other reviews appeared in
print (s. list of reviews) this restriction is at least economical.

Our aim is the careful construction of higher orders in perturbation
theory which permits a systematic search for anomalies. The algebraic
technique which we use for establishing Ward identities avoids refer-
ence to any specific scheme of regularization and renormalization and
is necessary for theories which do not admit an invariant reqgularization
due to the occurrence of anomalies. In fact it provides an intrinsic
formulation of the theories in question based on symmetry principles
and yields an intrinsic definition of the anomalies which may break
some of the postulated symmetries. Moreover this algebraic character-
ization has a meaning even beyond perturbation theory. It becomes
clear this way that anomalies are genuine elements of the algebraic
structure of the theory which simply happen not to be relevant in its
classical approximation.

Let us now give an outline of the book. Chapters I, II provide
a self-contained introduction into N = 1, rigid supersymmetry. Whereas
chapter I deals with the superconformal algebra, its representation
on superfields and with superspace, chapter 11 presents the tree approx-
imation of all the models to be dealt with later on. In particular, an
extensive discussion of the nonabelian gauge transformations in its
most general form is presented, since this is mandatory for higher
orders. Supercurrents are constructed, thus all symmetry currents of
the models in supersymmetric form derived. This part of the book is
ordered according to models. In the subsequent, the renormalization
part, the ordering is according to symmetries, a fact which under-
Tines our point of view that the symmetries ought to define the theory
in question. The way to this is prepared by chapter III which develops



perturbation theory in superspace and provides the concrete basis for
all higher order calculations. Whereas the detailed {and cumbersome)
description of a specific subtraction scheme is not essential for the
main part of the subsequent chapters it is crucial for the actual proof
of what everything afterwards is based upon: the action principle.

The reader who is willing to accept the action principle as a funda-
mental theorem valid a priori or has its own proof need not rely on
section 9. The study of anomalies presented in chapter IV and V is
based on the action principle. In chapter IV we search for ultraviolet
anomalies, indicating symmetry breaking by hard terms and establish

as our two main results that there is none for supersymmetry and exactly
the supersymmetric extension of the known one for the gauge invariance.
The technique we apply, namely solving the algebraic consistency con-
ditions, proves to be straightforward in the former and rather involved
in the latter case. But, up to the present time, there is no other
uniqueness proof available. The condition for absence of the anomaly

in one loop (and then to all orders) is the usual one: restricting

the representation of the matter fields. The existence of supercurrents
to all orders for the models considered is proved in section 16. Its
subsections follow again the order according to models and thus serve
also as a convenient recapitulation of the relevant effective actions.
The main result is that for all (massless) models two superconformal
structures exist: one in which the R-current is not conserved, R-weights
and dimensions are the anomalous ones and the superconformal anomalies
form a chiral multiplet. In the other one the R-current is conserved
(between physical states), R-weights and dimensions stay naive and the
superconformal anomalies lie in a real vectorsuperfield. Chapter V
deals with soft or infrared anomalies of which one type indicates mass
generation and can be removed by a suitable redefinition of the pertur-
b@tion series (expansion in /A In h). It is not specific for super-
symmetric models but occurs also in others. The other type is a genuine
supersymmetry problem arising when a Tocal gauge invariance is present
and requires the introduction of fields of canonical dimension zero.

In the abelian case this problem can be circumvented and is therefore
treated already in chapter IV, but in the nonabelian theory it has to
be solved and we present a solution in chapter V.

Five appendices are devoted to additonal technical information.



A word has still to be said to the references. The wealth of
Titerature on the subject rendered hopeless any attempt to be complete.
We have either tried to find the earliest references on each topic
or else have chosen those with which we are most familiar. This choice
is, of course, a personal one and we apologize for all omissions.

The subject index is supposed to be complementary to the table
of contents, hence both should be consulted when a specific topic
is being sought.



CHAPTER 1.

THE SUPERSYMMETRY ALGEBRA AND ITS REPRESENTATION ON FIELDS

1. The supersymmetry algebra, superspace, superfields

The characteristic ingredient which distinguishes supersymmetric
quantum field theories from ordinary ones is the occurrence of spinoral
charges QE:) amongst the symmetry generators, which embrace at least
those from Poincaré invariance (M“V , P“). The smallest number of them
is thus one (range of i) and, in four-dimensional space-time, to which
we restrict ourselves in the fol]owing,Qa can furthermore be required

to be a Weyl spinor (o= 1,2):

S| B
M 0 = = 59,0 O (1.1)
say 1= o =B
My €1 = 538,75 Q (1.2)
- -+
QG = (Qa) (1.3)

(cf. App. A for conventions).

In addition we impose

[0 » PJ =10, ) =0 (1.4)

and the key relation

{QO(,’ 5&} =20’§& P“ (1.5)



together with
{q, » QB} = {Qg » Qé} = 0. (1.6)
The Poincaré-algebra

DMy > Pol =1 (50 Py = 94 P (1.7)

My s Mogd = =1 {g5M5 = ety * Yoot = upMyo! (1.8)

and (1.1) - (1.6) form the smallest algebra containing one spinorial
generator : it is the N = 1, rigid (flat 4-dimensional space-time)
supersymmetry algebra [1.1,2,3].

We now wish to represent this algebra on fields & i.e. we look
for transformations 6x® such that

i [X,0]= 6,0 X€{M,P,Q,0} (1.9)

and the application of any second generator does not result in a trans-
formation outside of the set of given transformations i.e.

i [xz,i[xl,¢11 = [xz, 6X1®1 (1.10)

implies via Jacobi-identity

-1 [ i X,,%,1,01 =68, 6, & -8, &, O (1.11
1:%2 X *x, Xy 4, )
and for
[X{sX,0 = 1 Xg (1.12)

8 ¢ =18 ,8,10

1.1
3 1 2 (113



hence

§ = [8y » 8y ] 1.14
', [ x> 8%, ( )

*
independent of the field ¢.

The most concise way of deriving the transformation law is to
use the "group" which is obtained by exponentiating the generators
P,Q,Q [I.4,5]. For this purpose one introduces in addition to commut-
ing parameters a“ characterising a translation in space-time, anti-
commuting spinorial parameters &0 & labelling supersymmetry trans-
formations. (Rules for manipulating such objects are found in App. A.).
A group element may then be written as

.

. o Z.aae
5L e1(a“Pp + £ Qq +85Q)

and the action from the left of G(a,&,&) on G(x,8,8) can be worked
out with the simplified Hausdorff formula

1
A EB - eA+B + v [A,B]

e (1.16)
and the algebra (1.4) (1.5) (1.6):
G(a,£,6)6(X,0,0) = G(x + a + i£08 ~ 160E, 6+, BHE). (1.17)

Group element multiplication has caused a motion in parameter space:

-

(X,8,8) > (x + a + i&b - i60f, O+g, B+E) (1.18)

which we may reproduce by differential operators acting on functions
¢ defined on the parameter space:

-

Let ¢ = ¢(x,86,0)

One should note that not any arbitrary set of fields will do the
job: for closure of the algebra on a specific set one might be
forced to use equations of motion obeyed by the fields. This hap-
pens in fact in extended supersymmetries.



then ¢ = - i 9]
Pp i 3“
o= - i (—Q* io . ) @
QQ. == aea aae 2
= 1.19
Qe = - i (- & - i 6% 0) 0 t-19)
a6%
will generate the motion:
e (BPHEQRED), (6 3) = o (xtatiend - P00k, e+, 54%) (1.20)
and the differential operators
P
§ & =30
TR
52 ¢ = (;§5-+ i Ou&6a3)® (1.21)

are what we Tooked for: a representation of the algebra on fields.

S R (r22)
@ (9. 9)- [ 4]0 oo

Analogously one finds

Moo i i ==
Spy (xpav X3, §-eopvae ty Gduv86)® (1.24)

These differential operators are in accord with the operator inter-
pretation (1.9).

Identifying now the parameter space of translations with usual
space-time we see that we may interpret in the same vein the fermionic
parameters with additional fermionic coordinates, i.e. (x , ea,e&)

H
are the coordinates of a point in an enlarged space: the superspace
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[I.4]. Any function &(x,8,8) transforming according to (1.9) (1.20)
is called a superfield. Since the @'s anticommute, any superfield can
be expanded in 6 and yields a finite series

8(x,0,8) = 0(°:%) (x) 4 e%a(l_"’)(x) o+ a20%(22)
Q
(1.25)
= 7 (6)(w)¢(w)(x)
(w)=0

where the (I)(w) (X) are or‘dinary-.fie]ds - the "COmDOﬂGnt”—f'ie]dS_
The equation

i 10,01 =630 1 26)
a’ a v b

provides also the supersymmetry transformations for the components on
equating equal 8-powers on both sides of the equations. The spin-sta-
tistics relations will be maintained by adopting the rule that the 8's
anticommute with every spinor (including Qy > ﬁ& ) and commute with
every bosonic variable. Before going into more detail of this subject
we have to note that the general superfield ¢(x,6,6) is not irreduc-
ible under the supersymmetry transformations. Let us look back at (1.15)
and (1.17) from which we eventually abstracted the transformation law.
Action from the teft yielded differential operators 60 , 68 represent-
ing field variations, action from the right should lead to differential
operators which can be expected to have good covariance as well [1.5].
So, starting from ‘

- -

G(x,8,0) G(a,&,&) = G(x+a-i€o§+ieo§,.e+£, é+§) (1.27)
we define

D = I iao .EPa

o ae@, (874

(1.28)
8. - L T
Da: —%&+1eoma

89



and see that

{00z} = 210*"% (1.29)
{Dy,0} = {Dg,0g} = 0 (1.30)

(hence DocDSDY z 0).

But we also find

Q) . Q, .

{Da,dd} = {Du,§8} =0 (1.31)
(same for q&) hence D, ﬁ& are covariant under supersymmetry trans-
formations: if ¢ was a superfield Da® also is one (actually one with
a spinor index). This property permits us to constrain superfields

*
covariantly in superspace :

D & =0 ® is called anti-chiral (1.32)
Db o =0 ® is called Tinear (1.33)
Ds ¢ =0 & is called chiral (1.34)
0o =0 ® is called linear (1.35)

Also, since aGQ -+§6Q is real, one may impose
®(x,0,8) = 3(x,6,0) ® is a real superfield. (1.36)

The actual solution of the constraints and the derivation of compo-
nent transformations is now greatly simplified [I.5] by observing
that a general group element can be represented by not only (1.15)
hut also by

Note that constraints must not yield differential equations in
x-space. Those given here do not.



6, (x,8,8) = T X+ 0Q) (160 (1.37)

6,(x,6,8) = ¢ (X * 8 18 (1.38)
Left action by G(a,g,é) yields

6(a,£,£)Gy(x,6,6) = G (x*+a-2186E, 6+, 6+E) (1.39)

6(a,8,E)6,(x,0,8) = Gy(x+a+2i£08, 6+, B+¢) (1.40)

Abstracting again for superfields we see that in addition to (1.19)
we have two new "types"” of superfield, related to each other by

@(X,e,-é) = ¢1(X'i60é,6sé) = ?2(X+1605,6,6) (141)

an operation called "shift".

Accordingly supersymmetry transformations and covariant derivatives

change:
(5Q ®), = 2 (D 3), = (»~9- - 2ic -é“" )®
a ‘1 ag% 1 a’l g0 ac® 3%
[ 3 . = 3 (
(59 (D) = (— — - 2160('0- na)Q) (D-(I)) = e e— (1.42)
a1 1 , 1 L oL
Q = »a-—- i o‘-& = ....a..,...
(60c @)2 ( e + 2100@‘9 3)472 ‘ (Da‘b)z - o ‘1’2
Qg = -2 5.0 = (o <o+ 2i0% .3)d
(<s& e), 55 0, (Daq:)z ( 3 + 21870, +3)0,
(1.43)
Written in the 1 basis (1.33) therefore reads
E 6 = 0 (1.44)

36%



i.e. 2 has to be independent of 8. The general solution - the chiral
field - we write as*

A=A+ e%a+ e"‘eaF | (1.45)
and (GQQ®)1 immediately says for the components:

sd A

i} Q, .
a wa Gd A 0
Q, - . Q. o s d (1.46)
6& WB ZEQB F Ga wa 21Uud8u A
Q - Q Lo o U
84 F =0 8 F = 1 8,u%h,

Analogously the transformation laws of the anti-chiral field and of
the real superfield can be found [1.3,5], they are listed in App. A.

Superfields also facilitate greatly the construction of compos-
ite objects transforming covariantly: The sum and the product of su-
perfields of one and the same type is a superfield (of this type).

If one wants to multiply superfields of different types one has first
to shift the fields to one common type. Let us as an example consider
a chiral field A and its complex conjugate the anti-chiral field A.
Powers A", A" are chiral, resp. anti-chiral fields. A product of A
with A can e.g. be formed in the real basis (type &) by

A (x,6,6) = A (x~-1606,6,8) = e_1eoéa A (%,6) (1.47)

A (x,6,8) = A, (x+i608,6,6) = ¢+1606 Ay (%,8) (1.48)
1.€.

¢ = e“ieﬁ_éa Ay (x,8) e+iecéa AZ (x,0) (1.49)

transforms as a superfield of type ¢.

Unless confusion arises we shall denote by the same Tetter A chiral
superfields and their lowest component.



2. The superconformal algebra

Just as the Poincaré algebra (1.7) (1.8) is generalized to the
conformal algebra by taking into account the generators of dilata-
tions, D, and those of special conformal transformations, K , one
may ask what generalization of the supersymmetry algebra (1.1)-(1.8)
is obtained by doing so. The answer, in the form of variations on com-
ponent fields, has been given in [I.3]. It turns out that not only
a second class of spinorial generators is needed, which one might
have expected, but in order to obtain closure of the algebra one has
to introduce a chiral transformation in addition. This result may
be understood as "grading" the algebra U(2,2) = SU(2,2) x U(1) i.e.
replacing some of the commutators by anti-commutators. Let us now
write down in the conventions of [I.6] the algebra.

{Mpv’ Mpo] N 'i(gpvao - gponp * gvoMpp - gvapo)
M, P.1 = i(Pg, -Pg,)
V> A VA VZuA
v v v (2.1)
[Mpv’ Kyl = 1(Klug\)x - Kvgpk)
D, P.1 = -iP D, K 1= +i = 2 -
[ H] P, [ p] 1Kp [P“, Ky, 21(guvD Mpv>

[Pp, Pv] = [Kp, Kv] = [D, MUV] =0
(2.1) comprises the subalgebra of the conformal generators. M,P,K,D
denote Lorentz transformations, translations, special conformal trans-
formations, dilatations respectively. Another subalgebra of primary
importance below is formed by the above mentioned chiral transforma-
tions, called R, and the supersymmetry algebra:

{Q,, Q3 = 2 Ug& P“ {Q,, ot = {@&, ﬁé} = 0
Y __ 1 psB v 2.9 1 -uv =B
[MY,0,0 = - 5 ob” Fog Q50 = - 5 8L 0
[PH, g1 =0 [P, Qd= o
(R, M= [R,RI = [R,R] = 0
(R, Q] = q (R, 51 = - (2.2)
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For the full superconformal algebra another spinorial generator S
"special supersymmetry transformations" is added to the above system:

s )= - 2o s, Y50 - - 5ok 8
{54 Sy} = 2y K, {Sgs Sg} = {8y §é} = 0
[0, Q) = - 4 q, [0, Q] = - 5 G

[D, S,] = + %5, [0, 5,0 = +% 3,

[R, S,1=-5S, [3, §&] =+ §d

[R, D] = [R, K T =0 (2.3)
k¥, q,)=-i o, 3 (KM, Q) = -1 s% ol
kM, s, 1= [KH, §,0=0

(P, s =<1 ok @ [P¥, 50 = -1 Q% ot
{0 S0 = {04 Syt =0

{0y Sgd =+1 (ohg My + 21 €0 D - 3 €0 R)

{Qy, Sgl=-1 (Gh¥ M - 2 €g3 D - 3 € R)

It is the anti-commutator of Qa with SB which enforces the intro-
duction of the R-transformations. For the subalgebra (2.2) it plays
only the role of an automorphism, which will be permitted for many
systems as soon as they are supersymmetric.
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Extending the method of section 1, one can represent the genera-
tors of the superconformal algebra as differential operators on su-
perfields. The result of the corresponding analysis is displayed in
the appendix A (A.28), (A.29). It is again noteworthy that for chiral
fields their dilatational weight (naive dimension) has to be related
to their R-weight if the superconformal algebra is required to close
on such fields.

In analogy to the behaviour under Lorentz transformations one
may ask now whether not the system of charges might have a kind of
covariance under supersymmetry. After all, there are many non-vanishing
(anti-) commutators of Q, with the other generators. E.g. we are look-
ing for functions @ = G(Qi,e,e) which transform as (x-independent)
superfields g

. A D a s A 9 =

ilQy, Q) = " Q 1[%, Ql = Q (2.4)
Indeed,

e T

R=R-1i670Q,+18s0 260 ePp (2.5)

is a superfield in this sense. A somewhat weaker requirement has been
introduced in [1.6]: we shall call a function Q a quasi-superfield
if it satisfies

a0 -~ =G A o 3 = 3 A
il67Q, + 6,0, Q) = (87 =5 - 65 =) Q (2.6)
36 30
&
i.e. we perform a combination of two very specific supersymmetry trans-
formations, namely those with parameters §,5. But now one can easily
convince oneself that the solution of (2.6) is given by

o - =3 ., -~ =&
5o (80 T80 1670 * 660 (2.7)

which means that any generator Q gives rise to a quasi-superfield
0 by "boosting" it with a supersymmetry transformation of special
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parameters § and 6. As a consequence we find that the algebra of

the Q‘s is the same as that of the Q's but its members have now a
definite transformation law under supersymmetry. If we have estab-
lished for a system that it is supersymmetric we have immediately
relations amongst the superconformal generators which follow from
(2.7). In perturbation theory, for instance, this will lead to rela-
tions amongst anomalies which beset some of the superconformal trans-
formations.

Let us give an explicit list of all the Q's. Since below the
charges Q will be represented as Ward-identity operators we shall
use the letter W with sub- and superscripts to denote the generators
and their Lorentz-indices.

o Qo AT AL L O = A y0A
ile7 W, + eawq, W )= (6 = - © aé)w (2.8)
for A€ {M,P,K,D,Q,Q,R,S,5}
QP - WP
M u
~0 _.Q T N &
Wy =Wy - 2i(c e)a Wp
W=+ 2ieoty W (2.9)

R wl® - sew® + i8Rl - 2 608 wE

=Q 1 ps PA
vN - ?'epvpked 6 W

_ APV
W = W + ,? GGM\)W + ¥ 6()'!“l

0 _ D -1 .. 135
Wooo=W - 5 WS - = OW



=
= X

=h

jo )
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K =S S_ = A R Moo
Wp - GGHW - W cpe + 6o 6(39pvw + Epvpo W )
1'5260“ RIS 0“662 - 8% wi

S B, u M R . 0
Wy =6 (0h, Wy + 3 € g W - 21 € g )
a2 Qs asMar. oQ 2, vz P
- 21 8% Wi - 1 60 S(GUW )a - 26°(0 e)a wu
s . BBean, WM e R+ 25 Ees WD
wa S(G&é va+3€oc5w +21ea8w)

52 vQ 4 s o bEyQ 520a M P
+ 6" W + W ¢ - 2 o W
21 s i 00™6( Up)a 8% (60 )u "



CHAPTER IT.

SPECIFIC MODELS IN THE TREE APPROXIMATION

In this chapter we introduce the models which will be discussed
systematically in the sequel. A short account of the free theories
is followed by the study of the tree approximation. Since our aim is
eventually a treatment to all orders in perturbation theory we expose
the material in this lowest order in a way which is best suited for the
recursive extension to higher orders.

The aim is to construct a Lagrangian field theory which is super-
symmetric and may or may not have additional symmetries. Looking into
the supersymmetry transformation laws (1.26) for any superfield

) Q-0 .=
i [Qa’ ] = 8,0 = (gg&-+ 0,0 3)¢
- (11.1
- A . Qs = ) A0 ,
i [Qd’ ] = 85 @ —-(— g;a - 18 Gada) )
. » . _. - _ . [0
i [Qys Ayl = -g%&—ﬁ\l i 00y, Ajl = (- 21 8709 A

it is clear that the highest 6-component of any superfield trans-
forms into a total derivative under supersymmetry transformation hence
may give rise to an invariant action. For a chiral field A, the highest
g-component is 82 (in the chiral basis (1.44)), hence double differen-
tiation with respect to & picks out its component field. Since the
difference between /36" and Ql is a total x-divergence we can pro-
ject covariantly under the space-time integral:

*

fas Ay = [d*x 0% A = fahe 2= & = [ds A (11.2)

* (Anti-) chiral fields are sometimes called scalar fields, real su-
perfields are called vector (super) fields, hence dS scalar measure
and dV vector measure.

- 14 -
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(The last equality is due to the shift.)"

Following Berezin [II.1] we may also call this integration over the
variables 6.

Analogously we have for an anti-chiral field ﬁz (highest com-
ponent éz)

fod *

J&S , = Ja*x D% &, = Ja*x & 2R, = [ A (11.3)

and for a real superfield o (highest component 628°):

fdv & = [d* DD DD o (11.4)"
At our disposal for the 1nte9rénds A, A, @ we have elementary fields

to be multiplied in a manner which represents the type (cf section

1) and the covariant derivatives D, D. Out of these ingredients we

will have to form the supersymmetric actions which will (or sometimes
will not) have other desired properties.

3. Chiral models

3.1 The free chiral field

The power A" of an elementary chiral f1e1d**

A=A+ By + 62 F (3.1)

(A complex scatar, ¢ Weyl spinor, F complex scalar) will never contain
derivatives, hence [dS A" will at most produce mass or interaction
terms. But the correctly built product of A with its complex conjugate
antichiral field A (1.49)

cf preceding footnote

*k

The subindices 1,2 denoting the type will now be dropped, if no
confusion can arise.
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o= B(x,8,0) A(x,0,8) = e'®% &, (x,8) o-i6505

1(x,8) (3.2)
does contain derivatives due to the shift necessary for having multi-
plied fields of the same type. Indeed, one finds [1.3,5]:

(o) _ 1 A= = 1 == =
Pein =g Jav AA [dx (3R JA + 5 VodY + FF) (3.3)
i.e. a good kinetic action for a massless scalar field A (canonical di-
mension 1), a massless Weyl-spinor ¢ (dim. 3/2) and a complex scalar

F (dim. 2). Since there are no time-derivatives on F it does not prop-
agate and is an auxiliary field.

A2 = oo+ g% (2AF - %—ww), (3.4)

m (Jds A2 + [d3 R%)

¥
o}

= - % Jdx (2(AF + AF) - 5 (W + 30)) (3.5)

N

yields obviously a mass term for the spinor U, whereas AF + AF can be
seen to make massive A only after elimination of F,F by their equation
of motion arising from Fkin + Fm:

F=mA F=mA (3.6)

(0) 4 plol) = [dx(3R3A - mP

AR + ok Toaw + D (g + 0D))
(3.6) z 4

(3.7)

Canonical quantization of this action will yield a Hilbert space of
states for a massive complex scalar field A and a massive Weyl spinor
Y (and its conjugate ¥), but no trace of F will be left: F is simply
another interpolating field for A, given by (3.6). It is for closure
of the supersymmetry algebra off-shell that the auxiliary field F is
needed. Due to supersymmetry the scalar and the spinor have the same
mass m.

Having convinced ourselves from the component formulation that the

action
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o)

o) . F(?) + (3.8)

kin m

describes a decent free theory we shall continue.now the discussion in
the superfield language. The next aim is the derivation of propagators.
As already indicated by the notations (and explained in App. B) we un-
derstand the action F(O) as the lowest approximation to the vertex func-
tional, hence we can go over to the Green's functional by Legendre trans-

formation
z (31 =T[A] + Jds 3 A + [dS J A (3.9)
with
8r - 8T
J:.. J:..—«:- 3.10
TE B ( )
the inverse being
§Z _ 87
A = -.C A=< (3.11)
8J §Jd

Here we have used functional derivatives with respect to superfields
and corresponding §-functions [I1.2] (cf. rules in App. A). The propa-
gators are then given by

< T A1) A2) > = A (3,3) (2) (3.12)
i63(1)

<TA(L) A2) > = —2— & (3,3) (2) (3.13)
183(1)

where the arguments (1), (2) refer to superspace points. In order to
calculate explicitly the propagators we derive first (3.10) and solve
these equations for A = A(J,J).

p—

- J = %g- DA+ ) (3.14)
-3 = %E~DD A+ QA (3.15)

Multiplying (3.14) by DD, (3.15) by - 4 m and adding we find
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@ +m)A=-DDJd+4mJ (3.16)
@ +ml)A=-DDd+4amd (3.17)
(using (A.12)).
Hence
T A(1) A(2) n S5-2)
< 1) A(2) > = + i 3.18
‘“E;f::;?“’ ( )
<TA(1) A(2)>~“1-m~?-" (3.19)

With 63(1,2) = ﬁﬁlév(l,Z) = ﬁﬁé SV(I,Z) one can actually check that the
propagators have the correct chirality properties.

3.2 Interacting chiral fields

S e n W o o e - -

As already noted above terms of the type [ds AV o= 1,2,... are
supersymmetrically invariant and represent self-interactions of a chi-
ral field. If we restrict ourselves to power-counting renormalizable
couplings i.e. to Lagrangian vertices of dimension less than or equal
to three for chiral, less than or equal to two for general ones the most
general supersymmetric action for a set of N chiral fields Ai (i =1,

., N) reads

(o) .1 A
DV = g [dV AAL 4 Jds (A;A; + Mis Ay A+ 950 Ay Ay AJ (3.20)

+ JdS (MA; + M Ay Ayt 9 Ay Ay A)
(sum over repeated indices; m, g symmetric in their indices; kinetic
terms already diagonalized and normalized). If we wish to maintain par-

ity (cf. App. A) [II.3] we have

As = i. m,. = ﬁ

i TN iy = Mij 95k = Jijk (3.21]

For special values of A, m, g the action (3.20) may have besides super-
symmetry other invariances e.g. R-invariance or rigid gauge invariance:
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O3
g
¥
3
—te
€
-
—
-
pg

(3.22)
= S I
%Ak iw T'Q’A

where the T' generate a representation of an internal symmetry group G.

An example of the latter is provided by G = SU(n) n > 3,
T R . .
Tkg' Tgk i ka (adjoint representation)
(3.23)

NS A0 Mg =My =M Sygs Gy = G5k T 9945k

9

with dijk = Tr (TiTka) (t: generator of the fundamental representation).
An example of the former: F(O is R-invariant with R-weights n(Ai) = %
for A = 0, m = 0 (i.e. for dimensioniess couplings).

These invariances of the action can be expressed on the functional
level with the help of corresponding functional differential operators:

_ . S = =5 .
WX- - (de (SX A'i -g-A-'-— + st GX A‘i -é*/_i-*- )’X € {a,u,R,G} (3,24)
1 i

with 5x Ai being the field variation of the i-th field under the sym-
metry x, simply as

W o) =g (3.25)

This equation is called a Ward-identity and it is under this form that
the invariance property of the theory can be extended to higher orders
of perturbation theory. In our recursive approach theories are in fact
defined by the Ward-identities, i.e. for a prescribed set of fields and
Ward-identities the action should be uniquely determined - up to the
coefficients of the independent invariants. Those are then to be fixed
by normalization conditions. In the course of this one has to guarantee
also vanishing vacuum expectation values of the fields and stability

of the chosen minimum of the effective potential.
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Let us look at the simplest example based on one field only: the
Wess-Zumino model [I1.4], which maintains parity

(o) . 1 .1 m a2 . g 43
r ~T6—deAA+-A-IdS (M + 5 A% + 45 A7)
(3.26)
1 (42 /a5 . m372 .9 33
+des (M + = A% + 35 A7)
(A, m, g real)
The effective potential is given by
V=EF=(>\+mA+%A2)(>\+mZ\+%l—x2)ZO (3.27)

The absolute minimum for it can be reached for
A=y 2 ALgy 4 (3.28)

But a shift in the scalar component A cannot break supersymmetry, as
seen from the transformation law (A.30). Therefore at best a redefini-
tion of parity is required, namely, when the shift (3.28) is complex
[11.4,5]. We may thus without Toss of generality impose as normalization
conditions (in momentum space):

<A> =0

3
o
1
—

(3.29)

- m

(0) g
TARF = 7 %

Requiring the supersymmetry Ward-identity ((3.25) with x =a,a) and
these normalization conditions to hold fixes F(O uniquely to be (3.26)
with A = 0.

PSR gA

As another example of the above considerations we discuss the simp-
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lest model showing spontaneous breakdown of supersymmetry: the
0'Raifeartaigh model [II.3]. It is constructed with three chiral multi-

plets AO, Al’ AZ and defined by parity (cf. App. A)

P A (2) ~ A () (3.30)

k k '

an internal discrete symmetry

1: Aj> A, Ao =Py (3.31)
R-invariance

. . 9

i [R,A] = 5R A 8p A =i (n +8 56'A) (3.32)
with

n (Ay) =n (Ay) = -2 n (Ay) =0 (3.33)

and, of course, supersymmetry. The classical action which emerges as
solution of these postulates is

1 - A
r(o) =g JAVRA, + [dS (7 Aj+ T A, *%'Z“AAZ)
o B (3.34)
+ JdsS (E Ay * % AjA, + %? A_A

(A, m, g real). We now have to look for the minimum of the effective

potential
=— = g 22 2 2» .
Vo= FR s [t GATICH m A+ FAA S+t AAp > 0. (3.35)
= - 9
Ay = = 3w Ao Ay (3.36)
minimizes the second term,
Ap =0 (3.37)

minimizes the first + the last term if
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2 1
AO is not determined. The choice
<AO > =0 (3.38)
maintains R-invariance and is therefore made for convenience. Since
2
V> oAl (3.39)

the shift FO + FO + ) is dictated. Looking into the supersymmetry trans-
formations (A.30) we find that wO transforms inhomogeneously, perform-
ing the shift in the action (3.34) additional bilinear terms arise:

- g jax (A2 + RE) (3.40)

which cause mass splitting in the multiplet A1 : m2 + %—kg for Re Al’

Im A1 respectively (m is the mass of the spinor wl).

Hence supersymmetry is spontaneously broken and ¢b is the corres-
ponding Goldstone particle.

The precise formulation of our symmetry requirements in functional
form is therefore

. -8 &

NF—-1fdxd) --~+2F L . 24 _s0A, —=— + o awB_

( ko GA k s o “"k 57 af “¥k F

k kB
(3.41)
+2f—»~—~)1“=0
aw
for spontaneously broken supersymmetry,
- e & " 8 -

Wpr= -i(Jds GRAk w+ Jds sgh, —— ) r=0 (3.42)

Ay

for R-invariance,

(3.43)
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r(A) = 1 (A (3.44)
for the discrete symmetries.

As normalization conditions we may prescribe (in momentum space)

FFk ?k = 1 k = 0,1,2 (3.45)
TAl F m ;3.46)
rAl Ay = - £ (3.47)
PFO A AT % (3.48)
FFO =0 (3.49)

These postulates uniquely fix the action in the tree approximation. In-
deed (3.45) fixes the normalization of the kinetic terms; (3.46) the

Uy -mass; (3.47) the mass splitting in the A1~mu1t1p1et; (3.48) the coup-
Ting constant and (3.49) expresses the parameter f occurring in the
Ward-identity (3.41) in terms of the mass splitting £ and the coupling
g. Everything else is now determined by the symmetries (3.41) - (3.44),
In particular the masses in the Ao—multiplet are fixed: in the tree ap-
proximation they are still degenerate, namely both zero, but only that
of the Goldstone fermion wo is expected to stay zero to all orders. In-
deed, describing that and how in higher orders a mass is generated for
AO will be one of the main problems of renormalization.

4. Abelian gauge models

[ putbrisg b IR i e

Superfields of type ¢ ((1.20), (1.25)) can be constrained to be
real and contain then a real vector field vu:

o =0 (4.1)
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® = C+ 6y + é& + % 62M + % éZM + Bouév“ (4.2)

1

=2 1
+?6

6x+ & 6FBL + 3 698 D
Hence they are natural candidates for gauge fields in a supersymmetric
gauge theory. If v“ is to be identified with an ordinary gauge vector
field, ® has dimension zero and the hope is that the fields with sub-
canonical dimensions correspond to longitudinal parts which represent
pure gauge degrees of freedom. To characferize them supersymmetrically
means finding projection operators which decompose ¢ (non-locally) into
transverse and longitudinal parts. The ordinary longitudinal projector
§%§2<(1.e. the denominator UJ) suggests a combination of 4 D's divided
by 0, the fact that & carries no external Lorentz index enforces combi-
nations of D,D,D,D with spinor indices saturated. But the sequences
DDDD, DDOD reduce by (A.11) to DDDD and DDDD, i.e. at most these and
DDDD, DDDD are independent. But DDDD = DDDD (proof by (A.9), (A.11))
thus one ends up with

. DDDD _ -~ DDDD (4.3)
1 160 Ly 160

DDDD
P = mmmm 4.4
T o (4.4)

It is easily checked via (A.12) that with these coefficients the P's
are projectors, i.e. they are

idempotent: p= =P (4.5)
orthogonal: P P, =P P =P Pr=P Pr=0 (4.6)
Ll L2 L2 L1 L1 T L2 T
and sum up to unity: 1 = PT + PLl + PL (4.7)
2

PL projects to a chiral field, PL to an anti-chiral, PT to a real one.

Thé explicit computation yields 1

- ~ ca Ha T . U3 VRl
DDDD® = 4 D' - 4160 BUA + 418UX o™8 + 800769 fuv

2 2 2

+ 20%B0N' + 20600 + 0 2

6cop!
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DODDG = 4(D" + 2i3v) + 8idA"GH - 8520
(4.9)
- 4i8008(D" + 2idv) - 48%0A" - 82820 (D" + 2493v)
DODD = 4(D" - 2iav) - 8i6oBX" - 88O M
- D= ' 7=2 (\4.10)
- 410089 (D" - 2idv) - 48%BA" - 89BT(D" - 243v)
I=D+ >\I=)\+‘p"" = -
D ac io 3pX fuv SUVV a\)vu
(4.11)
D" =D -OC AV =

A - oty 3
Bpx

Due to the occurrence of f . in (4.8) one has to identify PT® with the
transverse part of & and hence PL %, PL ® with the longitudinal parts.
The gauge transformations of @ 1n%o]ve %herefore necessarily a chiral
and an antichiral field and are given by:

80 = 1 (A - 7)
) 7T i a25m 1,222
= +0+ - - -
(A+0U+6°F - iBatBd A - 7 8%8cta w - 7 6587 DA (4.12)
- T S ¥ SN I ROV v S
A - By - 6F - ieofBd A + 7 80" v + 7 0% DA

(Here we shifted o, to a common - the real - basis in order to compare
with ¢.)

e immediately read off the transformation laws for the components,
in particular the usual one for vU:

sv. =9 (A+A) (4.12a)

and realize that the combinations D', A', A' (4.11) are gauge invariant.
So, indeed, DDDC® is'gauge invariant, as seen from the comonents, and
of course also immediately in terms of superfields:

5DDDD® = iDDDD(A-A) = iDDDOA = D[DD,DIA ~ DodDA = 0.

Having found the transformation law and already an invariant it is ob-
vious how to construct an invariant action: DDDD® contains as 60V6-
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- component the term oM fuv’ so multiplication by the field ¢ and in-
tegration over the entire superspace will produce the term [dx vvaufuv
the ordinary gauge invariant term for a vector field:

1

e (ay (L L bV T
[dveDDDD® = [dx (- & f fw +p MBN+

1
5 )

_ (2
kin ~ 178 D%) (4.13)

4
I.e. on including also a gauge invariant Weyl spinor field along with
the gauge vector field one has a free action which is gauge invariant
and supersymmetric (on shell, where D' = 0) [II.6].

We now wish to quantize the theory, in particular to calculate the
propagator for . In order to do so we have to break gauge invariance,
i.e. to add to the invariant actioh a gauge fixing term. Since the con-
struction of the physical state space depends on the gauge chosen we
always give also the equation of motion satisfied by the ghosts.

o - gauge

Following the above line of reasoning the most obvious choice of
gauge is to add back to the field ¢ its longitudial parts:

o) - -ﬁl—g fdv (2DDDD® - %’& {00,000 + 8MPe?) (4.14)

At the component level this corresponds to complementing the transverse

projector in v (V3 - ¢" o) v. by the longitudinal one:

A

%~vv (- sva*) Vy- is the normal gauge parameter witha = 1 corres-

ponding to Feynmann, o = O to Landau gauge. We have also added a mass
term (which is not gauge invariant).

The broken gauge invariance we may express by a Ward-identity
namely

g o) =i favi (n-my & rl®) (4.15)
g ) = Lo fav ) - 5 (a-h) (00,003 + 8i® (A-Tye (4.16)

which is decomposable into two local Ward-identities:
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W, = S We o= S W (4.17)

A (4.18)
(o) . 1 2y op
Wil -g-a(Dw“OcM ) Db®
Let us now perform the Legendre transformation
Z =T+ fdv Jo (4.19)
and rewrite the Ward-identities for Z_ with o= - J (4.20)
— 81
1 2 c
—DDJ~-8~&(D+0LM ) DDET
(4.21)
S DD J =i (oramd) 00 ok
8a §J
1ZC
On the functional Z = e for general Green's functions we thus finally
have
U 2\ = 81
-ibDbJeZ-= @&‘(D + aM®) DD 7
1 2 87 .22
-iDDJ 1= §§~(D + aM”) DD 7

On the physical mass shell, J = 0, these equations therefore give us

0= @ rall) < T e (1) K>
(4.23)
0= (@ + a#?) < DD 8(1) X>

(here X denotes an arbitrary sequence of fields ¢ with derivatives pos-
sibly acting on them). I.e. the fields DD® and DD¢ are free fields with

2<1M2. If one is able

respect to a Klein-Gordon wave operator of mass
to prove a similar Ward-identity for the interacting theory freedom of
the longitudinal fields implies unitarity (in the state space con-.

structed appropriate to their nature).

We shall calculate now the propagator for & [II.7]. As in section 3



(and App. B) we derive first

(o) _— —
&T o1 1 2
55 = EE'(DDDD® - 5 {DD,DD}o + 8M%¢) (4.24)
require then (4.20) and solve for ¢ = ¢(J)
DDDDe - 5 {0D,DD}o + 8% = - 64 J (4.25)

Applying the projectors (4.3) (4.4) with their rules (4.5) (4.6) we
find

(8@ + 8M%) DDDD® - 64 DDDD J (4.26)

i

o+ 8M2)(DD,D0}e = - 64 {DD;DD}J | (4.27)

inserting into (4.25) one has

p =16 (L. 10D L {lpD,DD}J2> (4.28)
M 8 O+M 160, S O+-oM

hence for the propagator

To(1)0(2)> = —m 3(0)(2) = 28] <1 ~1D00pb 1 100,00} >6V<1,2>

i83(1) M gOMC 16 O +ai’
(4.29)
ata =1
, 81
< To(1)9(2) = §,(1,2) 4.30
) G SV (4.30)
For M = 0, one can immediately combine (4.26) (4.27) to obtain
< To(1)8(2) > =é.2- (DDDD - § {0D,0D3) 8,(1,2) (4.31)
ata =1
< To(l)e(2) > = %1 8y(1,2) (4.32)
o, B - gauge

The above gauge-fixing (4.14)
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ré"} = kg JaV (- 3= o{0D,D0}e) (4.33)

can also be imposed via a Lagrange-multiplier field B. Let us require
for a chiral field B of dimension 1

T —= 1=
SC = B0 B + DB
(4.34)
ST - 40D B + L DDDDO
5B 8
Then the general solution is
I = afdV BB + & [dV(BDDe + B DDo) + r (4.35)

where T is independent of B and upon using (4.34) on shell one sees
that

I = g JdV (- 3-)e{00,DD}e + T (4.36)

i.e. one obtains back the gauge fixing term (4.33).

Proceeding parallel to the discussion of the a-gauge we consider
now (4.35) with

P = {0 s o jav ane?

(4.37)

and call the sum F(O). Choosing B to be invariant under gauge trans-
formations we derive as Ward-identities

w, 10 = L (000 & + M% DD )

(4.38)
wy 100 = 1 (0000 B + #¥ 0D 0).

Using the equation of motion for the B field this reads
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(w, - lw-ﬁﬁ Q:) F(O) =L (o + aMZ) o @

A
8a &§B 8o, (4.39)

(M-%EW%@I@)-%;@+aW)%®

i

Without going through all the steps as we did before it is already
clear from (4.39) that on shell again DC®, DD are Klein-Gordon free
fields of ma552 aMZ. The B-derivatives oh the left hand side of (4.39)
may be interpreted as inhomogeneous gauge transformations for the B
fields.

On shell we have for the B's from (4.38)

DB-%M”ﬁ¢=o

(4.40)
-1
OB - g M

2o

it
O

The above formulation involving the field B is useful if one wants to
study a-dependence in the theory. The special value o = 0 (Landau gauge)
requires nevertheless a separate treatment, which we present now. At

a = 0 we may still require (4.34) and obtain (4.35) at this value - and
in this sense the Landau gauge is here embedded in the a-family - but,
of course, (4.36) cannot be derived. For the Ward-identities we have
again (4.38), hence on shell

DD DD ¢

1]
o

(4.41)

1
0B - g M

20 ¢ =

¥
o

(4.42)

i.e. now the ghost field DD® satisfies the free field equation appro-
priate to a massless antichiral field.

Parameter - free gauge

We require
st :l-DD ) (4.43)
s 128
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to be maintained for a chiral field B of dimension 2. The general solu-

tion is

T = f%@ fdv (B + B)® + T.

(4.44)

with ' independent of B. Due to the dimension of B in fact no terms

other than those occurring in (4.44) are possible in any action contain-

ing B (and being supersymmetric). In this sense "parameter-free" is un-

derstood; in the case above, dim B = 1, Landau gauge still belonged to

the o - family - here there is none. In fact, (4.43) taken on shell re-

stricts the real vector field to be a linear one:
DD @ = 0D & = O
implies * (cf. (4.11))

DP=0  A"=0 3y =0

i.e. we are in a Landau-gauge. The Ward-identities read:

2-“.

(o) . .. 1 5 %® 1
WAF mDDB‘*’gM DD ¢
worl® oo L oppg+iudone
A T T 178 k3

for the action

rl®) = L [dv(e0DDD® - (B+8)0 + an’e’).

Using the B-equation of motion they can be rewritten as

(wy + 164 §) 1) = - L TD B
(w, + 1642 &) po) - - 1 pps
58 128

(4.45)

(4.45a)

(4.46)

(4.47)

(4.48)

*
This differential equation for vy shows why the Tinear multiplet is
not a good one to start with as a genuine gauge vector multiplet.
Here the constraint appears as a gauge condition which is permitted.
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Hence on shell B satisfies the equation of motion of a massless chiral
field.

Let us also calculate the propagators.

We obtain in the usual manner °

DDDD® - %- (B4B) + 8M%0 = - 64 J
- L ope = - 64 J= (4.49)
7 - 64 33 :
- 1 oo = - 64 J
2 B
hence
8(@+%) DDDDO = - 64 DDDDJ
- %b‘ﬁom = - 64 DDJg
(4.50)
ey R
- % DDDDe = - 64 DDJy
_1 [-8DDDDJ ., 75 |
and therefore ¢ = 85 <W - 64 DD ,JB - 64 DDJB>
87 DDDD
< Te(1)0(2) > = 2220 8,(1,2)
s gV
8
< TO(1)B(2) > = SL DD, 8.(1,2
(18(2) > = 2 oo 54(1,2) .
< To(1B(2) > = &L DD, s5(1,2)
For M = 0 we have furthermore
< TB(1)B(2) > = < TB(1)B(2) > = 0 . (4.52)

Wess-Zumino gauge

In this gauge one eliminates the ghost fields C,%, X,M, M by a non-
supersymmetric gauge transformation:
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§ C = i(A-A) ng =Y, Gg M = 2F (4.53)
and combines thereafter any supersymmetry transformation with a gauge-
re-establishing gauge transformation, since the gauge C=x=% =M=
=0 is, of course, not stable under supersymmetry. As an example con-

sider
(85 + 8)%, = &M+ obs £ (v = 13,0) * iy, (4.54)
L0 implies
- n, ¢ - (4.55)

by, T(EM+ oy & (v“ - 13pC))

PR (4.56)
wa = - i Oaa £ vp

WZ-gauge

i.e. the supersymmetry transformation Eaéu + E&EQ on y can be compen-
sated by the v-dependent gauge transformaﬁion 69 with parameter wa
[11.6,8]. Since we shall not use this gauge in higher orders we will
not pursue this subject any further.

The supersymmetric extension of guantum electrodynamics [I1.6] has
to comprise the abelian gauge invariant interaction of the photon and
the electron with additional fields in order to achieve supersymmetry.
Since the partner of the VU in an abelian gauge superfield - the Wey]
spinor A - is not charged it cannot be identified with even a part of
the electron. Hence other spinors are needed and since the smallest mul-
tiplets are chiral ones we use those to provide the spinors. Supersym-
metry will then combine them with scalars as partners. The number of
multiplets is fixed once we have decomposed a Dirac spinor into Weyl
spinors. A Dirac spinor is the direct sum of a (%3 0) and a (0, %) re-
presentation of SL (2, C) in which the terms are interchanged by
parity:
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v

+o

L & Prgy, > v " (4.57)

11) [ Jpmi—
N AR

Hence we need two chiral multiplets A+, A_ (and their conjugates) and
they are transformed under parity as A~ A .

Under gauge transformation a Dirac spinor changes according to:

S, ==-1igwy
D D
9 (4.58)
i.e. ég¢+ = -1 guwuy, Sgw+ = iguw 6+ (a.59)
6gw_ =+ iguwy 69w~ = -7 guw

The gauge invariant Dirac spinor mass term yields

- _m = TR
mbp vy =7 b)) <2003>(1$;> SR (4.60)

e m[dS AA_ +m [dS AA

as supersymmetric extension. But we still have to supersymmetrize the
gauge transformations.w (x) has to be read off from (4.12)

Sv =3 (A+A), (4.12a)

i.e. it contains a contribution from a chiral field (A} as well as from
an antichiral one (ﬂ). Therefore the only transformation law which main-
tains chirality and matches (4.59) is

S, A, =%ighA, 8, A, =0

=
I+
=

(4.61)
A

0
o
o
=1
P
n
H
—
7e)
=1
1
ae

=1
I+
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Together with
86 = 1 (A-A) (4.62)
these will be the gauge transformations of SQED.

The only remaining problem is now the gauge invariant generaliza-
tion of the matter kinetic terms

[dv (AA, +AA)

That the kinetic terms are diagonal in the charge assignments +,- fol-
lows from

o o . .
WUy = (0y,0_) (0 0> (0 ga> (%) =V _od_ + U004 g3
5° 0o/ \5 0 R

For this we integrate up the infinitesimal transformation on A_to a
finite one:

A+~+e‘igA A

+
n +igh 3 4.64)
A, —»e A, (
ie. AA—rRe AN 5 (4.65)

and clearly ﬂ+ 99®A+ is the invariant sought. Under parity:
® + -9 , hence R~ e“gQA_ is the corresponding invariant made up from
A_A_. Collecting all results together:

o) . 1 o0 1 T 690 Ae 90
I'( ) = m ,[quDDDDD(D + '1"6" Idv (A+eg A+ + A-e g A-)

Lmfdsa, n -gm[dA, A

is the minimal supersymmetric extension of QED. It is invariant under
the transformations (4.61) (4.62) and preserves parity (A.22) (A.23)
[11.6]. The exponential is understood to mean its series expansion and

the preceding statements hold order by order in the number of fields.
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For quantization we have like in the free theory to fix the gauge
and must therefore characterize the theory by a gauge Ward-identity.
(
Since the complete action F‘O) is given by

(o) = plo) 4t
ny g.

f. (4.67)
(with Fg ¢ any one of the gauge fixing terms of sect. 4.1) we have
added to the previous free action only a few more invariants, thus atl
of our old Ward-identities derived above change only on the Teft hand
side: in the transformations participate now also the matter fields.

[.e.
=nn S $ 8
RS Y S
(4.68)
-np 8 $ S
-=ZDD 2 - gA —=w LR
" e g*aﬂ++g‘6/‘i

For the interacting theory in the tree approximation (4.67) we have
therefore again

w, 10

A 5 CD+O¢M2) DD ¢ (4.69)

ooir—*

in the a -gauge,
wAI‘(O) =-é-(b'600 B + M2 DD @) (4.70)
in thea , B-gauge,

W F(O):-T%gﬁﬁg+%-M255® (4.71)

A
in the parameter-free gauge. (Analogously for the conjugates. We have
permitted a photon mass term which is optional.)

Due to the specific matter-bilinear coupling F<O) is strictly in-
variant under R-transformation with n(®) = 0, n(A+) =n(A_) = -1 (and
suitable weights for B).

Wé_l) o) . g (4.72)
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For n(A+) = n(A_) = n, the R-invariance is only softly broken by the
matter mass terms:

wé”)r = - % (n+1)(JdSA,A_ - [dSA,A_) (4.73)

These observations become particularly important at the level of the
corresponding currents.

4.3 S'QED and S'(QED)' *

For any phenomenological application of supersymmetry its breaking
is mandatory. Supersymmetry implies mass equalities and such degenera-
cies are very rare. But equally rare are workable mechanisms of super-
symmetry breaking. For instance for the desirable spontaneous breakdown
up to now only two ways are known. One corresponds to the breaking type
presented in chiral models (section 3.3) and is characterized by the
fact that the F-component of a chiral field acquires a vacuum expecta-
tion value, hence the spinor ¢ in its multiplet transforms inhomogene-
ously. Obviously the other possibility is that the D-component of a vec-
tor superfield acquires a vacuum expectation value and its partner A
transforms as a Goldstone spinor. This effect is realized in a model
[11.9] where one adds to F§23 (4.66) a linear term D. Parity is now bro-
ken explicitly, but by a dimension 2 term only. Let us study the con-
sequences first in the Wess-Zumino gauge (4.53).

The effective potential is (the negative of the Lagrangian for con-
stant fields)

oLl 3 - - -
V=50t 40 -F0 (AA -AA)-FF, - FF
(4.74)
-m (AF_+AF, + R+?_ + A_A+)
hence with the equations of motion
D=v-g(AA, -AA) (4.75)

The prime indicates spontaneous breaking of the respective symmetry.
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Fi = - mAT Fy = - mAT (4.76)
v =1 A A2 +me (RA, +AA
“'8' (V - g (A+A+ - A_ _)) +m (A+ + » __) 2_0 (4.77)
v2 2 Vgy R 2 . V4y\ 1 4.78
V=gt (m -3 RA + (m +q8) AA (4.78)
2
- = 12
+ %— (AA, - AA)

One has to distinguish two cases (vg > 0 without Toss of generality)

(1) me - Y250 (4.79)
2
Than V igw (4.80)

A, =A_=0 (4.81)
ie. D=y F.=F =0 (4.82)

Therefore supersymmetry is spontaneously broken with the Goldstone spi-
nor A and the masses2 for A+ split by

+E = ¢7Vr3 (4.83)

to be compared with the Y, masses which are still m. Gauge invariance
is unbroken, the vector vp is massless.

(2) m o+ E< 0 (4.84)

then the absolute minimum of V is reached for A_ = 0 and

?
_ ~(m” + &)
AA, =
+ '+ 9?/4

By a gauge transformation one may reduce this to a real shift in A+ and

a? (4.85)

i

the minimum will be at
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2 .
p= A a -2 (Infre] F, = - B Nnfeg]  (4.86)

g gl gl
Performing all the shifts and diagonalizing spinor mass terms one ends
up with a massive vector VU’ i.e. spontaneously broken gauge symmetry,
a massless spinor with inhomogeneous transformation law, i.e spontane-

ously broken supersymmetry. the mass spectrum is: one complex scalar

of mass V2m?, one vector and one real scalar of mass %~92a2, two
spinors of mass \mz + %gzaz and the massless Goldstone spinor. This

case will not be discussed any further.

Returning to case (1) we first wish to re-establish the general
gauge. From (4.78) it is clear that the general gauge form of the po-
tential is

(4.87)

hence none of the conclusions reached before is affected. The vacuum
expectation values of C and of M - which does not show up in (4.87) -
are not determined which is allright since these fields are subjected

to inhomogeneous gauge transformations. But this means that we can go
over from SQED to S'QED (the spontaneously broken phase) just by replac-
ing D+*D+v i.e. we require the spontaneously broken supersymmetry Ward-
identity to hold:

- 88 § i taT e i S .
ur = -i(fav 5 8 i [dS daAiéA i [d§ %Ai?)rw
t As (4.88)
-0+ i %8y
T
as well as the strict gauge Ward-identity:
v §
Wr=z(0D~+ gA, — )T =0 (4.89)
= 8 * A

+

(analogously for W WK ).

o’
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The invariant action in the tree approximation will then be com-
pletely fixed by the normalization conditions (at p = o in momentum

space)
Tp = 7 fp=0
W =m Ty 5, (50 = - e (4.90)
TrF, =1
fep =1 T A0 = X

Adding the gauge fixing term (ina-gauge form, for instance) will, of
course, modify the gauge Ward-identity to be prescribed

_ 1 Yy
Wl = 7z obbo
(4.91)
1
WAF"g&" DDD CD .
and also the normalization condition for FDD:
_ 1 1 o
FDD--E (1 -a-) (4.92)

The gauge parameter o itself is fixed by its appearance in the gauge
Ward-identity. The peculiar normalization condition (4.92) depending
on o is chosen for reasons which become clear in higher orders. As in
the symmetric theory the ghosts are free as a consequence of the gauge
Ward-identity (4.91).
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Section 5: Non-abelian gauge models *

5.1 Non-abelian_gauge_transformations

PO iR+ P~ SRS g Sy A e

A heuristic and rather suggestive derivation of the non-abelian
gauge transformations compatible with supersymmetry starts from rigid
gauge transformations on a mu1t1p1et of chiral fields (3.22):

. .

IR B
Sp Mg == 1w T Ay

= U (5.1)
6m Ak = i AQ Tgk w' o

Here we have assumed parity to hold T' = T =1; T generate the fun-
damental representation of a group G; the w are real parameters. The
corresponding transformations in SQED suggest that we generalize w'

to chiral superfields A1 and assume that for finite transformations:

— 1

-iA - i i
A (€71 0 Ay A=Al
(5.2)
A = By (e Ny,
The gauge invariant interaction term of SQED
Ae? A (5.3)

then tells one to put the gauge vector fields associated with the
group G also into a matrix:
= 1
=91 (5.4)

and to try as transformation law [I1.10,11]

For infinitesimal A,A the first few terms read

The method used in this section to find the general form of the non-
abelian gauge transformations is adapted from the treatment in
chapter 1IV.
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ksS4
i}

d + &8¢
§6 =1 (A=) + i % [0, M+R] + 4 %? (o[o, AA]] + O(®3)

=1 Q (2, 0)

(The index s stands for special: we shall see later that more general
gauge transformations have to be considered.) Together with the occur-
ence of an exponential of ¢ in the interaction there arises another ef-
fect: an infinite power series in the field & for its transformation
law. Clearly all of these multiple commutators are in the algebra, so
nothing is wrong with that.

Projecting out the 86 - component in (5.6) we see

_ S S i
‘SVM = BM(A+A) * ?’ £VH’ A+A ] + 'Zf [Xsw] O“ = '@' [‘DaXJ O“

1 T 1 n
t 5 [C,BP(A—A)] * 17 (cle,a(A+A)1] + ... (5.7)

i.e. in the Wess-Zumino gauge (C = x = X =0 (4.53)) we just have the
ordinary Yang-Mills transformation of the vector multiplet v ; in any
supersymmetric gauge we have contributions of the fields C,x, X with
subcanonical dimensions O, %3 %-resp., which make up in particular the
higher commutators.

Our next task is to generalize the free kinetic term coming from
SQED (4.13)

fdv o DDDD® = - [dS DDD® DDD® (5.8)

*
to the non-abelian case [I11.10,11]. One observes that

(5.5) implies

e ? > e 11 gm® 1A (check with e ?? - 1)
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- - il -ih
¢ e@ > ool A =B i ADa( ih @ A)
-i A -0 o _iA
= D, (e ™)
I I 0 e@ ol h, oo AD ei A
o - o (5.9)

The inhomogeneous term contains only chiral fields, the kinetic term
(5.8) DD, hence try

55.(e_® Da e@) + DD (e'iA e'q)DOC e? eiA) + DD (e*WADa eiA)

oo (e'® D, eé) eiA + e_iAﬁﬁDu o1l
- e oD (e? 0 ) e (5.10)
(due to (A.10)).
Therefore
Tr 00 (e™® 0% &) T0 (e™® b e®) =Tr F¥F, (5.11)

is invariant under the gauge transformation (5.5). Since it is a chiral
field, Tr [ ds ﬁxﬁx is supersymmetrically invariant and will be the
desired kinetic term for the vector mu]t{plet. In order to convince
oneself of this, one calculates the tri- and quadrilinear contributions:

([dS F%F )

i R
Ja = £19% fav Do, 2, DOD ¢ (5.12)

(fds FOF ), = - £19M ¢"kBrgy (L pe’ o of TD o (5.13)
a’d 3

+

T ool o D (pa¥eh))
and checks in the Wess-Zumino gauge (4.53):

- kg Tr JdS FOF = Tr [dx (- 3 FEF - g AR+ 1oz, (514)
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Here Fuv’ P A are given by

- i 5.15
auvv vau t 5 [yp,vv], ( )

n
1]

p A

1

3 A+ i A (5.16)
" i [vp, 1,

i.e. they are curl of the vector field and derivative of % covariant
with respect to

(o2
i

i
w VH BHUJ ~?-EUJ,V“] (5.17)

O
>0
I

= 1 R, (5.18)

the transformation law in the Wess-Zumino gauge. We may summarize the
result: a massiess Weyl-spinor multiplet in the adjoint representation
together with an ordinary Yang-Mills field forms a supersymmetric sys-
tem (on shell, where D = 0).

Scalar self-interaction and mass terms will be Tlocally invariant
and pherefore permitted in the action once they are rigidly invariant.
1f T' are the generators of any unitary representation of our group G,
the matter fields transform under rigid transformations accordding to

§ . A=-1iwA (5.19)
with & zw' T, @' = const, and vector notation for Al For the special
case that the A transform under the adjoint representation one may re-
write (5.19)

S = 1 [Aw]

rig A

At wz et o' o= const. (5.19a)

th
€

with A

In any case invariant interaction and mass terms will be of the usual
form

—
i

1

=1

= myp fds Ahy * Moy fds P

—
i

A A A (3.20)
AaAbAc

wmi

h habc de A'aAbAc * habc Jd
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A linear term is only permitted for a singlet under the gauge group.
The total invariant action reads therefore

. 1 2.9
Finv“FYM+T6deAe A+T +T,
-1 1 o
r = 22 2 Tr [dS FOF (5.20)
YM 128 92 o
3 zo' T

On this action is also based the discussion of symmetry breaking of
which we shall mention only few results. Spontaneous breaking of the
internal symmetry leaving supersymmetry intact is easily possible and
leads then to massive vector supermultiplets. Spontaneous breaking of
supersymmetry occurs rather rarely and requires either singlets of mat-
ter fields (F - type breaking) or the presence of an abelian factor

in the gauge group (D - type breaking). The first situation is exempli-
fied by the 0'Raifeartaigh model (section 3.3) (although it is possible
that the breaking is operative only after gauging the group), the sec-
ond by S'QED (section 4.3). These remarks conclude our somewhat sketchy
presentation of SYM in its standard form.

What we still have to do is to study the uniqueness of the group
transformation law (5.5). We have not shown, for instance, that (5.5)
is the unigue extension of (5.17), the latter being the postulated link
of SYM to YM. Let us therefore modify (5.6) to

86 =1 (A=) + 5 x [0,0+1]
+a, 1 {001} + o(o%, )

and check whether there exist terms bilinear in &, Tinear in A(K) such
that we have a composition law:

[6,,6,1 &= 85 @ (5.21)

up to that order in the fields.

The trial is motivated by the desire to keep the abelian approxima-
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tion (i(A-A)) and to stay in the algebra: {¢,A- I is therefore more
properly to be understood as {®,A-A} - Tr {o,A-f} we shall denote
this for the time being by {...}'. The first - very simple, but non-
trivial - test is, of course, the order 1, already written, in ¢:

it . i n ey
(5261(1) = '2" X [1(1\2"/\2), A1+A1] + a2 1 {1(/\2‘"/\2), /\l—/\l}

X “ n X i i
(65,6010 = = % [hy-Ty, M#R ]+ 5 [Ay-Ny, My, ]

= x [y, hd + x [y, Ay ]

i

P (ilagangd =1 Dhgohyd) = 65 € (5.22)
i.e. the transformation 63 has parameter

Ay = X [AZ,Al] (5.23)

and the anti-commutator terms have droppéd out without restriction on
a,- In the next order the corresponding calculation fixes x = 1 and
enforces as additional terms in 6®:

80 = i(A-p) + %-[¢,A+KJ + e, {o,r-A}!
; (5.24)

2

+ i (dy - 32) Tole, 1-3D+ 0(0?

2 1)

Hence, at 2, = 0 one obtains the same results as previously (5.6), but
2, ¥ 0 is quite allowed! It is therefore clear that at this order in

the fields the transformation (5.6) are not the most general ones yield-
ing a closed algebra. We thus have to answer two questions: (1) Can

one consistently continue to higher orders in the fields? (2) Are there
more free parameters to come? In order to answer these questions we
shall reformulate this purely group theoretical problem with the help

of the Becchi-Rouet-Stora transformations (BRS-transformations):

One performs the replacement
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T + 7 5 (5.25)

in the gauge transformation law, with cl anti-commuting chiral fields
(the Faddeev-Popov-fields, om- fields), El the conjugate anti-chiral
ones. I.e. one defines

'

bo = c,- ¢, +3 [0,c,48,] + a, {8,c,-E,}"

s CpmCy
. (5.26)
1 dz - 3, -
+ (Tf - 3—0 fefe,c -c 1l +0(7) =Q
for the transformation of ¢, and for the new fields c,:
be, = - c,c, bc, = - C,C (5.27)

The reason for switching to BRS-transformations is a technical one:
First of all the requirements

b2 = 0 (5.28)
béc. = 0 bE, =
+ = ¢, =0 (5.29)

i.e. nilpotency of the transformations on the fieldso, ¢, embodies
the entire algebraic structure of the gauge transformations Son &.
Indeed [R.5,1], setting ’

i i J ok
bc, = - X [3k] cy €, (65.30)
and requiring (5.28) enforces relations on the x Ejk] which show that
they are the structure constants of a Lie group i.e. (5.25) and (5.27)
specify only in a very precise sense about which group one is talking,
whereas (5.29) dictates "Lie group". Analogously (5.28) determines the

actual transformation law for ¢. Secondly, the equations (5.28) (5.29)
permit a much easier inductive procedure than (5.20).

Let us define transformations bk by decomposing

b=bo+bl+b2+... (5.31)
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into transformations which raise the order in the fields as indicated
by the index k:

byo = & [0,c,+8,] + a, {8,c,-8,}' = Q, (5.32)
bk¢ = Qk+1
boc+ = 0 boc+ =0
by = - culy blE+ = - C,C,

(5.33)
by = 0 k22 b, =0 k > 2

We now proceed by induction. Let us suppose that we have satisfied
(5.28) up to and including the order n in the fields, i.e.
(b%) = (bQ), = O h> 2 (5.34)

Then we have to solve

] ‘
0 2 (bQ),; = bQ; * b, 1y + ... byQ + boQpe1 (5.35)
Abbreviating
Hoep 5000 #0110 * o + D40, (5.36)

it is seen that (5.35) implies a consistency condition for Hn+1 since
bo bo = 0:
boHn+l = () (5.37)

This equation, in turn, certainly has the solution
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=b_ #

Hne1 = Bo Mot

If it has only this one, then (5.35) reads
0 =b, (e Qn+1)

hence

~

Qn+1 5 - Hn+1 * Qln+1

with b0 Q' = 0.

n+1

(5.

(5.

Now (5.41) is again of the type (5.37) (with one c, less involved),

hence again one may hope that

ﬁ+l B bo Qn+1
is the only solution and one has completely determined Qn+1'

It is instructive to go explicitly through the first orders n.

n=1  (bQ); = b,Q = by(c,~E,) = 0

is correct by definition (5.32) and (5.33).

ns=2
(5.34) reads: lel + onZ =0
The consistency (5.37) arises for lel = H:
bob1Qy = =b1bely = 0
Here the second equality uses (5.43) whereas the first

(byby * byby)Qy = 0

is nothing but (5.29) written in terms of the expansion (5.31) up to

order 1 in the fields.

(5.

.38)

.39)

40)

a1)

.42)

.43)

.44)

.45)

46)
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Now H = le1 = - c,c, *t E+c+ (5.47)

= b, (- 5 [8,c,+2,]) (5.48)

A= -3 loce,] (5.49)

ie. Q, = + 5 [0,6,48, 1+ a,{0,c,-E, (5.50)
- 1 ~ 2 1

0, = 3 [8,c,4T,1 + a, b, (¢) (5.51)

This calculation is therefore exactly the one we did before for the
gauge variations. Hence we know also that there is just the freedom

of having the a2~term. The ' in (5.50) and (5.51) indicates removal

of the trace and arises from the additional requirement that b® = Q
has to be in the adjoint representation under rigid transformations.
Looking back at (5.44) it is also clear that if there is any solution
for Q2, such that (5.44) holds, it will be ambiguous by a bo(...) since
bobO = 0.

For the induction we learn that the proof of (5.37) requires rela-
tions of the type

by, + + b,b +

i 5.52
(b _1bg * By _pby + «- T Byby 5 e =0 (5.52)

Pyby-1
coming from b2® = 0, and solving the “cohomology" problem:

bOX = (0 =X = bo X

(5.53)

(X =H n >2).

n+l? Qrl1+1’

For the actual proof of (5.37) we assume now in accordance with the
induction hypothesis (5.34)

(bQ)k =0 for 1<k<n (5.54)
i.e. (5.52) for the same range of k. Since b Q =0 (n>2),

bo Hn+1 = bobn--lQZ * bobn-2Q3 e bobZQn~l ¥ bolen‘ (5.55)
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Using (5.52) on each term, this becomes
= = (b, _qBy ¥ by _pbg * wuu #boby ¥ biby 5) Qp
- (bn-zbo * bn-3b1 MERRR I ban—4 * blbn—B) Q3
- (bghg +byby) Q4
- blonn

Upon reordering the sum, this is

b _p (b1Q, *+ b,0Q3)

bn-~1 (onZ)

We now show that each line vanis

by (Bpglp * Bpgl3 * -

by (b _3Qy + Dy 405 + ...

* len-l * onn)

b0 * onn-l)

hes:

bOQ2 = bob1® = - blbo® = c,C, - C.C,
i.e. bn-lonZ = ( for n>2
le2 + on3 = (blbl + bob2)® = - b2b0¢ = 0
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bn—3Q2 * bn—4Q3 KRR len-Z * onn~1

: (bn-Bbl +bn—4b2 oot blbn-3 * bobn—Z) ¢

n-2"o (5.60)

b0y * + b0, (bn—Zbl + bn—3b2 +o bobn_l)
=-b ;b =0 (5.61)
hence bO Hn+l =0 . (5.62)

The solution of the cohomology problem (5.53) is shown in appendix C.
This proves {5.38) and (5.42).

As the result we give now the anwsers to the guestions posed be-
fore: (1) One can consistently continue the transformation law to all
orders in the fields. (2) At each order n > 2 in the fields there appear
new free parameters:

= _ U My 5.63
Quap = = Hpep * 3pbo(0 ) ( !

this undetermined part anb0(®n)' we may write more precisely in com-
ponents:

w e (cooB). 0. .0 (5.64)
phag Qon Si(H, ) NS T e T

Here S?(il"‘in) are invariant tensors under the group G completely
symmetric in (11...1nl, Q(n) is the number of such tensors and a, are

arbitrary parameters. In the example above, n = 2 e.g. for SU(N), there

The expression (5.64) thus transforms as the adjoint representation
of the rigid gauge group if c - and ® do so. This will be seen later
to follow from the requirement of rigid gauge invariance.
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is one such tensor: dijk and it was formed by taking out the trace from

2
b, (@°)

these terms.

. The entire transformation Q is determingd once one has fixed

Let us repeat: demanding a closed algebra of gauge transformations
(5.20) or equivalently (5.26) with (5.29) we find as solution (5.63)
with free parameters 3 (5.64). Only the case a = 0 coincides with
the solution (5.5) (5.6). Construction of invariants under this general

transformations is postponed until section 5.3.

5.2. BRS - invariance

- - o e e -

In this section we wish to reformulate gauge invariance as BRS
(Becchi-Rouet-Stora)-invariance and in particular to derive the Ward-
jdentity associated with it - the Slavnov-identity. Eventually it will
be this latter which defines the theory.

Before doing so let us emphasize again that the BRS-transforma-
tions have two aspects which have conceptually nothing to do with each
other. The first is that they comprise the algebraic (and geometric)
structure of the gauge group - a classical object. This property has
been used in the preceding section. The second is their role in quan-
tized gauge field theory - which we shall use presently. Quantization
via gauge fixing introduces ghosts into the theory. In the non-abelian
case those are no longer free and so they destroy unitarity. In order
to compensate this effect additional fields are employed - the Faddeev-
Popov fields - and it is their behaviour which is governed by the BRS-
transformations. This conversion process from gauge Ward-identity to
Slavnov-identity has been described in detail in [R.5], so that here
we content ourselves with the derivations of the Slavnov identity and
do not motivate this any further. Let us start our presentation with
the BRS-transformations (5.26) at 3y = 0.

s = C+- E+ + %‘[(D ;C++ E.,.] * %’Z[Q[¢3C+"E+]J o0 = QS(®’C+)

(5.65)
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SC+=-C+C+
~ o i
SsA = - c, A ¢, = c'T
sA =Ac, (5.66)

I%nv (5.20) is of course invariant under (5.65) (5.66) since on the
fields ®,A the BRS-transformations are just gauge transformations with
fields c, as parameters. But the main content of this invariance re-

veals itself when we consider the naive variation of the gauge fixing:

(@) o L gy L D08) = i [dV(- & oD o5
s Tyt = 73g [dV(- 5)s(0080D2) = 355 [dV(- ) (DDQ.DDe + DDEDDQ)
(5.67)

,B 1 -
s ré?f.)= g [dv(B DD Qg + B DD Q) (5.68)
(B) 1

s Tg.¢, = - Tpg 14V (B +B) Qg (5.9)
where sB=35B =0 (5.70)

has been assumed for the B-gauges, and observe that they can be com-
pensated by varying corresponding terms F@n containing another set of
¢m-fields ¢_,c_ (chiral, anti-commuting):

s I{) = s e Jau(- 3) (b0Qge_ - E_ DD Q) (5.71)
withsc_ =DD&  sE_=0DD@ (5.72)
s 0{%8) = s L Jav(ongc_ + DD o) (5.73)
s T8) = s (- ) Jav o (e + E) (5.74)
with s c_ = B st =B (5.75)

Compensation occurs indeed if we let the operation s anticommute with
Q. The terms bilinear in C,» C_ resp. define a conserved charge Qg
the Faddeev-Popov charge, with the (arbitrary) assignment %1 for ¢
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(and E+). One also notes
52 c_=20 for B-gauges (5.76)
52 c_= DD Q for o -gauges. (5.77)

We may summarize the above by stating that the actions

(o) _
= Tiny " Tg.f. ¥ Ton (5.78)

(for all three gauge fixings) are naively invariant under the BRS-trans-
formations (5.65),(5.66),(5.70),(5.72),(5.75).

Naive BRS-invariance of the action (5.78) can thus be expressed as

S I1(O) = Tr IdV (Q .6_.11(0) . (I)(ﬁ‘..E(O)-;- EE(O)) >

S §0 c_ ol

(0) (o)
+ Jds (— Tr c,c, §-—1;+ <~+A)a§—%a >
(0) (0)>
ST = -\ 6T _ (5.79)
+ fds (- Trc + (A e =0
/ < +C+GE+ “a 5A

for the o - gauge,

st () = 1 fav o :‘:-1:(0)+ Tr,<fds 5 8017, fdS B ES-I:(O)>
o

i
O

+ (c,, A - terms)

+? (5.80)

for the B-gauges.

In order to deal with the non-linear field transformations in higher
orders we introduce external fields coupled to them:

r = Tr jdeQs - Tr (fdS o c,c, + fdS & c,c,)

ext.field
(5.81)

Y

[N F]
+

- dsfy & A-JdS A
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o = Q1T1 p1 real veetor suberfieﬂd
_o i i i .

0 z0T o chiral superfield

Y = (Ya) Y, chiral superfield

We may maintain naive BRS-invariance by prescribing that the external
fields do not transform, since on the elementary fields transforming
non-linearly, s is nilpotent:

520 = 52c+ = s%A = 0 (5.82)
With the help of the external fields - this was the reason for their
introduction - we may express all composite field variations by diffe-
rentiation with respect to the corresponding external field:

(o) (o) (o)
%g = Qs ,%g = - C,C, %g 2 €+A (5.83)

(o) .
for T rinv * Tg.f‘ * F@ﬂ * rext.f.
Inserting these relations into the naive Slavnov-identity (5.79), (5.80)
we obtain:

,b(F(o}) = Tr IdV (@E(O) g’-(o) vo (.S_.I:.(O)+ gi@))
8p 8§ - 8c §¢

(0) (o) (o) (o)
ST 8T 8T 8T
+J.d5<TY'8—E- '5‘6_’. +(§Y 'S*A— > (584)

. fd§<TY‘ §_I:~(O) .6..&(..0)-:- §_.1j_(0). §£(O) >: .

-

85 §c, oV SA

for the a-gauge,

S¢ 8¢

5(r(0)y = 1 [y ('S”E(O)' ir(O) + Tr (deB ‘Ef_w(-o)+ [ ds égﬁ(‘O)\)

+ (c,, A-terms) =0 (5.85)
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for the B-gauges.

*
It is in this I'-non-1inear functional form that the Slavnov-iden-
tity permits the generalization to all orders of perturbation theory.

We now have to explore somewhat this non-linear functional. Let
us deal with the B-gauge formulation'first. Eventually we shall define
the theory by {5.85) and the gauge conditions (4.34) (4.43)

(@,B) g%w “B‘Ee—%b‘ﬁ'oocp (5.86)
() =g Do (5.87)

(and their conjugates).

Hence a necessary condition which has to be satisfied by the solu-
tion I' is

5 A(T) =0 (5.88)

which yields by use of (5.86) (5.87)

1 §T, &8I _
(OL,B) ) DD DD -8*54’ S’E—‘ = (5.89)
1 =& or _ (5.90)
B -~y 7O

{and their conjugates). But these are just the equations of motion for
the ghosts ¢_, c_. Using them in (5.85) we arrive at

A(T) = Tr jdv%(ﬁ-%noa-é—ané)uc

_ (5.91)
53 A-terms)

+’
for (a,B)
1,

= sl 8f ) N (5.92)
s(T) = Tr [dV 55 (% + I?@'(DDB + DDB)) + (c A-terms)

43

for (B).

This is underlined by the notation. sI' (5.79) (5.80) was the Tinear
action of the BRS-variation on I'.
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Recalling now (4.35)
F= r-aTrfav 88 -5 Tr fdv (8 D&+ B B09) (5.93)
for (o,B), and (4.44)
F= T+ oqpg Trfdv (B4B)o | (5.94)
for (B},

we may rewrite the bracket mu]tip]yinggg- as%gA , 1.e. performing this
transition from I to T we obtain

5 (T) =%—Bff (5.95)

(appropriate integration and Tr -understood) with

B-— = -(-S-E . —(S-'-— + —(-Sj . '(-S"‘—‘ + -(S—f— D -(S~—o—- 4 L .Q...
§p &0 o) &p 8o §c, o8¢, 8o
- - (5.96)
+ %% . %K + %K . %7-+ (conj. for chiral fields).

And Bf acts as a linear functional operator on T: The non-Tinear ac-
tion of 4 on I has been translated into the linear action of Bf on T -
for functionals I satisfying the ghost equations of motion (5.90) (5.91).

In the a-gauge we shall proceed tentatively in the same way: namely
assume that the ghost equations of motion hold

SL . Ly oo &E 5.97)
s5¢ = T7g (3) 0D DD Sp ( ’
insert them into (5.84) and using

F= I'+ 35+ & Tr JdV DDo DDo (5.98)

we arrive at just the same result:

s(r) = 3 B (5.99)
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How can we justify the use of the ghost equation of motion? A good hint
is given by remembering that in this gauge the BRS-transformation was
not compietely nilpotent:

- 2 T Yy sT

sc_=DDe  s°c_=s DDe = DDQ = BE-—-E (5.100)

This suggests that besides (5.84) there should also hold

2(ry = 7r jav 8L (8L 4+ 8Ly .o (5.101)
§p &¢C S¢

- -

)

(here the first equation is not yet proved).
The solution of this condition is just

8T o == on OT
5C_ DD 0D 5 (5.102)
due to the anti-commutativity of c¢_ and p. Thus, by fixing the propor-
tionality constant - a normalization condition - we arrive at (5.97).

There remains again a question: How can (5.101) be proved to be
the repeated non-linear application of 4 to 4(I')? This can be done by
going over to connected Green's functions (since on those the BRS-trans-
formations are linear), repeating 4 there and going back to [. The re-
sult is (5.101) and the necessary formulae are provided in App. B.

Let us recapitulate: the postulate 4(I') = 0 enforces the ghost
equations of motion to hold

- in the a-gauge via oZ(F) =0
S (5.103)
- in the B-gauges via gy 4(r) =0

Having satisfied these we can get rid of all gauge dependence by utili-
zing T and arrive then at the linearized form of the Slavnov-identity

s(f) =487 =0 (5.99)

for all three gauges.
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Let us note in passing relations which will be crucial in higher
orders, namely, the functional differential operator BY satisfies

o

(s~}
=<

i

=0 for any vy (5.104)

>
w
i

0 ifB y=0 (5.105)
Y
The 1inear action of Bf on T permits us to interpret Bf as a transforma-

tion operator (like any one of the Ward-identity operators wx before
(3.24)).

For the special case [ = f(o) (tree approximation, above) we give
it a name:

4 = B5 (o) (5.106)
and note: % = 0 (5.107)

(due to 5.105 for y = F(9)).

In fact,

~grlo)

40 = 55

0 o}
7(0)
3 8 |
g jc,=59¢c, 4o %, (5.108)

A A (o)
- (0

_&r

BHY = 3T

i.e. (5.99) defines first of all a transformation law for the fields,
including the external ones and states then that ﬁ(o) is an invarijant
functional under these transformations.

________________________________________

Since we want the Slavnov-identity (besides supersymmetry and rigid
gauge invariance) to define our theory we have to find already at the
tree level its (general) solution. Only if we can specify that do we
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have any hope of finding the continuation to higher orders.

We have seen in the last subsection that the ghost equations of

motion _

(@) §~£:= 5 (&) 0 o0 gg— (5.98)
(a,B) g-g_= -3 Dog-g- (5.90)
(8) §-§_=-1%-g5‘5§§ | (5.91)

had to be satisfied (as a consequence ofwéz(r) = 0 for a = gauge, as
a consequence of the gauge condition for the B-gauges). This means that
the solution T we look for depends on c_, c_ only via

(o) L =0+ gz (O0c_ +TD c_) (5.109)
(0,B) =p - %— (Dbc_ + DD ¢ ) (5.110)
(B) 4 =0 +qh(c +E) (5.111)

i.e. we may eliminate all explicit dependence on c_, Eﬂ in T by perform-
ing the variable transformation p > A . In these variables the ghost
equations simply read

I (5.112)

-

and the Slavnov identity becomes

4(r) = 3 8:F =0 (5.100)
with
__ 6T, 6 ,8F & 6T & §T 6 o & 8T &
T %% 55 "5 5K 50 56, 8¢, 60 8V 8K Ty (5.113)

+ antichiral part
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One way* to find the general solution I' of (5.100) is to perform in

a special solution, e.g. (5.83), all field substitutions compatible
with all other requirements and to demand that the new I be again a
solution of the Slavnov-identity [I1.12,13]. The additional require-
ments are: naive dimensions must be respécted, supersymmetry (in par-
ticular chirality) should be maintained; ®m-charge must be conserved;
global gauge invariance should not be violated and finally R-invariance
should not be broken. For the app]fcation of these postulates we have
to assign quantum numbers to the fields (dimensions, R-weights, @m-
charges). This assignment is not unique and will be adapted for the
different aims pursued. The one given in table 1 makes dilatation and
conformal R-transformations commute with the BRS-transformation, hence
is most suitable for considerations involving the superconformal group
and, as it turns out, for discussion of the ultraviolet properties of
the theory.

@
@l
o
o
=3
=
I3}
s}

oy L Y B

Table 5.3.1: Dimensions d, R-weights n and Faddeev-Popov charges (..
If a field ¢ is assigned numbers (d’”’Q¢n)’ its conjugate
® has numbers (d,-n,Q®ﬂ). Fields of even (odd) Faddeev-

Popov charge are commuting (anticommuting).

Dimensions, ¢m -charge, conformal R-invariance and chirality permit:

o - ¥ (o) 4> R(p,%)
Cp > Z'C+ o+ 20
A - yA Yooy Y (5.114)

For another one cf. sect. 5.4.
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here ¥, # are arbitrary functions of ¢ (#is linear in4) and z', z,
y', y are numerical matrices. Rigid gauge invariance yields further
restrictions: requiring that the new fields c+', c', A', Y' transform
as the old ones means that the matrices z', z, y', y are equivalence
transformations in their representation space. Since the t's are irre-
ducible z', z are just numbers (multiples of the unit matrix), but the
y', y may be direct sums of multiples of unit matrices according to
the reducibility property of T. We shall suppress this dependence and

simply write numbers.

Writing components for ¥ we see that
Q(k)
F.=c,+ ) ) c .2 . o, ...0. (5.115)
i 154 k>2 w=1 wk 1(11—-—1k) iy i

where ¢ and Cok are arbitrary coefficients and s“ invariant ten-
sors which are completely symmetric in the indices (i].ﬁ.ik). Q (k) is
the number of such independent tensors for a given rank k + 1. F will
be abbreviated by

k

(@)

'}':Clq>+ ) (5.116)

c
k>2 K
Anatogous relations are valid for Z. We shall not write them since ¥
will be a function of F.

Let us introduce a still more condensed notation, where one index
represents the Yang-Milis index and the superspace point:

1= %5 (z7) (5.117)
and the summation - integration convention:

oquy = § Jdzp oy (z7) b (z;) (5.118)
iy 1 1

where dz = dV, dS, dS appropriately. In this notation the Slavnov-iden-
tity (5.100) reads

Bff . 8r 8r ,or &r ,8r 8r ,8r 6r , 6r &r _ o (5.119)
611 6@1 501 6c+1 6Y1 6A1 Gal 6c+1 SYI dAl
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We now perform in a solution T of (5.119) e.g. the one given by (5.83):

= Finv (3,A) + "61 Qsl(cb,c+) - c:l(chc,,_)1 - ‘1’1(84_/3‘)1 + conj.(5~120)
the substitutions (5.114) and require that

F(o,Ac,,8,Y,2) =T (F (8), y'A, z'c,, ®(2,%),yY, zo) (5.121)
be again a solution of (5.119). This yields

22 =1 yy' =1 (5.122)

22 A3 .5 . . (5.123)
%, &4 C°23°%; §, & 3,

(855 =85 3 6y (2,3)).

The solutions of these eéquations are

2t =27 oyl (5.124)
®(2) = &[4, F1 )], , (5.125)
60 (2) o = F(o)

-1
where z,y are constants and ¥

(3) is the inverse of & = F (o).
Performing in T (5.120) ‘the Substitutions
-1
c,+z"¢c A+ y " A
(5.126)

o +za0 Y>yY

is nothing but the same field amplitude renormalization in I'. The sub-
stitution for @ and “ yields:
F(@,A,C“‘(,,Y,Z) = rinv (¥ (2),A) +'t1 Qsl(T(CI)),C+) (5.127)

- 0 (eyey)y = Y1(E{A)y + cong.
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with
RS NG
'L=‘(11“““:‘“"“"‘A (5.128)
80 6 =% (o)
(Q is given by (5.6) with iA~c_; -k > —E+.)
The special case
Flo) = ¢, A= ?C((Dl't) = cil"(,, c; = const. (5.129)

corresponds to a field amplitude renormalization & ~ cl¢, -~ Eltﬁn r.
InT it is accompanied by a redefinition of the gauge parameter aﬁ-clza
in the a.gauge; B~ cilB, o - ci%x in the (,B) gauge; B~ ¢I1B in the

1
B-gauge.

At vanishing external fields (5.127) shows that the substitution
o~ F(6) (5.115) leads from one invariant to another; for nonvanish-
ing external fields one solution o% the Slavnov identity is transported
into another. This property solves therefore the problem we are left
with from section (5.1), namely to find invariants, solutions of the
corresponding Slavnov identity, for the general group transformations
(5.32),(5.63) once we are able to relate the Q defined by

5 F,(9)
(5.26),(5.27),(5.28),(5.29) to Q, = ——— Q. (Fla)ic,)

56 ) s +

1 o =F(1)o

The problem is that the BRS-transformations as determined self-consis-
tently by (5.26) - (5.29) are "blind" to the requirements of rigid in-
variance which we have explicitly imposed in (5.64), i.e. we may still
choose in which basis of products ... co ... (with commutators and
anti-commutators) we wish to expand the terms of Hn+1 (5.63)*. We start
therefore from (5.115)

RN ISR S L
. = D) = ¢, 9, + C 0 ) ...
1 52 wel wk 1(11...1k) 1 an

* For example
1 1
oc, @ = - 3 [o[e, c J] + 5 b0
3 possible candidates for the basis at order 3.

3 constitutes a linear relation amongst
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and the special transformation law (5.6) (iA - c+) which we represent
as

04(0,c,) = ¢, = & *+ 3l0,¢, + &, 1+ Ixl0[6 ,c, - 8,31+ .

(5.130)
=c, -3¢, + I h [e[el...[e,c, - (-1)"E,7...]
+ + Qil n + + -
Since we have to calculate 4?-we need the inverse function
Q(k)
..]_ A w A ~
o, =F"Me) =x; 8, + L L x,S9. .8 ...5. (5.131)
i 171 k2 w=1 wk '1(]1"'1k) i iy
The coefficients Xgk are computable functions of the ok’
_1 _ L
*1 c Xp 5773 s e (5.132)
€1
ka -
= . . i
“wk 7 TR T Kk (Cyigr 3 k' < k)
1

where the %»k depend only on c-coefficients with k' < k. Hence’% (5.128)
is given by

~ _ w A Fas
o= oxg R+ Yk Xk 5 sj(ﬁl"'ik~l) @il...qaj.k (5.133)

Considering now in the product'€1>Q31(¢,C+)the first term

iley =€)y = 2s(xyley - T);

Qk) A o
) % k kas?(i ; )(c - C ). 0. L0, ) (5.134)
2 wel 1

we find for it on substitution of 3, the expression
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¢
T ke ek (c,-C,)
* k5t Cyrprs K< S5/ s v(c,-c ), o, O,
k>2 wel Cl2 wk* “w'k i1y 1k) LR AR PR PR 1)
A(k)
+ L1 9o (Coipr 3 K" < K) 3o oy (e, - C). @, ...0
k>2 o=l ok wik 1[11...1k) + + i T, Ty
‘ (5.135)

I.e. there is a part which contains the completely symmetric tensor

W . .y multiplying (¢, - c,) &...6 and a part which contains mixed
1(11...1k) + +
tensors r%[j i) multiplying the same monomial. Indeed, each term

of the expansion of ¢ has the form

iy ilep =Sy 0y L0y (5.136)

1(12... K 1 b Ty

and each such tensor t can be decomposed into parts s, r.

Now the commutator terms in Qi Qsi (5, c+) are of the form

ri[il"‘ik) xi(c+ S c+)1 . ...0, (5.137)

with coefficients depending only on Coiic? with k' < k.

Hence the complete expression, which will define our new trans-
formation law, is

1y Qgi(0,cy) =%, Qi(e,c, 5 a) (5.138)
- 1 =
_‘zj<€i—(c+ - Cy)y
o) |
+ L (A kS (e, s k< K)) S (c, = C,). &, ...0
2 wel Cl2 wk *w 'k Tied )+ T, i
Ak)

+
=~
o~

Q
=
—
o
£
P
-
=
A
P
~
-
—_ Q
1
—
s
.
.
=
~—
—
(9]
+
T
OF
+
—
s
o
—
N
L=
—
N
—
[S3}
[
(%]
O
~—
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Putting now ¢y = 1 we note first of all that
koo T (G 3 KT <k = Ay (5-140)

ok
this replacement the content of the bracket multiplying n is exactly

a Q as prescribed by (5.63) and (5.64): it solves bQ = 0 and has just
the correct undetermined term a, bO(Qn)'

can be solved for ¢, in terms of By 5 second that after performing

, which is thus shown to define
the remainder of Q by the above construction.

5.4 Interpretation of the parameters a,

In sections 5.1 and 5.3 we have found gauge transformations (BRS-
transformations) forming a closed algebra and containing infinitely
many parameters (to any finite order in the fields there is of course
only a finite number of parameters). We now have to check whether these
parameters have physical significance. Since they may be understood as
determining the function 'f(@)l 6 =0 ° F(C) (F(®) then being fixed
by supersymmetry) upon which the theory depends and C is a pure gauge
degree of freedom we do not expect any impact on the physical properties
of the theory caused by the 3y - Indeed, what we want to show now is just
that by a proper choice of gauge a theory with a, $ 0 is equivalent

to a theory with a, = 0. In other words, the a are a type of gauge

parameters.

In order to derive this result we start in a generalized gauge
of (d,B)-type*, given by (5.86) with & replaced by an arbitrary func-
tion G(o) lying in the adjoint representation. Its expression is sim-
ilar to that of the function (5.115):

i) B (5.141)

Since G is a composite field it must be coupled to an external field
g -= 91T1 (d = 2, Qg = 0) and Tikewise its BRS variation H to an ex-

See [II.13] for an equivalent discussion within an a-type gauge.
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ternal field ¥ = Qﬂiri(d =0, Qg = -1). The generalization of the gauge
condition (5.86) reads now

T === = T
55 =00 B+ DDD3~§— (5.142)

and, omitting matter fields which are irrelevant for the present dis-
cussion, we have as Slavnov identity

&(r) = 8L 8L By L. §1 ég—»-- 91 T
8pq 804 8c_q 8¢_q §%, (5.143)
+ 8L 8r . 8r ¢r 0
601'6c+1 651 E+1
The new ghost equation
g__rc*_ +~DEDD§,-% - 0 (5.144)

follows as the old one (5.89) from the Slavnov identity (5.143) and the
gauge condition (5.142).

We Took now for the general solution of the Slavnov identity and
of the gauge condition. As a consequence of the latter and of the ghost
equation I' has the form

I = BlBl + I‘(@,c+1,p,c, (3', %®') (b.145)

———

G +DDB + DD B

oy
1

(5.146)
®' = 3 _-ppc_ - Db C

and ' does not depend explicitly on B and c_ . Supersymmetry, rigid and
R-invariance being taken into account, the most general form for I can
be written as '

T = A®) + pqR (2,c,) +§i6, () +H' H (2,c,)

11 171 | 1 1 (5.147)
- oy(c,e,); - 61(8,8,),

The supersymmetric invariant A and the superfields R, G, H are arbi-
trary functions of their arguments. They have zero dimension and om-
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charge 0, 1, 0, 1 respectively. The coefficient -1 in front of the last
terms fixes the amplitudes of o and o.

We calculate next the implication of BRS-invariance on (5.147). For
this we have to insert (5.144) into (5.143):

s(r) =@(F) =80 8L g 8L 8L 8L 8L 8L . (5.148)
Spl 6@1 69ﬁ' 601 Gc+1 601 6c+1

and then to perform the action of B on I' of (5.147). We thus find the

following conditions on the functions appearing in I

4R =0 (5.149)
4G = H (5.150)
4H = 0 (5.151)
BN = Q (5.152)

where b is the linear operator acting on functionals of @,c+ according
to

4¢ = R, 4c, = -c,c, , HC, = - C,C (5.153)

The solution of (5.149) is, as we know from sections 5.1 and 5.3, the
function

-1,2
& _ 65 75(3) A
R = 0% (a,c,) o Qqp (2scy) (5.154)

& =% (o)

¥ being given by (5.115) with ¢, =1 and Q by (5.6).
Since 6 is nilpotent on functionals T(@,c+)

4% 1 =0 (5.155)

(5.151) follows from (5.150) and H is then given by
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-1,z
H=a6=R, & = 1~ o (s, 380
L so 53 227 e
1 2 1
_ ~ (S _1 ~
= Qgp (2,0,) = G (F77°(2)) (5.156)
53 .
~ 2 b =7 (3)
(5.152) is solved by
Mo} = Ty (5 (0)) (5.157)

I'yw being given by (5.20).

Therefore the general solution of the Slavnov identity (5.143)
reads

. 64’11(5) .
F(Q’C.{.’p’Oa a': gcl) = IﬂYM ((I)) + pl AT QSZ ((D,C+)
8.,
+ % Q, (0,¢,) S, (F 1) (5.158)
1 "s2 + 5% 1 -
2 o =%(2)
- op(e,ey)y = 5(8,8,) 1 + Gy 6,(8) + B8,
Now, Tet us define a new gauge function é by
6(e) = 6(%5 "L(e)) (5.159)
I(0,c,00, Gy %) =[Iy  (8) + By 0, (0,c,) +Hy0, (3,c,) = 6y(9)
2
+G16,(2) + DDG, (0) 5’651(@)] (5.160)
o o =F ()
- ol(c+c+)1 - ol(c+c+)l
with
N EER )
0 =p) ———— (5.161)
8 .
o = %(0)

This shows that the solution I' (5.158) corresponding to a function (o)
and a gauge function G(®) is equivalent, modulo the canonical trans-
formation
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2> 0=%(0) o~ olp0) (5.162)

to the solution corresponding to ¥(¢) = & and gauge function
6 =65 10)). |

DU v s el g

In the last subsection, we have shown that the parameters a, im-
plied in the BRS-transformation law for the gauge field can be inter-
preted as gauge parameters. Our purpose is now to check explicitly their
non-physical character and to provide a formulation which can be ex-
tended to higher orders. We shall in fact show [II1.14] that for any
gauge parameter p there exists an insertion Ap such that

8y 2(3) =4b - 2(3) (5.163)

Here Z is the generating functional for the Green's functions, obtained
in the tree approximation from the classical action I' by Legendre trans-
formaticon (see Appendix B). j stands for the sources of the elementary
fields ¢, C,» Cs B and A. Ap'Z denotes the generating functional for
the Green's functions with the insertion Ap - an integrated field poly-
nominal -, and 4 the Slavnov operator (B.23).+ being linear in the
sources j the right-hand-side of (5.163) vanishes on shell, i.e. at

j = o, which shows that the scattering matrix is indeed gauge parameter
independent. This equation can be generalized for the generating func-
tional Z (j, q) of Green's functions involving gauge invariant opera-
tors Qi’ the latter being coupled in the classical action to the BRS-
invariant external fields q; - Eq. (5.163) at j = o then shows that the
Green's functions of gauge invariant operators

- s :
<TQ...Q, > =1 f g"'—““gz* Z(J,q) (5.164)
91-++ 3=0,9=0

are independent of the gauge parameters, too.

We shall prove (5.163) in the .linear (a,B)-gauge defined by (5.86),
the gauge parameters being a and tHe ak.'To do this we impose a gener-
alization of the Slavnov identity (5.85) (we suppress trace as well as
integration symbols, and we omit the matter fields):
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oy = 8L 8L 4 g Sl 43 Qg_ 4 SL 80, ég.ﬁgm
Sp &¢ éc_ éc_ 6o fc, 8o Sc (5.165)

+xo I+ )
w,k

3 ' = 0

X
wk awk

The terms which are derivatives with respect to o, a, mean that we allow
the gauge parameters p to transform under BRS into Grassmann (anticom-
muting)parameters z which are BRS-invariant. The notation is

p=(py) = (o, a,) 2= (7)) = (X %) (5.166)
The gauge condition (5.86) is modified, too:
%%=a55§+%—5300¢+%— X0D ©_
(5.167)
Lo ppB+£000DO+ L XD c
8B B

It is clear that the theory defined by (5.165) and (5.167) coin-
cides at z = o with that constructed in sections 5.2 and 5.3. To see
that the Slavnov identity (5.165) implies the condition of gauge inde-
pendence (5.163), let us translate it in terms of the functional Z:

g o (5.168)

and differentiate it with respect to zp. This yields the equation

%, £ ='mz] L (5.169)

which taken at z = o is indeed (5.163) with Ap'Z = % Z.

It remains to find the general solution of the Slavnov identity
(5.165) and of the gauge condition (5.167). We first notice that, like
in section 5.2, they imply ghost equations

QF

- § 1 .—3§ 1
r -[w._ + & 000D - ] r= iyoos
1 &8 8 4 z

[%rﬁté-ﬁﬁm g-b—]F= -%XBE'E?

IH

(5.170)

HH
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which are now inhomogeneous. Inserting them into the Slovnov identity
yields

_ 6T sf, T of , o of

4(r) =3(T) = -
Sn &¢ 8o &¢C 8o 8C
ne * * (5.171)
+ 2 z 2. I'=0
1 P
I' is defined by
r (Q’C+ac_38’psc’p9z) = F(@,C+,n,o,p,2)
- — - 1 (5.172)
+BDDo+BDD&+aBB+x5 xcB + C_B)
and depends on ¢_ and p only through the combination (5.110):
n=p - %—(DD ¢+ 55‘5“) (5.173)
since it fulfills the homogeneous ghost equations
GgF =0 Gf:g (5.174)

A special p- and z-independent solution of (5.171) is obviously
given by

FS(Q),C+,T},G) = FYM(Q) + n QS(Q,C_'_) - O‘C+C+ - BC E+ (5175)

with FYM and QS given in (5.20) and (5.6). Fs is nothing else than the
special solution (ak = 0) given in section 5.2. The search for the gen-
eral solution begins like in section 5.3: the substitutions

o = % (2,p)

- 1

n o= >=TrfdvV n FH(2,p) (5.176)
b

A - ¢ =%(p)
c, = tlplc, ¢ = EHT°
- with ¥ and t arbitrary functions of their arguments - into fspre—

serve the Slavnov identity (5.171) at z = o and thus provide the z-in-
dependent terms of the general solution. We can, therefore, write the
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latter as

A A ENEN

F(@,C+,H,G,D,Z) =T (@aC.,.m,O')

- (5.177)
+ % Z4 {n G](¢,p) + h](UC+ + GC+)]
where the unknown dimensionless functions Gp and hp are determined by

the full Slavnov identity. The result is

1

3 1,2
G.(¢,p) = - EN (2.p)]

¢ = F(2,p) (5.178)

)= g HR)

The function % has the general form (5.115) with p-dependent coeffi-
cients Cys S Hence the general solution (5.177) depends on the gauge
coupling constant g, on Py and zy, as well as on the arbitrary func-
tions t(p), cl(p) and quk(p). It reduces at z = o to the general solu-
tion given in section 5.3, parametrized with g and Py if we choose

(5.179)
C]_(p) =1, ka(p) = ka(awlkl;kl < k)

Cook {a) being the solution of the system of equations (5.140). Inspec-
tion of (5.139) shows that this may be achieved by imposing the normali-
zation conditions

TroA AT T (5.180)
i Caj ok
- (5.181)
oA 4855
(5.182)
ser = -4 (k-1)a , , k>2 '
1D Ayl 3k

W
1(i1.A.1k)’
ant tensor appearing in the expansion of the coupling ﬂij according
to (5.139). Condition (5.180) fixes the amplitude of c, and 7 {5.181),

that of ¢ and n and {5.182) defines the gauge parameters a No nor-

where §i denotes the projection onto s the symmetric invari-
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malization condition is needed for o which is already defined by the
gauge condition (5.167). Finally the condition

1
I = 8. . (5.183)
D5 ag?

defines the gauge coupling constant in accordance with the expression
{5.14) for the SYM action (5.20). If matter fields are present their
amplitudes, masses and self-coupling constants are defined by suitable
normalization conditions which we shall not write down here.

As a supersymmetric extension of non-Abelian gauge transformations
we have exhibited the transformation law

80 = i(A-R) + o [0, A+F] + 1o [0,[0,0-R1] + |
7 12

(5.6)
= i QS(QaA)
arising from
& - e“1A e® it (5.5)

for infinitesimal A,K. It has then been established that this is only
a special case of the more general law (5.63), (5.64) which can be ex-
plicitly obtained from (5.138), (5.128):

-1,
§. =1 Q.(2,4) =1 Egééfifl'qsi(é’A) ) (5.184)
J o = F(0)
with
X (k)
o 705 = Fi(e) =0y + kgz wzl Cuk 5?(11...1‘,() i, (5.119)

As for the special gauge transformation law there exist also for the
general one BRS-transformations and, in fact, it is the general solu-
tion of the Slavnov identity which forces one to consider the general
law. The desire of rigid invariance fixes the peculiar appearance of
symmetric invariant tensors (with respect to the gauge group G) in
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(5.115) resp. in (5.63) (5.64). The parameters ¢k (5.115) (in 1-1 cor-
respondence with awk) are seen to be gauge-type parameters.

Supersymmetric Yang-Mills theory can thus in the tree approxima-
tion be characterized by

supersymmetry: wa =20 W

rigid gauge invariance: wm =290

BRS-invariance: Slavnov-identity (5.84) (5.85) (including gauge con-
ditions (4.34) (4.43))

1

(softly broken) conformal R-invariance WRI‘= WR (mass terms)

The parameters of the model g, 3,y s well as the field amplitudes
can be fixed by the normalization conditions (5.180) to (5.183).

With these symmetry requirements and normalization conditions the
action is uniquely determined.

6. Supercurrents

6.1 Generalities

The models presented in sections 3 to 5 are characterized by Ward-
identities. First of all by the one of supersymmetry, then by R-invari-
ance, internal symmetries and gauge invariance. A1l of the rigid sym-
metries are described by Ward-identity operators of the type

W= o fde 6Xw%r (6.1)

where X stands for the symmetry in question, the integration measure

dz is appropriate for the type of field (dS for chiral, dV for vector
superfield) and a sum over all fields ¢1 i =1,... is understood if
there are several fields present. The variations 6X¢ contain informat-
ion on the algebra of symmetry transformations and - together with the
normalization factors chosen in (6.1) - imply that the functional dif-
ferential operators WX satisfy just the algebra of the charges associat-
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ed with the symmetries. So, for instance, in the case of supersymmetry
we find

el oo ML P
{wa, wu} =20 w“ (6.2)
W, Wgl = 0= {Hg.Wal s (6.3)

where wﬁ denotes the Ward-identity operator of translations:

: §
W = -1 Jdz 3 y = 6.4
I.e. we have reproduced (1.5), (1.6). Acting with the operators W on T,
the action in the tree approximation or the generating functional of
vertex functions in higher orders, we have represented the symmetry
algebra on an object which is tractable by perturbation theoretic means.

The proper subject of the present section is the study of the
currents associated with the symmetries of the superconformal group and
specifically their covariance with respect to supersymmetry [I1.15].

As suggested by the analogy to Lorentz covariance one might expect that
some currents combine to superfields. Obvious candidates are the cur-
rents for R-invariance, supersymmetry and translation invariance since
their charges form already superfields as shown in section 2, where we
used them to collect individual Ward-identities. Let us consider the

“Tongest" superfield ﬁR - see (2.9), (A.27), (A.28) - and a theory T
which satisfies:

W' = 0 (6.5)
Writing
R o= Jdx w (6.6)

we have as a consequence of (6.5)
Wro= -iatyy (6.7)

i.e. the r.h.s. is a total derivative, the factor -i is chosen for con-
venience. If w possesses supercovariance, d a VU has it and then - hope-
fully - V“. But if V. is a superfield it makes sense to rewrite a co-
variantly (use (A.10))
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Who= - poobs {00,0%) v

= 0%- 5 o¥. 0% v ) + D-

o o

which suggests that the 1.h.s. too permits such a decomposition
-q

a -
W:Dwa*D&w - (6.9)

In fact, it will turn out in all of our examples that even more is

possible: one can "integrate over Du” and establish separate equations,
namely

B N s 1
w, I = 7 O D™V 4+ ?-Ba (6.10)
and its conjugate
- _ 1y 1 5
ws, r=- T 9% D VU + ?-B& (6.11)

Here Ba, Bd are constrained by

]
p* B, - Dy 8% =0 . (6.12)

A close analysis of all possible contributions Bu will also reveal that
in our examples VH has amongst its components an axial current, assoc-
iated with R-transformations, a supersymmetry current and an energy-
momentum tensor. We shall now go through our standard examples and then
come back to general considerations in subsection 6.5. Before actually
doing so let us make two comments:

(1) The above procedure is a slightly unconventional way to establish
lTocal Ward-identities from given global ones. Usually one makes the
parameter of the respective symmetry transformation space-time dependent,
differentiates with respect to them and thus isolates the total diver-
gence which vanishes on shell. We bypass this orthodox construction
since we want to avoid the complicated algebra of local R-, susy- and
translational transformations which:is nothing but the algebra of super-
gravity transformations. (For a different approach compare [ 111.24] and
section 6.6.)

(ii) The transition from (6.5) to (6.7) requires the existence of an
algebraic Poincarée-Lemma in the space of all field polynomials. A
general proof of it has only recently been given [III.ZS].
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6.2 Chiral models™

P g

In order to derive local Ward-identities from global ones while
preserving supercovariance as sketched in the preceding subsection let
us look at the space-time integrand of the R-Ward-identity operator
(s. (A.29))

R : . ST ., (e . 2oy ST
W' Iz - 09 -1 JdS i(-n+88z)p 2= 6.13
i [dS i(n+0a v gp -1 [d3 i(-n+835)0 = (6.13)

it

namely at -DD((n +©3,)yj) - DB((—nf@ 35)U3). (Here we have written -j
instead of &r/8y.) Due to the explicit appearance of 0's and a@'s

these terms are obviously not supersymmetric. But they hint to a pos-
sible supersymmetric form. This becomes even clearer if we recall (6.9)
and try to identify the contributions to ya and W&. Because of dimens-
ions and the form j there are in fact only two supersymmetric can-

didates as terms of wa:

W I''=a Da(wJ) + b Du Wj (6.14)
(here a and b are numbers to be determined). With the help of the
formula

fax D U =-Llg deU+—1—j“dSe u (6.15)

o 2 o 2 o '

one can fix the coefficients a,b by forming Dawu, integrating over
space-time and comparing with the desired part of WR:

[dx D“wa = afdS yj + bfdx DO‘(Duwj)
= afdS vj + % bjds 0%, Vi + 5 6%JdS Dy + ..
ie. a=-n, b=-2 (6.16)

Encouraged by this result we go ahead and compute

- O - B
Jdx wr = [dx(D Wl = Dgwsl)

with formulas corresponding to (6.15)

*Maintaining parity
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fdx U = -  [dSe*U + 5 6%fdSe, U - ¢ 6% [dS U,
fax U = - 7 [d30°U + % B,[dSE6" U - 7 & [aS U, (6.17)
[dxD. U= % [d3B,U - 5 B, [dS
XDy U= 5 st%” - ?-eujds u
The result is
fdx wh = WX T | (6.18)

I.e. the contact terms

§

i} S S
wa =1 DQ(A SA) + ZDQ A SE
(6.19)
W. =nD.AS) 420, A S |
a SA a SA

which are themselves supercovariant on the local level give rise to
the covariant rigid contact terms which we wanted to reproduce. These
contact terms will now serve us to derive supercovariant local Ward-
identities 1in concrete models.

6.2.1 Massless Wess-Zumino model

We choose n= -2/3, the conformal R-weight, and the corresponding R-
invariant massless action{{3.26) withix =0, m = 0)

P=de Jov BA + §5 (Jas A+ Jd3 R . (6.20)

The derivatives needed for (6.19) read

8T A T
Spc=-d=1g DA+
(6.21)
sr = 1 72
ﬁ——g—mDDAJp%—GA
They yield what we shall call the trace equations
_ &G
“ZWOCP—D V(Xél’
(6.22)
-~ e
-2 W& r=0>0 V&&’

with
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- - %.(DaA DA - ADD A+ ADD A). (6.23)

V e
o

As a consequence we derive

- no CR.oO p oo i oM

wl =D WOC r D&W r 10 V“ (624)
" e’

Y4 7 % Vu ’ Vp = % Va& (6.25)

i.e. the superfield Vp is strictly conserved on shell.

Due to (6.18) we may write

W= Wt @aqu + i éaﬁou - ZQGUGWE + total derivatives (6.26)
and expect that the zeroth ©-component of Vp contains the churrent,
the first components ©(8) the supersymmetry currents QUQ(QUQ), the
©00-component the energy-momentum tensor T e This is in fact true
(and will be shown in detail in sgction 6.5). We therefore call VU
supercurrent. It is the supercurrent because all other currents of

the superconformal group may be obtained from it by taking covariant
derivatives and space-time moments. Let us give the respective de-
finitions. (The name of the current refers to the symmetry of the

® = 0 component of it, cf. sect. 6.5.)

'rip =V, (6.27a)
Qo = 104 Vo (6.27b)
G = -iDy v (6.27¢)
“w - - Ig (Vi + V)oY = [DB,Dé]va&ouBéUCj& , (6.27d)
A N (6.27e)

MUVD o uv Vooup

6“ = x" ?uv , (6.27F)
Ry = (e - a1, (6.279)
gpa = i X\ GZ& 6P& y (6.27n)
§u& = - Q;L ovLx, - (6.271)
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The x-moment currents are uniquely determined by requiring that they
be strictly conserved (s. App. B of [I.6]). The most convenient ex-
pression of their conservation propérties is in terms of the trace
identities of the supercurrent.

VR, = Aty - - 5oy - 0 ,), (6.28a)
aH Sua = Daa”vu , (6.28b)
trace identiy 63 og& = 21 D“va& , (6.28c)
oM 6“& - D&a“v“ (6.28d)
trace identiy: cg& 83 = -2i D&Vu& , (6728e)
¥ 7= T (000, D“:‘vmB o™ + 05 D pPg, o™ )
- 15 9yep (0% 0f] o (6.28f)
trace identiy:
T - -5 (6&63 + D%, Qﬁ
= - %—[D“,E&]va& | (6.28q)
3 ﬁ“vp - (?pv SRR IS PRI L A (6.28h)
oM BH - TAA + XM (6.281)
T U N
+(ax ot - g M2 )abT (6.283)
v v UA
aH §“a‘ =g, 5ﬁ + 1 x ousal 63 , (6.28Kk)
3 §u& - - 6ﬁ oy - i xvozaa“ 6ﬁ . (6.281)

Hence, as long as (6.22) holds all currents (6.27) are conserved.
They express the superconformal invariance of the massless Wess-Zumino
model in the classical approximation. The currents (6.27) and the
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identities (6.28) will also be useful in other models, s.b., and will
be of great importance even in the case when superconformal invariance
is broken. In order to prepare for higher orders where in general
breaking by anomalies is to be expected let us study already in the
classical approximation the breaking induced by a mass term.

6.2.2 Massive Wess-Zumino model

We add a mass term
_m 2 g fe
I, =3 (JdS AZ + dS A?) (6.29)

to the action (6.20) and break thereby explicitly conformal R-invariance

Ror= 0 (fas a2 - fa3 A7), (6.30)
Since supersymmetry and translation invariance are both unbroken, (6.30)
is correct as it stands. The mass term contributes to the equation of

motion

13

01!0:
b
I
I-—';P—J
i
[ww]]
faw 11
+
I3
=
+
p-d
n

i , (6.31)

and thus to the trace equation

1

-y . - 1
2w, T =D o - 2D, (35 mA7) (6.32)

and to the current conservation equation:
Wy s o M a2y _ oRR/M g2
) VH = jwl - i (DD(12 A%) DD(12 A%)y) . (6.33)

Obviously there is no redefinition of VU by which one could absorb the
breaking term. This is, of course, alright since conformal R is broken,
(6.30). But looking at the conservation of qu as defined by (6.27) we
find

L _n pp (M fe

9 Qpa = Da wl' DuDD (12 AZ) (6.34)
a non-conserved supersymmetry current. Since the mass term Fm’ (6.29),

was supersymmetric there should exist a strictly conserved supersym-
metry current and, indeed, the disturbing term in (6.34) is a total
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derivative (use (A.10))

M@+ 410 . DY (T B2)) 2 <D wl. (6.35)

uo pad
To the cost of a total derivative contribution to the contact terms
this new supersymmetry current can also be obtained directly from the
supercurrent by the definition

A _ . . -,\) ,
Qe = 104V, - (0,0D) V) - (6.27p")

The corresponding redefinition for f“v reads

2] A
To= T8 W+ ¥y, -2 )

ne vy 9!

\ (6.27d")
and shows that we have been manipulating trace contributions i.e.
improvement terms for the supersymmetry current and the energy-momentum
tensor. The conservation and trace relations associated with these de-
finitions are the following

F Q= 10,3V, 4 2 a“c“adoﬁve&), (6.28b")
trace identity: ﬁuu ofe = - 61 0%V ., (6.28¢")
#E - 1 (o0 E&Dévaé 0 2% + 0 0,0%g50 %% )

; %E'Uvsé [DB,DB]a“vu 7 [Du,Dd]Va& (6.28fF")
trace identity: ?AX = %~[DQ,DQ}VQ& (6.28q")

A1l other definitions of moment currents, (6.27), remain unchanged.
The breaking of superconformal symmetry by the mass term of a chiral
field shows therefore up via trace terms in the conservation equation
for the R-current, dilatations, conformal transformations and special
supersymmetry transformations.

6.2.3 General chiral model

The preceding considerations can easily be generalized to any chiral
model, (3.20),
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AA A

_1 A
T = T€~jdv AA* de(kkA e T ek B A A

kT Mg Ah

A A AA B (6.36)

+ JaSOVA + m AR+ g AR

since the respective transformations are diagonal in the fields. We
choose contact terms w(k) which are diagonal in the fields

o
=5 W(Klp D 6D
w, I = E Wy T = E (”kDa(Ak 6Ak) + 2 DuAk gﬂ;) (6.37)
and find as trace equation
2w r=0*_,+2D S-8 (6.38)
[0 aQ [0 o]

where the supercurrent V is also a sum of the individual supercurrents

y(k) (6.39)

y(k)
Qo

it

(nk+ 1) DQAKD&AK +,ﬁ_(- A DDA+ AD.DA )

and the breaking terms are of the form

S = - Yk 'k (nk+ Mot Nt 2) AkAk'Ak”
: (6.40)
- M (nk+ Ny 2) AkAk'_ Ak(nk+ 2) Ak
B = -+ (30 41)000D (AR) (6.41)
o 4 ‘2 'k o'k ’ )
Hence the current conservation equation reads
a“vu = iwl + (0D S - DD 3) . (6.42)
For conformal weights, N = -2/3, we just recover the analogs of

the Wess-Zumino model treated before. For R-weights leading to a non-
conformal R-symmetry we consider as specific example the O'Raifeartaigh
model, c¢f. sect. 3.3, where N, = Ny = -2, ny = 0. The corresponding
breaking S vanishes and B reads



DDD (2AA - AA +2A ﬂz) (6.43)

and the R-current is strictly conserved

a“vu = fwl. (6.44)

The breaking term Bu is hard, hence the energy-momentum tensor not
improved. This goes hand in hand with the fact that for 0'Raifeartaigh
weights the superconformal algebra does already not close on the fields
Ak (cf. sect. 2). There is thus no point in going into the moment
construction of conformal currents.

In a gauge theory observables are gauge invariant quantities.
The supercurrent - containing an axial current and the energy-momentum
tensor - should therefore be constructed as a gauge invariant operator
if possible. This is straightforward in the classical approximation
[11.15] where one can discard gauge fixing terms and just write down
gauge invariant extensions of the matter terms (6.39) and correspond-
ing expressions for the gauge vector field. But for higher orders a
more systematic construction is needed which includes contact terms
i.e. permits to go off-shell [I1.16]. Hence our first task is to find
the contact terms for the gauge field. In order to do so we first
observe that the matter field contact terms (6.37)

- $ §

WOL r=sz nkDOI,(Ak —G—A—“) + 2 DOLAk A (645)
k k k

have quite specific covariance properties (besides being superfields).

In fact, under conformal R-transformations they transform as densities

= i sth) (6.46)

[wR, wa] = -1(-1 + 09 )w o

of weight -1. Similarly, under abelian gauge transformations (4.68) -
we think of SQED -

55 8 s 5
WA = DD—SE - g A+—6‘K:+ g A_ (SA__
(6.47)
Can § S8 58
Wf\ = DD H + g A+ 'g‘/i“ - g A_ .G—A—ﬂ



-88-

they transform as

—
~
—
—J
133
no
Lww §
—
ja]
~
(o]
w
—
[aN]
—
~
=
=
—
(3]
~

(6.48)

This suggests to postulate that also the contact terms of the gauge
vector fields have the same covariance. (6.46) permits for a real
field ¢ the following contributions

£
]

ay DDDQ©6® + a3, DD@Daé® + a5 D@DDa6®
tay D@DQD6® + ag @DDDQG® + 3 DqDD@GQ

+ 2y DaD¢06® + ag DDu®D6¢ + ag DuéDDSQ
+ a10®DuDDs®, (6.49)
(6® = §/89).

The requirement (6.48) of gauge covariance fixes

69 = - al,
(6.50)
3 = 0 k # 1,9
and leaves 2 arbitrary. It is fixed and found to be
a; = - 2 (6.51)
by demanding - in accordance with (6.18) -
fax(0%, - Bga)r) =W r (6.52)
0=0
Rp -
where &8¢ = (@8@ + @8®)®.

(A real vector field ¢ has R-weight n(¢) = 0, cf. (A.28).) Hence in
an abelian gauge theory we may use as contact terms for the gauge
vector field ¢ [I1.16] '

S, 2D obD

wo= -2 DDDa® ) o

(6.53)

%/
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A somewhat lengthy calculation (repeated use of (6.15) and (6.17) has
to be made) shows that these contact terms yield

Wr = @0r
0=0
Wr = Jdx WP
D P v P
W wtrace X Wv
P _ 3 o}
Wirace =7 1 (D"w_ + ﬁaw )
W = l—-(—(DDD.W + DDD w.)o ¥
v 1 o o a’Tv
; ovBB{DB,Bé}(D“wa - B,i%) + 81 3 (0% + O (6.58)
With 6.0 = (d + + 03 - + Ba2)0
D 2 ] 2 e

and d{®) = 0.

This result is encouraging because it indicates that the moment con-
struction of sect. 6.2.1, 6.2.2 might again yield all currents of the
superconformal group.

After these preparations it has become an algebraic exercise to
calculate the explicit form of the supercurrent. For the SQED action
in the a-gauge (4.66), (4.67)

r o= T%@ [dv o(DBOD - %a {oD,DD} + 8M2 )0
1 - g0 g0+
+ 15 Jav (Ae%A + A e R )

7 (JasAA + [aSAR) (4.67)

We need the equations of motion; they read:

ST 1 sAn 1 = g /5 .99 B -gbs

<5 = g3 (DOOD - 5 fop,BB} + 8M*)o + 35 (A,e” A, - Ae 77A ),

ST 1 amsg E.0y m

S‘K*F* Tg DD(Ate g ) - Z A; N

- J5 oo(e™n,) - 7 A (6.55)

I+
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We have to combine them as the contact terms W, prescribe.

. e § ss
WQ: -2 DDD(},(D_Q;*— 2 Daq)DD—@“
+nD (A £ +2D A £ (6.56)
ot cSAi cTo = SA, :
The result is the following:
w0 _ 2\ AR
) Va& = - 2 qu -2 DGS - 6(n + 3) DDDOLI5 (6.57)
with
voo= v e Ly
[6)
inv 1 1 142 1 3
Vv —(-EnV ‘--2‘ +~1‘“V>,
1 gd qd
Vs = [DQ,DW](A el A + Ae A
2 gd, _gd gd
Vg =D (A e " )e’ Di(e A )

v3, - 0bD o DDD.o |,
Q 04

Moo < 1 2
Vi, = - D,00:0 + 6'[Du’D&]® ,
V8, = - I (9DBJ - oODy - DODY + DDy
+ DDoy - DDOY + DDoY - DDay
- DDDoDDD® + DDeDDDDD - DD@DDDD@)Q& ,
v = DDDD®
_ (n+1) 1 .2 2
S =-am=im (AA) - 57 MO DD(RY) + S,
S, = Lt DD(0(3-4))
0 o 192 >
1 s gb -go
I =1g (Ae%A + A e %R )

This is the supercurrent written in the a-gauge.

It is further to be noted that we have permitted general R-weights

n = n(A+) = n(A_) for the matter fields. Two cases will turn out to be
particularly interesting: n = -2/3, the:conformal value of the weights,
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and n = ». We discuss them separately.
A
n_--g-

The trace equation (6.57) reads now

BWE, = - 2 wr - 2 psC (6.58)
Qo o ]

and the current conservation equation
a“vﬁ = 1T + 1(DDS® - DBSC) (6.59)

{upper index ¢ for confaormal) and has a form which is comparable with
(6.32). An important difference is represented by the term SO in S¢.
It has dimension three i.e. is a hard breaking term, so is a priori

a candidate for a hard breaking term in the R- and D-Ward-identity.
From the construction of the supercurrent it is clear that

T = -fdss + [dS3 (6.60)

i.e. concretely

Ko - 2w (JaSAA - [dSAA) + %% ([dSDB(9%) - [a3DD(6?))
+ 75 ([dSDD(a(y-T)) - J4800(6 (1))
hence
Fr- o & (JdsAA_ - [aSAA). (6.61)

The breaking in the R-Ward-identity reduces to the soft term as it
must. Analogously to (6.59) one can show, cf. sect. 6.5, that

Wr = - %-1 ({dSS + [dS3) . (6.62)

Again, due to
[dS S, =0 (6.63)

one finds that
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WOr = - 10 (fasaa_ + JaSAA) + 10 faver (6.64)
i.e. the breaking of the dilational Ward-identity is caused by the
soft mass terms only.
But nevertheless it is to be noted that here, due to So’ the energy-
momentum tensor is not improved off-shell. It is, however, improved
on-shell since between physical states SO vanishes.

n = o

The trace equation (6.57) reduces in this limit to

i s 55
= -2D (A, 5x-) - m D (A,A_) - 6 DDD I, (6.65)

wit -
-4 D [Da,ud}xs

I+

which suggests rewriting it into the "Du—integrated“ form (use (A.11))

Y _ oT or 1
DD I5~A+~6—‘E+A_“S—A*:+-‘2~mA+A_. (666)

Similarly, the current conservation equation becomes

. 8Ty  am/s OF m KR T
[0D,DB]1; = DD(A, 3K+7‘ DD(A, =) + 7 (OD(A,A) - DD(AR))).
: - (6.67)
Integrating over space-time we obtain
Wel = i g.(jd5A+A_ - Jd3AR) | (6.68)
. 6T or e (5 OO 5 8T
WeT =-1[dS (A, ot A Eﬁf) + i[dS (A, gﬁi+ A Eif) . (6.69)

This result clears up what we were doing: the contact terms (6.69)
represent chiral transformations which commute with supersymmetry
since they act equally on all components of the superfields A ; the
Ward-identity (6.68) shows that the matter mass term breaks tais Sym-
metry; (6.67) is indeed the current conservation equation associated
with these transformations and (6.66), the "trace" equation indicates
that there exists a simpler form for it from which it can be derived.
Using

(6.70)

(cf. (A.12)) we see that the ©8-component of 15 is the physical one:
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it contains the axial current belonging to the transformations (6.69)
in components. All other components of 15 do not generate symmetry
transformations.

In non-abelian gauge models the role of gauge invariance is taken
over by BRS-invariance (cf. sect. 5). The supercurrent will therefore
be constructed as a BRS-invariant operator [I1.17]. The realization
of this task in higher orders requires again going off-shell, i.e.
calculating the contributions of all ghost and external fields. Hence
an analysis of the contact terms is once more necessary. Since BRS-
transformations act non-1inearly on I', but linearly on Z - the funct-
ional for general Greens functions - we shall for the time being work
with Z. We demand - cf. (6.46) - that the contact terms W transform
as density with weight -1 under R-transformations

(-1)

[WR’Wu] = 18y " w, (6.71)

that they give rise to the correct R-weights for the fields

fdx(Duw& - 6dw“) = Wy (6.72)
0=0
and - the new requirement - that

[wu,é] 71=0 . (6.73)

Here W, are the sought contact terms in Legendre transformed form
and » , the BRS-operator, is given explicitly in *(B.21). It turns
out that all chiral fields come as their R-weight n predicts (cf.
(6.19) and table 5.3.1, page 62).
. _ §_1: _ §_]: .

wa(ch1ra])r = n(w)Da(m Gw) 2 Da@ 55 0 0 chiral (6.74)
(everything already transformed back on I'). For vector fields we have
the list of terms corresponding to (6.49) and now commutation with 4,
(6.73), leads to
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w,(vector)l = 20 DDDa 3 - 2 DD, <5
(6.75)

== 4T m= T

-2 DDDaD -a‘b + 2 DOLpDD %

(everything transformed back on I'). It is important to note the dif-
ference to the abelian case, (6.53), where the contact terms for ¢ had
the form they have here for o. Both forms lead to vanishing R-weight:

n{(®) = n{p) = 0, (6.76)

but they differ in their result for associated dimensions. The moment
construction (cf. section 6.5) i.e.

D D

W''T = fdx w'T (6.77)
given by (6.54) yields indeed a dilatational Ward-identity operator,

but one which associates d(@) = 2, d(p) = 0 as dimensions to the fields
®,0. Similarly the R-weight of the Faddeev-Popov ghost c¢_, n(c ) = -2,
leads to d(c_) = 3. These three dimensions are not the ones which we

had given beforehand to those fields, namely d(¢) = 0, d(p) = 2, d(c_)= 1,
hence W‘D is not the Ward-identity operator of the physical dilatations.
It is clear that the true dilatational Ward-identity operator is given

by

W = Wl (L) Jav(2e S - 2 %5)
- (6.78)
. 5 o 6
- (=1)(fdS 2¢c_ sz +JdS 2c =)

Comparing with the abelian gauge case we conclude that the moment con-
struction for supercurrents will not work automatically, but has to be
supplemented by "corrections" like (6.78).

Let us now go ahead and use the contact terms we found, (6.74),
(6.75):



- DD@Dv6. - DDDa06p + DupDde
1
+ Duc §. - gDaé - c_DQGC_) + §~wa(matter)

%-wa(matter) = -3 D (A,6y ) *+ A5, *+ %—DQ(Y+6Y ) (6.79)
' + + +

o+ Tr(- %‘D&(ASA) + DA, + %—DQ(YSY) - YD,8y)

{here 6@ = §/80).

In order to construct a supercurrent we have to deal with the equations
of motion. For a general massless supersymmetric Yang-Mills theory
which maintains parity and contains matter fields in the adjoint and
some other unitary representation the action is given in the a~-gauge

by (cf. (5.20), (5.11), (4.33), (5.78), (5.83)):

I = Finv * Tg‘f. * F@H Fext.f.
Dinv  * Tym * Thatter
Ty = %%g‘éy-Tr(deFaFa+-fd§F&?u), F, = D0(&%,e?)
T otter = de(zl(A+e$A+ + A_é~A ) + 2, Tr &%e®p)
(6.80)
+ h Tr([dSA® + [dSA?)
Mgt = Togg Tr faV D0oDDe
Top = Tzgg Tr JaV(ODc Qg + DBE g)
Tegt £ =17 jdvpos - JdS(Tr oc,c, + YP) - [dS(Tr 5E+E+ + YP)
YP =Y A +ACTY, +TrY[c,,A]
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Let us recall some of the notation.

o =o't s T generates the fundamental representation of the

gauge group G;

d = d>iT1 s T! generates the unitary representation of G under
which A: transform;
A, = (Ai ) cf. (5.19);
A = Air transforms under the adjoint representation (cf. (5.19a));
c, = ClTi G clTi ;
Qg = Qa, = 0) =c,- &, +5 [0+ 8]+ . cf. (5.6), (5.65).

We shall in fact use below the following decomposition of QS:

o (0,c,,¢,) = Ric,} - R{E,} (6.81)
where
g - 5 ()" .
R {A}-ngom[m[...[m] ]
NSRRI
R {ab= 1 o [of...[e.n]...]
n=0
R {n}= [ (-1)% [o,[...[0,i]...]
n=0

and the coefficients a, are determined by
-1
R{R"*{A}} = A .

The equations of motion for the action (6.80) are as follows:

A} (6.82)

1 -
7% {DD,DB}9 ,

It

aio»

rl i
3



ST 1 a=
Sc_  128a obDo Qg
8T L 56 Rin) +fo,c ]+ Y TA, - ATY, - [Y,A]
(SC+'_ n Sy - + - + 5 5
6T ST . .
S0 P B
8L~ ;. DD(A ea) - YT
SA 1 + -7+
+
ST _ o AR(a=d ~
KT z; DD(e "A_) - c. ¥,
8T sz .0-1 2 1 2
SE " % DOy "AY) + 3n(A" - 5 Tr A ) - {Y,c+} ,
6r ~ &r 8T

Y = A~C+ G = "C+A+ N 37 = [A,C+] .
The supercurrent is now to be found by decomposing

6
2 Wl =a = Z A (6.83)
into

A =D . +2D S (6.84)
(¢ o70) o

with V and S being BRS-invariant, vu an axial current vector superfield
and S a chiral superfield related to the breaking of the conformal
symmetries by the gauge fixing procedure. The Tist of the terms Aé

is the following:

- l_ ]' = i _é_f_ -~ AN
70, = q:DDDOL 3 DDanQs
- _]:. 2 - b é_f_ 5
7 b, = DD@D@ 53 + q1”DDQs
- l-AB =-0Dc ﬁﬁﬁ{ } ~YDTECA -ADTY -Dc [Y,A]
4 “q o+ n -o o+ -+ + o 4k >
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1 4 1 creoms o oo
-7 0y % - 1783 (c_DLQg + DOIDDC‘DDQ,S DD@Dqch) ,
1 5 1 P, - 1 am o
g bt §-ledDD (01.+A+ +Aa) - g.zzDaDD(Aa.),
- L8 ., (0ba.p A, + DA DBA)
4 g, 1 +oq + o - -

~6(F (Y TA, - ATY,)) + 2,0 ADDa + Duc+[Y,A] .

Again we have introduced a number of abbreviations:

L = {DD,DD}
oz vAyr, a =¥A o =AG?
- b +— + b ] A - 3
azvhy L, a, =AY, a =VA
= ? + T+ ’ - 7 -
¥=e? f, = ylp vy, y =z o?

One should also note that Tr symbols are omitted.

For the decomposition (6.83) we use two guiding principles: first
we try to rewrite A; as h-variations, because then their BRS-invariance
is obvious; second we use the Timit to the abelian case where we know
already all terms. At this stage one obtains

1.1 -
1.2 ==
- _Zl-_ AOt = ’G(DOLT]DDQ))
1 3 _ _ - _ _
- g by = 4( fOCDDR{n} + f(Y_TA, ATY,) fQ[Y,A}) ,
L4 .l (¢ piq + 0 HOC DOQ. - DDeD Lo)
4 "o 1280 *7-"77s o -8 o 7 (6.86)
4 _
’6 AO(. = 0 >
1.5 1 3
T AOL = - Kl DQ{V(Y‘A.‘_ + A‘Y+ + YA) + hDOLA 5
6A5 = 0,
a



1.6 _ == R - T
-G zl(DDq+DaA+ + DGA DD + DDa%qu+ - A_fQDDaz)
—ﬂ(fu(Y_TA+ - A_TY+) - YDaA)
3 (6.86 cont'd)
-h D A°,
o
82% - 0
o

Similarly, it is useful to have a - possibly only partial - Tist for
the terms contributing to S and V as they are characterized by their
quantum numbers. Discarding matter terms for the moment we have as
possible terms for S where S is of the form”)

(quantum numbers of B : dim:2, R-weight:0, Q@H:O’ parity:+) the follow-
ing ones:

B™ = 6(no),
8% - pDoDDe + DOQ T + DDQC_ -, (6.87)
68° = 0

The current terms are characterized by dim:3, R-weight:0, Q@H:O’

parity:- . Hence we expect certainly the following terms
v, o= F iR,
o (¢ a
L D QB.n-D5 5. O _ st
Vu& - DaQst” D’QsDan * DQQD& §o D <I>Da e
- - - Al
= 6(Da®D.n D&QDan) = 4 VQ&, (6.88)
2 - ) ) O -
Vq& = DQDD®D&DD¢ + DQDDQSD&C_ DdDDQSD@c_ ,
8, -0,
oo

*)

Tr symbols omitted
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y3, = D D,DDoDDe - D,D DDeODS + D _D.DDQ_c
oo a o oo oo S -
- D&DGDDQSC_ + DDQSDQD&C_ - DDQSD&DQC“ , (6.88 cont.'d)
3.
6Va& =0 .

A1l these terms are generalizations of corresponding abelian ones,
so they must occur in the current.
In the first step we try to establish a relation amongst the non-

4 2 42 3

variations, i.e. A@, B=, V&, VY and find indeed

4 eroog2 s 3
16oaT = BOD 8" - DX(VS, + Vi) (6.89)

In the second step we Tink the terms which are variations, i.e.

Al, Az, A3, B1 and V1 and introduce, again in analogy to the abelian
case,
1 3 k &g 1 =0, 1
- 7€, = Y A - DDD BY + 2D7V_.. . (6.90)
o k=1 o (¢} eie}

1 1 4
"7 b 7T ﬁ'écu
(6.91)
1o | as o eRAe - wln wRRB
- 7 €, = - DDbon + D 0DDn - ¥ DQWDDR{n}
and that this reduces in the abelian Timit to
1 nabelian m e
-7 Gy DDDq®n )
A= ST 3belian sao = o=
= - DDD_ & w——=— = - DDD_o¢D.DDD™® (6.92)
a &9 o o
- .5 (FE
=-D (FmFd)abelian
This suggests the introduction of
1. _ .4 1 YM ,
"ELOL:U (_WVO’&) (6.93)

A

in the non-abelian case and to search for a Eu whose variation yields
E .

o
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E =6t
o o
(6.94)
1 A -
-7k " -F Rin}
A1l of this construction was to find out that
~ A -&A4
cC -E =207V . (6.95)
o o 7]
where Vi@ has the complicated structure
a4 o-ly= 5
V.. = R7¥{D,0.0 olR{n},
(6.96)

e liiae) = T b 1 e (Al 8} )
n=1 " k=l ¥

(Tr svmbols omitted).

Vi& = 6Vi& is the last element of the basis of V needed in the tree

approximation without matter.

The decomposition problem has been pushed by now to the following
stage:

1, -1 seop2 . 1 2.3
- Z AOL = m DDDO{,B -6‘—&- (V +V ) -
P 1.4 1 =G4,™ -
+ DDD u ZD (V7 +V ) & " CIgE D Vu@ (6.97)

Let us next incorporate the matter contributions. To be dealt with

are A5, A6 and an additional term in A3. The abelian limit (6.57),

the Wess-Zumino model (6.23), respectively suggest

_ . L
V3. = z) [0,.0,0(h. & + B, a,) + 2,[0,.0,](v" A¥A) (6.98)
6 _ ol BT ST 2 = o~o~a] ~
Voo = 29 D (A Y " )¥Ds (YA ) + 2y De(AY)Y "D (¥A,)
2, v ln_(vavhyed (vTIR ) (6.99)
2 o o .

as further basis elements of the current and actual calcutation of

e Va shows that %-D VS. - 2p V 4 accounts for the matter contributions

A5, 26 and in A”. Co1]ect1ng these partial results we arrive finally at
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»

g*v', = -2w.r + DOD B, (6.100)
Qo [0} o
where
2
8 = 4(8" - 5 B
\ 3, 1 4, 8 .5 6
V- Téég.vYM - T%&“VZ fv3) wavt vt + B -

3

It is noteworthy that the supercurrent V'and the breaking B are both
BRS-invariant. From the form (6.100) we find that the supercurrent
is strictly conserved

a“vg = iwr. (6.101)

It will turn out in higher orders that not all terms B contributing

to the trace equation are BRS-invariant, but DDB (DDB) are. We there-
fore transform already here in the tree approximation current and
breaking into a more appropriate form. We define a new supercurrent

Vt =Vl-—?—~

s w3 [Da,Dd]B (6.102)

and then find that it satisfies as trace equation

5% . - -2wr - 205 (6.103)
(184 [ [}

with

S = ¢ 008 (6.104)
and as current conservation equation

a“v“ = iwD + 1(DDS - DY) (6.105)

Let us now use the existence of a supercurrent for the discussion
of R- and dilatational symmetry. From (6.101) it is obvious that R-
invariance holds, as it must, since the action (6.80) is invariant
under conformal R-ﬁransformations (due to the absence of masses and
our choice of weights, table 5.3.1). Dilatational invariance, however,
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is not guaranteed since the trace of the energy-momentum tensor does
not vanish (cf. definition (6.27d) and (6.281)):

TH

u i (DDS + DBS) # 0 (6.106)

~o} Lo

and the dilatational Ward-~identity as obtained from the moment con-
struction is given by

wor - fdx ?q“ = - %-1 ([dSS + [dS5) . (6.107)

But above, (6.78), we have already identified the physical dilatational
Ward-identity operator:

D

T

£ 21 (Ny - N+ N) (6.108)

o]
(N is the counting operator for the field ¢). And, indeed, one can
verify that the breaking terms ~-% i fdv %~- 2B yield precisely this
difference:

Tr [dV6(ne) (N® - Nn + Zuaa)F(n,...) ,

(6.109)
favBZ - 128a23ur + Tr Jav(DDQ C_ + DDQ.C )
When we rewrite TI' in the variables p and c¢_ this becomes
Tr [dv8(no) = (N - Ny o+ N+ 203 )T (psc_,-
(6.110)
jave? = 1280% I(p,c_,...)
hence
i Y _ .
-5 [dvB = - 2i(Ny Np +N_) . (6.111)

Let us summarize these results: for supersymmetric Yang-Mills theories
there exists a supercurrent off-shell; it is BRS-invariant and contains
an axial current, the supersymmetry currents and a supersymmetric
energy-momentum tensor. The latter is however not improved as a conse-
quence of the gauge fixing procedure. Still, the supercurrent contains
all informations on the superconformal group.
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- - - > 2 " - i - - . -l 0 ok e e

In the preceding sections we have introduced moment currents,
(6.27), (6.36), (6.37), and already made partial use of the knowledge
where and in which supercurrent component currents belonging to the
superconformal symmetries are situated. We present now a systematic
investigation of this problem (cf. [I1.6] App. C).

The starting point is the trace equation for which we assume
the form '

- 2wl =D0* .+2DS -8B (6.112)
(o} [61e 1 o [0}

(and its conjugate).
Here Vud is an axial vector superfield, S a chiral field and Ba con-
strained by

0% - 0.8%=0. . (6.113)

a o
Together with (6.112) holds therefore the current conservation equation
Wl = a“vp - i (DDS - DY) (6.114)

(We shall actually prove in section 16.3 that (6.112) is the most
general possibility for all models, i.e. contact terms treated in
this book, hence we are dealing with the most general case.)
The expansion of the contact terms is given by

W = wR - 1®aqu + ié&QQu - ZGOHéWS + total derivatives  (6.115)
(integration yields WR, (6.18)). Similarly we expand the superfields
Vv, B andS.
u> o

_ == 1 .2 122 o
Vu = CP + @XU + GXU + —2--@.Mu + §-e Mu (6.116a)
Va2 1 2=- 1 =2 1 222
+ Go evpv + 7‘6 pr t 5 © @Au + Z'O ] Du ,
; B 5.0 B, Loy L 1g2
Bu = Cq + 0 Xue + @BXu t s 0 Ma ) ] Na (6.116b)
va 1 28,1228 1,252
+.®0 Ov, * 8 @Bka + % 070 Aae + 5 070 DOts
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S = A+ oy +o’F . (6.116¢)

We shall first show that if both S and Ba are non-zero then it
is impossible to construct any conserved energy-momentum tensor Tuv
or conserved supersymmetry current Qyu from the components of VU'
Consider Qua and assume that it is given by some combination of com-
ponents of VP' Dimensional considerations (dim Vp = 3, dim Qua = 7/2)

as well as Lorentz .covariance restrict this combination to be

_ -V
Q“ = ax“ + bcuovx . (6.117)
(6.114) yields
auXU = 4au(g“@) -l & tad.c.t. (6.118)

(the abbreviations c.t. = contact terms and t.d.c.t. = total derivative
contact terms) whereas (6.112) yields the “"trace" relation

o x" = 4b - 2C + c.t. (6.119)
so that
B“Q” = 4(a + b)o“au@ - ZbUUBUC (6.120)

+ wQF + t.d.c.t.
There are only two possibilities for having a conservation eugation
2, 0" = W + t.d.c.t. (6.121)
giving rise upon integration to the supersymmetry WI
Wr = fdxlr = 0 . (6.122)

The first one ist

C, = 0 (which implies B = By = 0) - (6.123)

and
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In this case

a“v“ = iwr + i(DDS - DDY)
Wﬁm=-m&~-z%§
Q = Tlx, = 9,0,x")
2, - Wi + t.d.c.t. (6.124)

and the trace relation becomes

Q“o“ = -31X“eu = 1240 + c.t. (6.125)

A precise examination of all components of equation (6.112) with
B = 0 yields the following identification of components and trace
identities (care must be taken conce%ning parity quantum numbers;

recall that PVUP‘l = - v, and psp7l = 3):
1) C = R
[ U
s R = - 4i(F - F) s WRr o+ t.d.c.t.
2) = - (g, - 3 Q%5
Ay w3 v’
SVQ“ = wir + t.d.c.t.
trace identity: Quou = 129y + c.t. (6.126)
- . 1 A
3) Y(uv) © Z(Tuv 3 guvT U
L - wPF + t.d.c.t.
TIVRY
trace identity: Tkx = 6(F +F) +c.t.
4) v - -1 € 3P + c.t
[uv) 2 “uvpo i
5) M = - 8i3 A+ c.t.

H M
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_.\)‘ 'Q>\"\) |
y io auxv + euxvpc 37y + c.t. (6.126 cont'd)

2 v
3 CP - 2a“avc + c.t.

(52}
>
i

~3

—

[
#

It is remarkable that if S is a mass term (vanishing with the mass),
then Quu and Tuv
identities above show. On the other hand RU is not conserved, but

are improved conserved currents, as the two trace

its non-conservation is also a mass term. Renormalization will bring
anomalous higher order contributions (non-vanishing with the mass) to
S, giving rise to anomalous trace identities and an anomalous Ward-

identity for R“.

The second possibility is given by

0 (which implies that S = S = 0) (6.127)

P =
and
b =20, a =+ 1
Thus
a M = qwr
H
Q - —
D Vaa = - ZW&T + B&
= i
QU XU
0 - Wi + t.d.c.t.
. N ST SR .
trace identity: ona& = 21c& + c.t. (6.128)

Similarly the other currents are found to be

1) R =C ,
¥ u
3UR“ = wRT + t.d.c.t.
B 1
2) TH\) = - "2- VU\),
U _ P
9 TUV =W, + t.d.c.t.

trace identity: T =% + c.t. (6.129)
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So all three currents are conserved. If B has the special form DDDo,
with ¢ = &, then it can be shown that a“v( ) = c.t.; so that a sym-
metric energy-momentum tensor can be defined Tuv = - %‘V(uv); but this
is not true in general. The very peculiar circumstance is realized in
the massless 1imit of the Wess-Zumino model (to all orders) and in the
massless limits of SQED and SYM in the tree approximatﬁonf Then there
exists a strictly conserved R-current as a component of a supercurrent.
This term DDD® shows up in the traces as‘an anomaly (if it comes with
higher orders). If'either one of the above cases is realized for an
operator Vp satisfying (6.112) we shall speak of it as "supercurrent”
or "supercurrent with interpretation". Case (6.123) we shall call
"S-type breaking", case (6.127) will be called "B-type breaking".

Proceed now to the identification of the components of the other
supercurrents where for the first case the definitions (6.27") are
adopted and in the second case the old definitions (6.27) are used.

By explicit computation of the lowest ©-components, it is found that
the supercurrents begin with the component currents whose name they
bear. The higher ©-components are made from other component currents
(compare with the .corresponding ﬂA (2.7)), trace terms and improvement
terms (i.e. contributions identically vanishing upon taking the diver-
gence). The results are

1) Q= Oy
2) Tuv = Tpv +
3) DU = DH +
with D = xT
H A
4 M= M+
Hvp HVp
with Mwo = XVTUO 0Ty
5) Kuv = Kuv +
) _ A A2
with Kuv = (2xvx g, X )Tux (6.130)

*s.b. sects. 16.2.3, 16.3.4
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A &G
Q

with Sua = ixkcaq " (6.130 cont'd.)

6.6 Superfield form_of internal symmetry currents

puiiil o SRR AP R SN el

Suppose a supersymmetric theory is also invariant under a rigid
internal symmetry group (cf. (5.19)) G

(2]
p=
it

. aca
T Ty
(6.131)
F _ .. f ord @
6w Aj = 4 Akajw
where the Hermitean matrices T8 generate a unitary representation
of G on the chiral fields A. Then the associated current js 1ies also
in a supermultiplet and the gquestion is simply: in which one? Let
us follow the conventional Noether procedure for finding it. The global
Ward-identity

ST
SA
K J

a2 0 (6.132)

= s _iy,ard
WD = - fds(-1)w TS T 5Aj

yields the current conservation equation if we let w? become space-time
dependent and then differentiate with respect to it. For an invariant
action

_ 1 3 ‘ ,
ro=dofav Ra o+ [Jas(ngAAg + 955 AR0A ) + ccl] (6.133)
we find
1 ez 1 (.= .
W = - g [dS wd(x)DD(AT?A) + TE’JdS w®(x)DD(ATOA) (6.134)

If wa(x) has no susy-covariance we shall obtain after differentiation
with respect to it the non-supersymmetric version of the internal sym-
metry current. For the supersymmetric form we thus better make w? to

a chiral field in the dS contribution (6.134), respectively to an anti-
chiral field in the dS part of - (6.134). Differentiation leads then to
two conjugate equations
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a 1 &m /zr@
W= - 1 0D (ATPA)
-3, _ o, 1 |

where we have defined

a_ _8 . .mda S
WoE T W e Tidsn,
Sw (%) J (6.136)
-3 _ 8 ‘ = 2 6
we = WT = ARTD. —=—
w 6&a(x) w k'kj 6Aj

They correspond to the trace equations for the supercurrent (6.22),
(6.58), (6.103) and coincide in form with (6.66) which is a special
case of this general statement. The current conservation equation
is deduced from them by differentiating and adding:

p—

Dowlr + DOwlr
[0} W

i}

- TE-[DD,DD](ETaA)

it

+ 3 (D% - Dc”ﬁ)sp(ATaA) (6.137)

(to be compared with (6.24), (6.59), (6.105) and, in particular, with
(6.67)).

The zeroth ©-component of this equation is the current conservation
equation of the rigid symmetry which we are looking for. The other
components do not correspond to symmetry currents of the original
action (6.133) because this action is simply not invariant under the
other transformations generated by w?® and &a, they constitute "accident-
al" identities following from the equations of motion. )

0f course, these "accidental" identities are readily recognized:
we enlarge the kinetic term in the action

1o Jav Aa > g Jav P WS L LR (6.138)

and look for transformations of o rendering the enlarged term invariant:
(recall that w® is chiral)

1 - d_aa o i AE
W = - g [av Re TP = - 1 JdV A (-820)A,
. A ~ (6.139)
a1 F-ara ¢ ] "R P
W=l = 15 fdv AR°T%"A = - 15 JAV R (-6-e7)A
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Hence the transformations on 3 are those of (6.81):

5ﬁ5;-~ ey :1.~ ~:aa
6we = e (iw) , 6w® R® i} , @=Tw ,

i

6-e® = -15 e® 5 §-3
w

roliin 4
-8 = Ry {iw} , (6.140)

H

and (6.139) can be recast into the form of local Ward-identities

= ay 8T, an _
-0D Ry{T 1 sru =0,
(6.141)
s (ca) O -an _
oD Rz{T®} 5+ Wir = 0

They express the invariance of T under the local, non-abelian gauge
transformations (6.131), (6.140). We had introduced these additional
transformations at the point where we enlarged wa(x) to the chiral
superfields '

W3(x) = wh(x) + Bu(x) + 6%ul(x) (6.142)

and its conjugate. The non-current terms in (6.137) correspond to
the local Ward-identities (6.141) associated with w and w.



CHAPTER III

PERTURBATION THEORY IN SUPERSPACE

In the axiomatic approach to perturbative quantum field theory
(cf. for instance [R.12]) which we follow here one defines in one way
or the other perturbative Green's functions and shows then that they
satisfy the required axioms - in particular those of relativistic co-
variance, causality and unitarity - in the sense of perturbation theory.
Perturbation is usually performed in powers of a coupling constant or
in the powers of T which counts the number of Tloops of associated Feyman
diagrams. When, as is often the case in supersymmetry, fields of canon-
ical dimension zero are present, one expands also in the number of
fields. If mass generation occurs, the expansion will be in Jh In h-
arising in a well-defined way from an hi-expansion. A1l of these expan-
sions are considered as formal ones, i.e. questions of convergence of
the series considered are not answered, in fact, not even posed.

The problem which remains even in this rather restrictive frame-
work is the mathematically consistent definition of Green's functions.
A complete treatment for the general case can be found in [III.11]. The
present chapter is devoted to its solution in the context of supersym-
metric theories by a generalization of the ordinary momentum subtrac-
tion scheme to superspace such that covariance with respect to supersym-
metry is manifestly preserved. In the cases to be treated later where
supersymmetry is broken we shall work in component fields in ordinary
space-time. As subtraction scheme one may choose conventional BPHZ
[111.1,4,13] whose rules can be abstracted from the ones given here by
just leaving off all @-variables. The broken supersymmetry Ward-identi-
ties have to be checked then with the help of a theorem given in chap-
ter IV (section 13.3).

Section 7. A simple example

Let {@1} be a set of free fields where the index i collects the

-112-
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dependence on a point in space-time, internal and Lorentz indices. Then
the Green's functions G(1,...,n) are defined by the (modified) Gell-
Mann-Low formula

n
i,
IR RGP "‘t)>(0)
-F il (7.1)
<Té mt> )

(no attempt is made to "prove" this formula, in our approach it is a
basic definition of the theory). Here T denotes time ordering, the sub-
script (o) means "free fields", ;:int is a function of the free fields
®1 and the symbol R ("renormalization") stands for an operation to ren-
der meaningful in a way explained below the formal expressions one 0b-
tains by expanding the exponential in (7.1). This expansion is governed
by Wick's theorem and yields the Feynman rules of the theory in ques-
tion: all terms of the type < T Ql"'Qnifdxl‘zﬁnt"' i[dxmdfint >

can be reduced to sums of products of 2-point functions < T ®a®b>(o)
which are the propagators derived from a bilinear Lagrangian for the
fields ¢a, @b. The diagrammatic representation of this procedure con-
sists in drawing 1ines for the propagators, vertices for the factors
jzint and in associating with these Tines and vertices calculational
prescriptions such that the terms in the Wick expansion are precisely
recovered.

For the supersymmetric theories presented in chapter Il we have
already derived the free propagators, hence we may interpret (7.1) im-
mediately in superspace, with @1 now beihg a superfield and the inte-
gration measure in x%nt’ according to the case, scalar or vectorial.

In order to motivate definitions and procedures to come in this
chapter we shall work out a simple example in detail.

Choose in (7.1)

. S5 . 3, (.23
Pog = Jds&y o+ JaSZ, =35 (Jas A + Jd5 A (7.2)
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(cf. (3.26) !) and write in the expansiohAof the exponential of (7.1)
the gz-term for a 2-point Green's function.*

It reads:

- 1 (9% T(R()A(2) (43,87 +,fd53A3)(jdqu3 v [d5,8%))>  (7.3)

Wick's theorem tells us to perform all contractions:

2.3)2

2y < 230 (19)% (rdsas, K(1)A(3) (A(3)A(4))

G35(9

v fd3d8, A(AG) (A(3)A(4))

+ fd5,05, K(1)A(3) (A(3)A(4))

r~ T
~

f 1
+ J'd§3ds4 R(1)A(3) (A(3)A(4))
(the contraction symbol — is only a shorthand:
p————t

o(l)e(2) = <T(¢(1)®(2))>(O)

The result we may represent graphically by Fig. 7.1

P
—~
p—
—_—
=
w
——
w
b2
w
—
=
~—
=1
—
~N
~—
P g
—
S
~—
p=1}
w
—
w
1
w
oS
=2
~o

and analytically by

op(o¥) = 013 o) efp) (7.5

with summation and integration over a, b understood, the upper indices
denoting: free theory with (0); order h = one loop with (1), respec-

% stands for either A or A.
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tively,and
r(1) r(1) vrer SN B vsee SR
7 (A(3)A(4)) (A(3)A(4))
Fii) = AA AA _ §2~3}2 (13)2
7 48 . .
r;;) f\:) R@AE)E  (A3)A4))2
(7.6)

m i) = x (AW

3 4’ AA
4im65(3,4) 4imés(3,4)
=y 5 5 =0 (7.7)
O+ m O+m
since
o1 2
§,(3,4) = - 703 (7.8)

in the chiral-chiral basis, since 65(3,4) 63(3,4) = 0.

2 . 2
(x = &3 (J9)) .

i

Analogously: r(l) =0
oustys g =
Y
LN e e
"3 1+ T = x (AR)A(4)) (7.9)
_ 1 o e1(x3—x4)p Lo i DD, 8.(3,43k) 1 DD, 8_(3,4;5p-k
(ZTT)4 (2TT)4 . k2 - m2 (p_k)Z - m2

where the product of the translation invariant propagators in x-space
yielded the convolution in momentum space.

With the help of suitable shifts (cf. section 1) one can show
that from (7.8) follows

E

— k
DD, 6 (3,45k) = DDy 8z (3,45k) = e

34 (7.10)
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with

E34 = 63663 + @4064 -2 @3(3@4

Therefore: E..p
i DD, S (3,45k) i 0D, §_(3,4;p-k) e 3t
L (p,k,0) =~ ¢ G = 72
Y k- m (p-k)® = m (k“=m) ((p-k)"-m")
EqgP
L3P 1 (pak) (7.11)

(y refers to the diagram representing rg%)).

But we note that | d’k I, (p,k) = = !
I.e. formula (7.1) in its naive form (we have plainly expanded
the exponential) does not make sense. We therefore define:
R (p,K) := (1-t%) T (p,k) = I(p,k) - I_(o,k (7.12)
Y(p,) (1-t)) Y(p ) Y(p ) Y(o,)

(tg: Taylor operator with respect to p of order o) and find that

[ dk RY(p,k) exists, provided we take into account a suitable e-prescrip-

tion in the denominators for circumventing the poles (e.g. denominator
*
= k% -m? o+ i E(K? + mz)).

This is the operation R of (7.1) in our simpie example.

Let us collect the result following from this definition:

1 1 (Xq=Xg )P (0,00,+0,00,-20,00,)p
L AN e S LU MCRY
(2'”) (Zﬂ) Y
(7.13)

i.e. I&%) (x3,x4) is a function of the variable

This result is in fact known as power counting theorem [111.1]: the
subtracted integrand has negative dimension on all hyperplanes in
the 4-dimensional integration space, hence the integral exists and
is absolutely convergent.
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= - _ " 7.14
X = Xg Xg i 63 3 i @4064 + 2 1 93 4 { )

This peculiar combination is annihilated by a similarly peculiar dif-
ferential operator:

d Y -
fz | g4+ 100 + 4 0B f(x) =0 (7.15)
<13@3 | 3 ax3 894 4 8x4:>

This is nothing but twice the differential operator occurring in the
supersymmetry variation. Indeed: consider the functional

1) =\ (a€ E =y (1)

ACLRPS [dS4A(x50,0) JdS4A(%4,0,0) Toa (3,4) (7.16)

(A and A in the real basis)

and act on it with the functional differential operator (3.24)

MM%W+MM%m. (7.17)
5h

Hl

One obtains

w,r1) < - ipas as, %R, + AR, Irit)(3,0)

i.e. by partial integration

(1)

= 1jds3jds4 AR, 8T\

(3,4) = 0 (7.18)
And what we have checked with this calculation is nothing but the com-
patibility of the operation R with supersymmetry: the subtraction (7.12)
left intact the ©-exponential structure of IY(p,k,@) (7.11) which ac-
cording to the above calculation suffices for supersymmetry. It modi-
fied only a Lorentz-scalar coefficient function. In the tree approxima-
tion this function of the external momentum p was just a constant.

Still another observation can be made in connection with the sub-
traction (7.12). The term we subtract is independent of p, hence con-
tributes in (7.13) a G(x3~x4) - term, non-vanishing at coincident ar-
guments only: it is a local term in (7.16), hence our operation R has
not violated the locality of the theory. That we do indeed have the
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freedom, to modify the theory by such a local term is seen from the
propagators (at order h): they contribute to and change the T-product
of the field operators A and A precisely where it has from the very
beginning a lack of definiteness: at coinciding time arguments. (This
argument is somewhat hand-waving in that it uses an infinite gquantity:
the subtraction term; but it is basically correct and can be made rig-
orous [111.2] .,)

The last requirement we had, was relativistic covariance. It is
not easily demonstrated with the above e-prescription [11I1.1,37, so we
only quote the result: the 1imit € ~ o exists and defines a covariant
distribution in the case of Green's functions, a covariant complex func-
tion in the case of vertex functions. - In any case it is clear that
this proof does not interfere with supersymmetry: the e-1imit properties
of the fully supersymmetric quantity Gab~are those of the scalar "kernel™
in rab‘

Let us now summarize what we learned from our simple example:

- Gab was divergent due to divergence of Tab> (7.5), generalized: once
the one-particle-irreducible Green's function (cf. App. B) are made
finite all other Green's functions are finite.

- The subtraction prescription R (7.12) rendered T'ab finite; look for
a generalization to all orders.

- R maintained supersymmetry because it respected the exponential 8-
structure coming from the propagators; (R maintained also Tocality
and relativistic covariance in the limit € - 0).

- Téé)_= Fgé) =0 (7.7) was a specific consequence of the form
of the chiral-chiral propagators ("non-renormalization theorem").

- Fé%) needed only one subtraction: since in (7.11) the k dropped out
in the numerator the resulting integral was only logarithmically di-
vergent and not quadratically (as it could have been) ("cancellation
of divergences").
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In the following section we set up a subtraction scheme (give an
operation R) which generalizes the above results - to the extent to
which it is possible - to all orders of perturbation theory.

Section 8. Feynman rules and power counting

In order to compute Green's or vertex functions according to (7.1)
we perform the expansion in Feynman diagrams with the following rules
(in momentum space). We associate

with the Tine and the analytic expression
p 4im 8 .(1,2)
<T A(L)A(2)> > g
(0) % % p2 -+ e
_ p 41 m 6§(1,2)
<T A(l)A(2)>(O) él > g; .;7—t—;Fr:f?;~
) P iDD,8,(1,2) 155i6§(1,2)
<T A(1)A(2)> 4y 0, " 5, p2;ﬁ2 T e - 2l + e
) p 16655§(1,2) 10018 (1,2)
<T A(l)A(2)>(O) 81 g 82 p2--m2 + e ) PZ--m2 + e
NANANAAAANN -8 6V(]"z)
<T @(1)@(2)>(0) 1 5 p2 - M2(5«1)2 .
(SQED; a-gauge with o = 1; cf.(4.32))
i
| -8 ig Sili év(l,Z)
<T¢11(1)®12(2)>(0) M p2 i M2(3~1)2 + e
(SYM; a-gauge with o = g%; cf. (5.20)) (8.1)

(We write explicitly only Feynman gauge for gauge fields since all other

gauges require a precise definition of terms Tike 1/(k2)2 which we post-

pone until chapter V. The e-terms should be read as ¢ = E(E? + mz), it
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is the choice [III.1,4] guaranteeing majorization of Minkowski inte-
grals by Euclidean ones, yielding absolute convergence. )

The §-functions occurring in the propagators are understood to be
in momentum space. Their explicit form depends on the basis chosen
. ‘
for the fields.

If all fields are taken in the real basis, 1 and 2 stand for a
pair of superspace points and if p denotes the momentum flowing from
1 to 2 we have

12 s
8,(1,2) = 15 915 97

— 1 .2 "91YoP

5(1,2) = DD;8,(1,2) = - 707,
; 1.2 "01Y0P
65(1,2) = DD15V(1,2) =-706p,¢
~E,qp _— E..p
- 21 YA
DD;8(1,2) = e DD;65(1,2) = e

8,Y0, = 0,08, - @boéa = ~§bY@a

Hi

ab

i
@

Oab - 9y
(8.2)

Before proceeding further we have to generalize the above [III.11].
We shall incorporate massless particles into the subtraction scheme
in general by using an auxiliary mass [I11.12,13]: it is given by an
ordinary supersymmetric mass term the parameter m simply being replaced

It is mainly here that authors differ in their Feynman rules; another
source of difference is the treatment of D-factors in the vertices.
[11.2, 111.5-10]
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by m(s-1). The parameter s varies between zero and one and will play
the role of an additional subtraction variable (1ike an external momen-
tum p). At the end of all calculations it is to be put equal to one for
all massless fields. At s # 1 such a mass term will describe a massive
field (with off-shell normalization conditions, cf. be1ow).* The gen-
eral form

<To,(1) <I>b<2),>(0)E B,p(1,2) = 8,,(pys, 8, 0,)
-6,v6,p i
1772 2

L (83)
= Qab(p’s’éIZ) € 2 4 16(92 + m;b(S)Z]

i
emerges for the propagators (notation: 8 =0 or9). The @-structure
can in fact be seen to follow from supersymmetry (c.f. (7.15 - 7.18)).
m;b(s)2 is a quadratiéa] polynomial in the mass parameters and in the
parameter s. The factor Qab depends on the ©'s only via their differ-
ences @12, @12‘ This function is further restricted if o, and/or dy
are chiral fields:

0,99, ,P _
127712 .
e Qab(p’s’elz) (@a chiral)
{
< 910915p . .
qab(p’S’GIZ) =( e Qab(p,s) (®a chiral, @b antichiral)
o = ) (8.4)
81 Qab(p,s) (@a and @y chiral)
The vertices of the Feynman graphs correspond to the terms of Fint and,
more generally, if one computes Green's functions of composite opera-
tors, to local superfield monomials - local insertions -
In the context of the example of section 7 we prescribe:
IY(p,k,S) ) 5 7 L P p; 7 (7.11%)
(k- m°(s-1)%) ((k-p)® - m"(s-1)")
be replaced by
Ry(Pakss) = IL(p,k,s) = 1(0,k;0) (7.12")

in order to avoid a spurious infrared divergence caused by subtrac-
ting a massless propagator at zero external momentum. Masslessness
of the field A will be guaranteed by further subtracting FAA at
p=o0,5s=1.
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~ a (us)  ve) e 8.5
0, (08) = (s-1) (&) ) Im et (x8)] 8:5)
. : a
or integrated insertions (e.g. terms of T'. .)
b, = fdx Qi(x,é) (8.6)

where Qj in (8.6) includes the covariant derivatives defining ©-space
integ:ation. Ui> vy are multi-indices, the differential operators 3/9x
and D = D, D may be spread within the various factors of the bracket;
@acai denotes the Cai’th power of the superfield ® - Vertices associ-
ated with local insertions (8.5) will be called external: like for ex-
ternal lines, external momentum enters the diagram at these vertices.
They will be called internal in the case of integrated insertions (8.6).
The integration over x-space in the internal vertices leads in momentum
space to integration over closed loops and an overall momentum conser-
vation §-function for each connected diagram. If derivatives are pres-
ent at the vertices they have to be taken into account in accordance
with Wick's theorem (namely by considering all possible contractions

of the fields carrying derivatives). We shall not try to write down
explicitly all numerical factors arising from Wick's theorem, but re-
fer to the theorem.

Wick's theorem will yield a formal expression [dk LY(pY,kY,sY,§Y)
associated with a diagram or subdiagram Y. Integration is extended over
the closed loops of v; pY, kY denote a basis of the external, resp.
loop momenta; s¥ the s-variables and 8" the o-variables of Y. The in-
tegrand IY is a product of propagators or covariant derivatives of
propagators which all have the general form (8.2, 8.3). It can then
be shown:

~

o E = _—
L (psk,5,8) = e (p,0) I (p.kys,8.0) (8.7)
TY depends only on the differences éij = 51-§j; moreover it does not
depend on éij if either i or j or-both represent chiral external ver-
tices or legs, and not on étjin the antichiral case. E(p,®) is a ho-
mogeneous function, Tinear in the external momenta, bilinear in the

variables @, and éjz
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I~ K N L-1
E(p,0) = 2 Eﬂ_ P; - 2 ELk pk - 2 (:D] YO Py (8.8)
i=1 k=1 1=1 )
Bz M . =
E'IJ = @.ti@j‘*‘ QTJGpgij ‘
the indices i =1 ... I, k=1 ... Kand1 =1 ... 1 denote the external

vertices and legs of chiral, antichiral and general type respectively.
If they are only chiral and antichiral objects (L = 0) then

1 K-1
E(p,3) = 5 E.p Ps = 5 [6 = (8.9)
(p,8) 121 i Pi L [878y + (8yp *+ Op)o0 TPy
Finally in the purely chiral case (K =L = 0)
!
E(p,0) = 2 E'iI Py (8.10)
i=1
The expansion of (8.7) in powers of ©,,
)
~ E ~ !
I(p.k,s,8) = e (r8) 7 @)W1 ks (8.11)
|wl=0 v

stops at a finite degree @ due to the anticommutativity of the @'s.
Q can be computed by counting the number of independent 0.. components:

Q = 2 (number of (anti-) chiral vertices and legs)
+4 ( " " VectOY‘ " 17 1 \
-4 (8.12)

1f, however, only chiral or only antichiral objects are present,

= 2 (number of vertices and legs) -2 (8.13)

Q(chira1)
In (8.11) (w) is a multiindex (wlfb1 e W &n) with
n
ol = ] @ +8)
m=1 m
(8.14)
~ n -
3.)® - 1 %Y
m=l 0
(the index m = 1 ... n represents pairs (ij) as well as spinor indices

a,a). The summation in (8.11) extends over all monomials (8.14) of de-
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gree |w| in the aij components, for each |w| comprised between O and
Q.

We shall now exploit the @-structure of the integrand (8.11) to
estimate its ultraviolet (UV) and infrared (IR) dimensions. The super-

ficial UV and IR degrees of divergence for the component 1ntegrand'1$”)

associated with a graph or subgraph vy are defined as

) (y) = deg, o I§w)(p,k,8):+ 4m(y)
T (8.15)
r(w)(Y) = Qgﬂp,k,(sd) Iw({w)(p,k,s) + 4m(y)

where m(y) is the number of Toops of graphy, and HE@% means the asymp-
totic degree for x = % whereas gggx means the asymptotic degree for
x+ 0. It is clear from the expression (8.11) that dfy) = d(o>¢y) and
riy) = r(o)(y) represent the UV and IR dimensions of the complete in-
tegrand IY and moreover that

dly) + 5 o]

=2
S
n

(8.16)
= ry) * 7 |l

=2
e
I

This follows from homogeneity and the assignment -1/2 for the dimension
of 6. We now want to compute d(y) and r(y). We assign UV and IR dimen-
sions da and s to the supeff1e1d ®a and define, analogously to (8.15),
the UV and IR degrees of the free propagator Aab’ the dimension of ©
being taken into account:

dab agab,s(@) Aab(p’s’@)

i

(8.17)
Fab = Qggp’s_l(@) Aab(p’s’@)

The starting assumption will be that the superfield's dimensions da
and r, are chosen to fulfill the inequalities

4 + dab < da + d

(8.18)
4 + Yab 2

v
a3
+
-
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The reason of this requirement is that it will lead to estimates inde-
pendent of the detailed structure of the graph, in particular of its
order.

We suppose that the graph Y consists of m loops, I internal lines,
of which Iab are of the ®a~®b type, V vertices with V, corresponding

to the monomials Qi’ i=1, ..., V, (8.4); N amputated external lines,
of which NS are chiﬁa1, NV are vectorial, or, counting in another way,
Na are of type ¢a, n,; are of type @a and are connected to the 1th ver-
tex. Clearly ‘
a#b a<h
I=(1/2) )V 1. +3 1 =73 1 (8.19)
asb ab 3 3 Tty ab
m=1-V+1 (8.20)
N +NV= ZN& , Na=zna1 (8.21)
a i

b#a o

LTy T2 15, = L (cpi = Nay) = Z Cai = Ny (8.22)

b i i
where the Ca is the power of @a in the 1th vertex (see (8.4)).

A direct application of the Feynman rules yields the degrees

d(y) a<h d v :

= 4m + ¥ Iab % ® ) [a, + ’“1‘ + (1/2)|v1}]
r(y) a,b rop i=l
- NS - ZNV
Abbreviating with
= 8.23
Dy =y + fuyl + (1/2)]vy] ( )

and using (8.20), we find

d(vy) 25b d
=a-Ng -2y ] Ty [; ab% "'4] * 10 - 8 (g0
r(Y) a,b Y'ab V.]EY
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The inequalities (8.18), together with (8.22), yield the bounds

ashb
d(v) S 4 - N = 2Ny + ) Iy(d, +d)+ L (0, -4)=
a,b v'iEY .
=4 - Ng - 2Ny - ) Nd L (dy - 4)
a V_i
a<h (8.25)
r(Y) 2 4 - Ng - 2Ny + Y Iab(ra+rb)+2(D1‘“4)=
a,b Vi
=4-NS-2NV-2Nara+ ¥ (ry - 4)

a Vi

Here we have introduced the degrees associated with a vertex, Vi’

. 3 r (8.26)

The bounds (8.25) combined with a power counting theorem [III1.14] which
covers also the IR-behaviour will tell which subtractions have to be
performed in order to obtain a finite integral. In fact, this task is
simplified by [1I1.13] where for ordinary field theories a subtraction
scheme has been constructed so that only the applicability to our more
general case has to be checked. We note that formal integration of IY
(8.11) over the loop momenta k would yield just the @-structure of su-
persymmetric Green's functions, i.e. the structure which can be shown
to follow from supersymmetry covariance. Our aim in the next section
will be to implement a subtraction scheme preserving it.

We conclude this section with an interesting application of the
power counting estimates (8.25), namely the non-renormalization theorem
for chiral vertices [II.4, III.23,8,10]. We consider Green's functions
of elementary fields, in which case all vertices correspond to the in-
teraction Lagrangian, its UV dimension being bounded by 4. For graphs
or subgraphs y with only chiral and antichiral legs the estimate of

their UV degree of divergence takes the simpler form
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d(v) <4 - N - % Nd, + 5 ful (8.27)
and is bounded by (see (8.12))
do(Y) <3 - ) N.d, (8.28)

do(Y) <2 = 1 Nd (8.29)

in the mixed case. In the theories expounded in chapter Il the UV dimen-
sion of the chiral fields A is 1 - for this choice is the first of in-
equalities (8.18) fulfilled and is the dimension of the various
Lagrangians bounded by 4. Thus the only potentially divergent graphs

are those contributing to the vertex functions Ihﬁ (dg (v) < 0), TAA

(dg2 (y) <1), IAAA (dgg(Y) < 0) together with their complex conjugates.
We already see that only logarithmic divergences are present - also

for IAA due to Lorentz invariance. But it is possible to show that in
fact only graphs of the type IAA are superficially divergent. The argu-
ment is the following. Let vy be a 1PI graph with only chiral external

legs, €.9. a graph contributing to TAA or IﬁAA' Y has n_, n_ and n

vertices of the chiral, antichiral and vector type, res;ective1y, an
let us set to zero all external momenta p. Before the 8-integrations
over the vertices are performed, the integrand IY (at p = 0) is a func~
tion of th€ differences eij’ i,j labelling all vertices and legs of y.
Next, all O's have to be integrated, only ©'s being involved in external
legs. There are ﬁs + n, 6-integrations, but only ﬁs +n, -1 variables
@1j are at our disposal, so that the result is zero. Having shown in
this way that the integrand vanishes at zero external momenta we con-
clude that its effective degree of divergence is lowered by one, in fact
by two due to Lorentz invariance. This demonstrates that the graphs of
the type FAA’ FAAA (and conjugates) are effectively convergent. Since
these graphs contribute to the renormalization of the masses and self-
coupling constants of the chiral fields, we conclude that these parame-
ters are not subjected to infinite renormalizations. This is the content
of the non-renormalization theorem. (Finite renormalizations may very

well occur for specific normalization conditions.)



-128-

Section 9. The subtraction scheme *

In order to extend the BPHZ (Bogoliubov, Parasiuk, Hepp, Zimmermann)
renormalization scheme [I11.4,13] to the class of theories described
above [I11.11] we have to define the forest formula of Zimmermann [ I1I1.4]
in superspace, with the help of a suitable subtraction operator. Let us
first associate with each graph or subgraph vy the UV and IR subtraction

degrees

asb :
§(v) =4 - N(v) = 2Ny(v) + } L) (d, +dy) + § (Dy + 85 - dy - 4)
a,b Viey
=4 - N(y) = 2N (y) = ] Ny(y)dy + 1 (8 - 4)
a Visy
as<b '
oly) =4 - N(y) = 2N(y) + T T (n(rg+r) + 1 (Dy +0y-ry-4)
a,b ‘ V1€Y
=4 - Nly) = 2Ny(y) = Y Ntydrg + ) ey - 4) (9.1)
a V,EY
and
s@s) =ty + 4L, 0@y = oy + 18 (3.2)

One notes that these expressions are obtained from the upper and Tower
bounds (8.25) by substituting for the vertex degrees di and v the
numbers 61 and Pye The latter are subjected to the restrictions

§; > dy 02y < min(r,,8;) , (9.3)

moreover p; > 4 if the vertex V, is integrated.

With the help of these subtraction degrees one could now readily
proceed, define a subtraction operator and show that it renders finite
either diagrams not containing divergent subdiagrams or "nested" ones:
where any divergent subdiagram is properly contained in another one

* This section is rather technical. Its main results are summarized
at the end.
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or completely disjoint. But matters are complicated by the fact that
divergent subdiagrams may "overlap": their intersection is non-empty,
but they are also not properly contained in each other. Exampte: Con-
sider in pure SYM

A Y R

. — = Fig. 9.1
Y Yl YZ '9

A1l diagrams have

S = 0g =4 - 2N x4 (N - 1) =2

i.e. require subtractions. These overlaps are disentangled by the forest
formula and enforce as prerequisite a precise definition of momentum
flow in a graph as well as the notion of reduced graph. Standard routing
of momentum in a one-particie-irreducible diagram Y and its subdiagrams:
let Py P be a basis for the external momenta of Y, kl"‘km a basis
for the integration momenta and k1 associated with the loop 61 in .

Then the momentum labv flowing through L the v-th line connecting

abv’
vertex Vb to Va’ is written

Laby = qabv(p) * kabv(k) (9.4)
where Kapy = ; € Jbviki

1 if Laby € Ci (including orientation)

-1 ifL € Ci (including orientation)

€abvi ~ bav

0 otherwise

and 9ap (p) is determined by "Kirchhoff's laws" of circuit theory:
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Y Ay, t 4, =0 VvV, €EV(y)
by abv a a (9.5)
L} c P aby Yaby = 0 V loops C of ¥y
abv
((y) denotes the set of vertices of y). The "resistances” r . = Ty,

may be chosen in any convenient manner (including Taby © 0 or =), ex-
cept that closed loops of zero-resistance or infinite resistance lines
are not permitted.

In addition to (9.4), we shall also need an expression for the

momentum flow through L., considered as a line of A Cy. If px =
A

p?...pn(k) is a basis for the external momenta of X we write

A A A A 96
2ab = Gapu(PT) * Kapy(k) 50
where 9abv is determined by "Kirchhoff's laws" restricted to A
A A
- 9.7
biv dy, *+0, =0 Vv ev(h) (9.7)
5
' A 9.8
LE e Tabv Yapy = 0 V loops C of A (9.8)
abv
and k\ | is determined by the identity
A A X
qabv(p) + kab\)(k) = qab\)(p (p,k)) + kabv (9.9)

with pk(p,k) determined by momentum conservation at the vertices of X.
The kkabv defined in this way is in fact a function only of k. (ATl
momentum assignments leading to this latter consequence are called "ad-
missible" momentum flows.) ‘

We now turn to the definition of a reduced graph. Let Aj:k be a
set of disjoint subgraphs of y. We define the integrand

- Y Y A
1; = IY/A U (pY,kY,SY,@Y,@ ) (9.10)
1 o
corresponding to the reduced graph Y = Y/Al...kc in the following way:
the subgraphs Xi are contracted to vertices Vi; we have the usual Feynman

rules, stated above, for all (internal and external) lines and vertices
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of Y which have nothing in common with any Ay the ©'s being %nternal

to ¥ but external to some Aj appear now w1th their new name @eit

their old place (namely in propagators of y having VJ as an endpoint);
at vert1ces V of y there appears for each external line of y)garrywng
A J

Gext’ p whlch is also an external line of some AJ carrying Qext’ a

delta function (8.2) 8(p”, @gxt’ @eit)

We then have

xt) ¥
c N x] ki A1 (9.11)
xS, I I, (p ,k ,s ,0 ")
Vs N
where the integration runs over a11® ext of Alu..:ukc and SY is the
substitution operator [I11.4] defined by
A A

(5,)(p",k",s") = £(p" (p¥,k"),Kk" (K'),s") and (9.12)
S @xi o it A @AT k @ki

= 1 @ 1 : =
y s not one of the ext? then SY ox t oxt

if Acy; an admissible flow of momentum is assumed.

Inserting into (9.11) the ©-expansions (8.11) for IY, IAi we ob-
tain, with an automatic rearrangement of the exponential factors,

- - = ¢ (w;) AL AL, A,
1) (Y kY, sY) = ) ) (Y Y, sYys, T 1( 1)(p Tels N
Y Y s H Y N A ] s

wl)s >(UJC) i=1 1
(9.13)
nere () (wg) - ()
w/\w o oo \W - -
S R (YR
Y 'Yr)\l---)\c
is the (w) - component of the 6Y~expansion of
A
i1
X VA X ¢ A i) E(p 7,0 )
[ g4 I§(p”’,kY,sY,eY,eext)sY 121[(6'3) Ve (9.14)

that is the (w) - component of the reduced graph Y, where with each
vertex Vi we have associated the factor
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i aAd
Ay (wy) E(pt1 oM
© 1)(w]) . (p™1 071

One has the following useful relations between the degrees of a graph v,

of disjoint subgraphs y, and of the reduced graph v = AZARRERN A (see
eq. (9.13)):

) = @) + 1él><(wj)(Y1) (9.15)
for any choice of the (mi)'s where y = d or r and where

x(&)(Q) = x(w)(ml)"'(wc)(v/Yl.-.vC); x = dorr (9.16)

is the UV or IR degree of divergence of the reduced graph, whose inte-
grand is given by (9.14).

Let us consider now a connected graph I' and its integrand Ir(p,k,S,G)
defined in the preceding section. Its renormalized integrand is given
by the forest formula

Rp (pok,s,0) = 1 T (T )Ip(p,k,s,0) (9.17)
€ UeFr yel ‘
where the sum runs over all forests U of‘r (i.e. all sets of nonover-
lapping, one-particle irreducible (1P1) subgraphs yel). The e subscript
reminds one of the ¢ dependence of the propagators. The subtraction
operators TY are defined as follows (notation yY = (p¥,k¥,s"))

1) if vy and ypeU, y{dy,, then (_TYl) is to be placed to the
left of (~Ty_ ),
(-Ty,)

ii) if reU, then

TT .7 ‘Ir(y,e) =11 ...T 1.(y,0)

Ty, DT T (9.18)

111) 1f yyyqs-. .5y eU and {Yl,...,yc} are maximal subgraphs of vy
(i.e. if y;ehey then k =y; Or ) = y) then



-133-

T .7 )i T A T I (yY,eY)
Y Y 1 c c\y
1 C (A%cvl ki) (kicYC A1>

Y1 Ye Y
= [do *...d Yo, 9.19
[do ) IY/Yl--'YC(y ef,0 ) SY X ( )

Y5 Y3
T I T\ I (y<e")
LY Mgy )

x
nro

J

where here and in what follows it is understood that we are integrating

. Y1 Y
over the external ©'s: ge ext""’@eit (see (9.10), (9.11) for the

definitions of reduced graphS'y/yl...y'C and associated integrands),

iv) the operator'tY was defined in [I111.15]

(9.20

Y)] £(pY,kY,sY)

where tgf(x) is the Taylor expansion of f around x = 0 up to and includ-

ing degree n, and p(w) (v) and ﬁ(w) (y) are given by (9.1) and (9.2},
further

|w] . A o
TY commutes with 0" if A and vy are disjoint;

v) if TY and T% are different subtraction operators for the same sub-

graph?y , the operator aTY+bT§ is defined as above, but with TY re-
laced by at_+bt!.
placed by vY+ 'y

These rules ensure that each component Igf> of each integrand IY
(see eqs.(8.11) and (9.2)) will be subtracted with the subtraction oper-
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ator (9.20), which is the one given by Lowenstein [111.13] for thecries
containing massiess propagators.

An essential feature of the forest formula (9.17) and of the sub-
traction operators TY is that supersymmetry is preserved. In other words,
if the unsubtracted integrand IF is supersymmetric, i.e. it possesses
the structure (8.7), the renormalized integrand RF is also supersym-
metric, since the TY defined above commute with any homogeneous function
E(hY,@ ) of degree 0. Chirality properties, as expressed by the detailed
structures (8.8 - 8.10) are preserved in the same way.

We turn now to the task of proving that, under suitable conditions
to be stated later on,

JdkR _ (p,k,s,0) (9.22)
Te

exists, in the limit e » 0+, as a Lorentz covariant tempered distribu-
tion in p, or, in the case that I is one-particle-irreducible, as a
complex-valued function in p for p (Euclidean) non-exceptional. We shall
do this by reducing the problem to a form for which the proof of Lowen-
stein and Speer [I11.13,3] directly applies.

Let us write the forest formula (9.17) for the (w)-component of
the graph I' (see (8.11)), using the definitions above. We get first
a recursive form for the integrand:

a) Rlﬁw)(y)= M) (9.23)
€ Usﬁﬂ €
) ( le‘)x(w)(y) if reu

b) R, (U) = () (9.24)
£ X2 (y) if T¢U



(9.25)

o wyl (W) vs
I ['T«i J|X Y3 (y J)]
j=1 '(j Yj

if Yys--eaY, are all the maximal subgraphs of y which belong to U, and
) (wy)
A A A
TR N I (9.26)

if X is a minimal element of U. Applying the recurrence formula (9.24)
again and again from the minimal elements of U to T itself, one obtains
the following closed form, an extension of that given by Zimmermann
[1I1.4]. Let '

U = {T!Yl:"-:Yn} or U= {Yl,...,Yn}

(By) = (log)s- - luy))

then

o) y) = ] I -lekls I(w)(wu)(U) (9.27)
(y) =1\ Yk Y/ T

where (with vy = r)

a) I;w)(&u)(u) _ kgoléw)(&n)(yyk
0

if {ij, i =1,...,c} are all maximal subgraphs of v,
‘) itzé?U) NE Ii:k)(yyk)

if'yk is a minimal element of U.
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Thus we see from equation (9.23), 9.24) and {(9.27) that the renor-
malized (w)-component of the integrand RFE is a sum of terms, each of
which has the usual forest structure, the recurrence flowing now
from © -component graph to ©@-component graph. We note, moreover, that
the notion of “complete forest" and of "sum over complete forests"
[I11.4], which we shall not define here but which are crucial for the
convergence proof, depend only on topological considerations about
graphs, and so remain valid in our éase. From these two remarks it fol-

Tows that the convergence of (9.22) is guaranteed if the following four
criteria of Lowenstein [III.13] are fulfilled.

(C1) 0@ vy < 6@ yy 41 (9.28)
for any 1P1 sugraph y<l and any (w).

If v,yqs---sY, are 1P1 subgraphs of T, if {yl,...,yc}c:y and if
Yinyy = @ for 1 # j, then

(c2) @) 2 d3) () (9.29)

k=1

(C3) ol (y) UL EA RS (vy) (9.30)

o~ 0 B0

=
—

for any possible choice of ((w), (ml),...,(wc)); the UV and IR degrees
d(w)(Q) and r(w)(Q) of the reduced graph y/yy...y, were given by (9.15).
Before stating the last criterion, let us give one more definition: if
I'is a connected graph, the augmented graph T'is obtained from I by
drawing special lines (g-lines) which carry the external momenta q(p),
connected to the external points of T and which meet at a new internal

vertex VO; to each g-line there is assigned a scalar massive propagator

-V
(2 - 2 + ie(d8 + u2)]

with vso large that one can choose p(w)(y) and é(w)(y) negative (and
consistent with criteria (C1-3) for any subgraph v of T which contains

VO‘ Note that f and T have the same O-structure. The last criterion
is then

C (wk)
(h) + ZO max(0,0 (Yk)) >0 (9.31)
k=

w)

(C4) 3 rl

=
1t
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with A = f/YOYl"'Yt for any set {yo,yl,...,yc} of disjoint, non-triv-
jal, one-particle irreducible subgraphs of f, and any choice of

((w)s (wg)seeslwg)) = (w).

We now want to show that the criteria (Cl-4) are fulfilled, under
the following assumptions.

i) The UV and IR dimensions of the superfields o, are restricted by

s > 0 (9.32a)
ra 2 9, (9.32b)
Dab = —da - db + dab +4 <0 (9.32¢)
Rap = Ta " " *Tapt 320 (9.32d)

where dab’ rap Were defined in equations (8.17).

i1) The UV and IR degrees for vertices V, associated with super-
field monomials Q1 (eq. (8.4), (8.26)) satisfy the constraints

p. < 8§, s 8. > d.

=" i i 20 (9.33)

> ri?—p'i
but ry 2 05 2 4 if Vi is associated with an integrated
monomial

fa* x Q;(x,0,8) . (9.34)

Note that additional constraints, which will be explained later, are

needed if massless vector superfields with IR dimension r_ = O are pres-

a
ent. In any case one has to make sure, that the effective subtraction
degrees pw(y) (9.2) are integers. This is not automatically the case

for all assignments satisfying i) and ii).

Inequality (9.28) for criterion (Cl) follows simply from ry 2 da
and p; < 8. One even sees that one can allow for one vertex having

oy > §s5 provided that o5 - §; < 1. In order to prove inequality (9.29)
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for criterion (C2) one writes the UV subtraction degree in the form
a<b
sy = d )+ T (85540 - T 10y, (3.35)
Viey a,b
Using the relation (9.15) one obtains

(w,) -\
K (v,) - a3

it

3 a<h _
= _(68;-dy) - I (y)D,, >0
V1€Y i agb ab ab

Inequality (9.30) for criterion (C3) is proved in the same way.

We turn now to the criterion (C4). Let us suppose that the sub-
graph Yo contains the vertex VO’ and let us call Q(y), NQ(y) the number
of internal, resp. external, g-lines of graph y. Clearly (I being a
connected graph)

AT S U NI I G IC s

2
ash (9.36)
+ 1 (D;-8) + 4(Q(F)-1)
V.eTl
and i
(w.) w
ro%(y,) = l§91~+ 4 - (NG + 2N ) (v,)
+ a_z—b Iab‘{Yo)(rabM) + V]g'\{o (D1“4) (937)

)
Recall that r k (Yk) for k = 1,...,c are given by equations (8.16)
and (8.24). Using equation (9.15) for the degree of the reduced graph A,

together with the relation

. c
Q) - Qlvg) = A+ Nl

Q(A) = number of non-integréted vertices of ' which remain in A, one
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obtains the expression

(@), oy , & [yl :
PN = (NN ) (v )+ kgl[(ws+2wv+4NQ)<yk) - - 4]
ext int
P 0 I (M) 4 1 Diw T (D-4) (8.38)
a<b VieTah'  VieTnA

+ (1/2)(lml-|wol)

where we have split the sum over vertices into a sum over non-integrated
("ext") and a sum over integrated ("int") ones. From inequality (9.32d)
and the topological relation

b#a o
g LAy + 21, () = T ¢+ I N(y)

one gets the lower bound

B0y 5 N vy + 5 TG ) o+ () - Lkl -]
Z MWWy it Y Q\WYk! T T2
- (9.39)
2ext 21'nt
- r, + (r.-4) + (1/2)(ol~tw.|) »
\liem/\1 V. ernh ! -ll| ol
where we have used the abbreviation
NY) = (Ng + 2N+ g Nyrg ) (v) (9.40)
Now from
(wk) (wk)
max(0,0 © (v, )) 20 " (y) » k=1,....c

(wg)
max(0,p (Yg)) =0

since v contains the vertex'v0 and from
NQ (v, ) = number of non-integrated vertices of y,

one obtains for the expression (9.31)
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@) 5w (v + /2 -te ) s T
+ w -lw + v,
= Trivo 0 v emna L
int
+ 7 (ri—4)
V. ernh (9.41)

c ext . int
. [2 oy 1 (01—4)]

- 1
k=1 | Ve, Viev,

A careful counting of the ©'s in the relations (9.11), (9.13), and (9.14)
applied to {F,yo} shows that

(1/2) (| w|-]ug|) > (Ng + 2N)(¥,) (9.42)

This yields the estimate

+ 1 (r-8) (9.43)

c ext int
+ 5 [: Z p'i + Z (01‘4)]

k=1 Vievy Viev,

which is strictly positive if all of the conditions (9.32), (9.33),
and (9.34) are met.

However one of these condifions, namely inquality (9.32a) is vio-
lated in the case of supersymmetric gauge theories (Ch.I1). Indeed,
there occur massless vector superfields with dimensions d = r = 03 so
there are choices of the subgraphs {YO’Yl""’Yc} such that the right
hand side of (9.43) is zero. For example such a divergent graph in SQED
(even in the o = 1 Feynman gauge) is given in figure 9.2



Fig. 9.2: An example of an IR divergent diagram

Looking more closely into the origin of this IR divergence, one
clearly finds its cause to be one specific @-component only (see figure
9.3). This indicates that we can still refine the estimate (9.30) by
exhibiting ©~components.

Figure 9.3: An example of an IR divergent
diagram in terms-of components.

In fact, if we associate with each amputated external line a com-

(w))

ponent & a , due to chiral (vectorial) S6-functions it will contribute
to the O-power of the diagram according to

(o)
fw] = lwa ]+...+lwa | = E Ng

. ) (2-1w, 1) (9.44)

S

(w,)
+ LN, (aele])
(w,)
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(wg) (o)

where NS s , N V' count components of chiral, resp. vectorial super-

\
fields. Therefore, we find instead of (9.42) an equality

1/2(lwl°lwol) = “(NS + ZNV)(YO)

(w,) 4
+ (1/2) % N, a (vg) g (9.45)
2, (wy)
+ (1/2) ) lwivi‘
VieAUYIU"'UYC
and obtain the improved bound
- (w,) (w,) ext v
E(w)(/\) _>. z Na a ra a + Z Y‘(w1 1)
a,(w,) V.eAnD !
a i
int Vi
. ploi ) 0) (9.46)
VieAAP
C ext V4 int Vi
e 11 eyl +[z (p, 1) - 4>}
k=1 Vieyk Ving

wy)

which is strictly positive if, instead of (9.32a) we have Ty & s 0.
This condition is violated in the case of SQED only by the @O—component,
C, of the massless vector superfield whose presence, as the example
shows, indeed causes IR divergence.

This result, that for massless vector superfields one will not have
IR-convergence in general, forces one to a case by case study which we
shall present in chapter V. It should also be noted, that Lowenstein's
criteria (C1) ... (C4) (9.28) ... (9.31) are immediately applicable for
any supersymmetric theory formulated entirely in components (and not in
superspace). By doing so one simply does not "see" that the subtractions
maintain manifest supersymmetry. In the example of pure SYM we shall
proceed in this way after having rendered massive the field C {cf. be-
Tow chapter V).

Let us summarize the results of this section.

Starting with subtraction degrees (9.1)-(9.3) for diagrams in super-
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space we have set up a systematic procedure to render them finite (for-

est formula (9.17)) provided the conditions (9.32) on the fields and the
conditions (9.33) on the vertices in the theory are satisfied. The sub-

tractions maintain supersymmetry, i.e. starting from a naively supersym-
metric theory one will not violate this supersymmetric structure by the

subtractions. In the case that massless vector-superfields are present,

IR-convergence (of Green's functions, 1.8: off-shell) is not guaranteed

by the above procedure (condition (9.32a) is violated).

Section 10. Normal products

In the preceding section we have described a recipe to produce
finite Feynman diagrams in superspace for a large class of theories,
restricted by the conditions (9.32) on fields and by conditions (9.33)
on vertices. We therefore have a tool for the construction of Green's
functions, namely the modified Gell-Mann-Low formula (7.1), not only of
elementary fields but also of composite operators [II1.16]. Via the re-
duction formalism (when applicable) we have thus defined operators for
the theories we started with. Since, besides the S-matrix, composite
operators - essentially currents and charges - are the primary object
of interest in any theory, it is important to collect all relevant in-
formation on them. This is the aim of the present section.

Let us first of all note a simple, but important fact which follows
immediately from the form of the subtraction operator (9.20)

Q(w)“l S(w) iy
(1—rp,5*1 (Y))(l“Tp’s (v)) =21-r (10.1)
(Tilxz was the Taylor series about x; = x, = 0 up to and including order
d for d > 0; Tglxz =0 for d < 0): the normalization conditions for

vertex functions.
1f for some w, p(w)(y) <0 and 6(w) (y) > 0 then

1 - 19 1%0p,k,s =0 10.2
( TY) Y(p ) 2=0 ( )
s=0
i.e. only the trivial graphs (no loops) will contribute to the w-com-

ponent of this vertex function at p = 0, s = 0.
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If for some w, p(w)(y) 2 1, then

Wy W -
(1 -t )L(pkss) g = O (10.3)
s=1

i.e. only the trivial graphs will contribute to the w-component of this
vertex function at p =0, s = 1.

In order to deal with the above mentioned operators and their
Green's functions we introduce some additional notation. Let Qi i =
1,...,n be a set of monomials in the free fields of the theory (8.4).

Q;(x,0;,8;) = (s-1) '(53) 5;)] (10.4)

i.e. with naive UV-(IR-) dimensions (8.23) (8.24)

[=%
I
PO

g ag gl g vyl e g €aida

(10.5)

-s
H
N}

gt il eg vl s g “ai’a

and let Qi now occur in a diagram as a vertex. Above we have associated
subtraction degrees 61 ZAdi, 05 §_r1 with the vertex Qi and we have
shown that such a diagram will be finite after subtractions via (9.17)
provided 0 5-01 5_61 (and (9.32) for the fields being true).

The subtraction degrees were (9.1) (9.2)

o
€
=<
1
(o)
<<
+
E

(10.6)
oWl (y) = oly) + lﬁzﬂ
§(y) = 4 - N.(y) = 2N (y) - T dN.(y) + 16%(Y>(6i‘4)

10.7
oly) = 4 - N.(y) - 2N (y) - g roN () + ]eg(Y)(p1-4) (10.7)
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It is then natural to define as Green's functions of the operator Qi
*

just those given by the modified Gell-Mann-Low formula

1jt‘int 5

<TQ1(21)®1"'¢m e (0)
iJL;
<e int S

> =R (10.8)

(0)

(z; = (Xi’gi’éi))° where the right-hand-side is to be expanded into

a sum of diagrams according to Wick's theorem and R is the subtraction
procedure described in section 9 with Qi being taken into account. I.e.
one finds just all diagrams having Qi as a vertex. We shall call Q1

an insertion (or normal product) [IIT.16] and write its general Green's
functions more precisely than in (10.8) as <T Ng; [Qj(zi)] X> in order
to record the power counting with which it contributes to the subtrac-
tion degrees. In the Tanguage of generating functionals (cf. App B)

we write: Ng} [Q1]~Z, N@} [Qi]rZC; Ng} [Qj]~r for general connected -,
one-particle-irreducible Green's functionals, respectively. They gen-
erate all Green's functions having the vertex Qi as special vertex.

If we consider Green's functions of several insertions, our recipe of
section 9 works as well and the notation is accordingly:

D1
< T N61 Qi(zi) X > for Greens functions,
i i
TN (020 - 2w N [0(z)] - 2
i i 99
P .
m N [Qi(z5)]) - T for the functionals.

i °9
If Ay = [dx Qi(x,e,é) is an x-integrated monomial, we have convergence

for the corresponding normal produét if in addition to the above con-

ditions ry 2 oy > 4

p .
The more precise notation is analogously < T Né} [Ai] X> for Green's

It is a remarkable consistency check of this approach that for mini-
mal subtraction 8i = dij, (massive theory) the above definition coin-
cides with the one where one fixes external lines of a diagram to
form the vertex Qi and renders finite the new diagram by taking into
account the divergences of the additional loops one has created in
the fusion process. The latter is the original definition of normal
products [II1.16].



functions
0. 0. 0.
1 ° .I . -l .
N(Si[ai] Z, Nai[Aj] Z,, Nﬁi[Ai] T

for the functionals. Ng [A] (or Ag) will be called integrated normal
product, (integrated) insertion or differential vertex operation [II11.17].
The reason for this last name will become clear in section 12.

The handling of normal products is governed by only a few calcula-
tional rules which we now present.

(1) 85+ T =8 + 0(Fa) (10.9)

The functional of vertex functions all having the special vertex 4,
A*T, is given by the sum of two terms: first of all by its trivial part
- the vertex A, this is the local contribution to A-I', second diagrams
having the vertex A and at least one Toop (h) - this is the non-local
part of the functional A*T. Diagrammatically this equation reads:

A
= f/I\\ + Loops (10.10)

Although the equation (10.9) is extremely simple it will often help
us to reduce true quantum problems to classical ones (cf. chapters IV,V).

(2) derivative rule

Ne[0(x,0,8)] + T = N§Hi[3%0(x,6,8)] - T (10.11)
5 M[a(2)] - T = W81 [Ba(2)] - T (86 or 8) (10.12)
op8la()] - 1= LB a()] - 1 (i, or By) (10.13)

This rule is proved by expanding both sides of the equations into dia-
grams and then the diagrams into forests. The equations follow due to
the corresponding commutation property of pu,é,D with the subtraction
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operator r$ according to which then the degrees change: e.g.

v.8 _ 6+l Ly
PuToy = Ypy Pu

(3) Zimmermann identities

Starting from any monomial Qi (10.4) one may construct, according
to the above, different normal products out of it by assigning different
subtraction degrees to it. Zimmermann identities tell how these dif-
ferent normal products are related to each other.

To begin with let us assume a massive theory to be given and treat
just one insertion differently with respect to degree. Then the corres-
ponding Zimmermann identity reads [II1.16,17]:

NglQ] = T = N[Q) - T+ g riNol®il * T (10.14)
where by assumption: ¢ > & > d(Q) (10.15)
Qi C o(h) (10.16)

and the Qi span a basis of all (classical) monomials with

S+ 1 §_d(Q1) < ¢ and equality of all other quantum numbers referring
to symmetries which are naively maintained by the subtraction scheme.
Amongst these symmetries is at least Lorentz invariance and (if present
classically) supersymmetry; also all conserved discrete symmetries are
operative.

Let us give a concrete example. The Wess-Zumino model (3.26) is
supersymmetric and parity invariant. According to section 9 we may there-
fore construct finite diagrams and thus finite Green's functions with
the subtraction rules given there, since the conditions (9.32) (9.33)
are satisfied. Supersymmetry and parity are conserved in the subtraction
process. If we want to relate now-NZ[Az], the minimally subtracted normal
product, to N3[A2], the once oversubtracted one, we may write according
to (10.14)

3

+ v DB(A)] + T (10.17)

2 .
mN2[A2] - T =-mN3[A ] T+ N3[r1ADDA + T,A 3

2
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3, Dﬁ(ﬂz) are a basis for all classical mon-

because the terms ADDA, A
omials which are chiral and of naive dimension 3. Due to conservation
of parity we also have

AN, CAS] « T = mNo[AZ] = T + N,[r BDDA + r A + r.DD(AZ)] - T (10.18)

2 3 31 2 3 :

with the same (real) coefficients vy Multiplying (10.17) by DD, (10.18)
by DD, using (10.13) adding and integrating over x-space we have there-
fore

o[ [dSA® + [dSAZ] - T = mN,[fasA? + [oSAZ] - T

B 3 3 (10.19)
+ Ny[2 ryJdVAR + rz(deA + JdSA")Y] - T
The r,-term dropped out since DD DD(EZ) = [DD,DD] (RZ) = total diver-
gence (same for conjugate).

The coefficients ry are obviously of order hi- they come from toop
diagrams - since in the tree approximation there are no subtractions
i.e. the N-symbol is ineffective. The best way to calculate them is via
normalization conditions:

o[ fasA? + [aSA%) - FARIsz = Nym([dsA® + [d5A?)

(10.20)
+ 2 r JdVAR + v (deA3 + fd§ﬂ3)] < T, =
1 2 AR
p=0
Due to the subtractions:
left-hand-side : 8, = 4-2:2 + (3-4) + 5+ 0 = -1
(10.21)
right-hand-side: GQ = 4-2+2 + (4-4) +A%' 0= 0

on the right-hand-side there survives only the trivial contribution
i.e.:

mN [deA2 + deAZJ « T,z =2 (10.22)
3 AA 0=0 1

For instance in the one-loop approximation one has two contributions
from the diagram
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N3[deA2 + [dSA?]

-~
3

which are of the form (up to a numerical factor)

: m
2 vy ~—1p (7 fok —
(2m)

. 2
1 2
ey ()" Jak —— 3 # 0

(since DDl(k) 6§(1,2;k) = 1).

Similarly, o is given e.g. by the test

2 e52 \
mN3[jd5A + JdSA°] - T = 6 1,8 (1,2)8,(1,3)

since again the 1.h.s. is not subtracted whereas the r.h.s. 1is

1hos. 18, = 4-2-3 4 (3-0) + 5+ 2:2 = -1

9]

c2:2 = 0

~of

r.h.s. : 8, = 4-23 + (4-4) +

(10.23)

(10.24)

(10.25)

Looking into the one-loop contributions we find as possible diagrams

¥ l L
Al A, A
/\ ] 2 ‘.‘2 ‘
L T ; Q= N3[deA + fdSA®]
A /E//‘fz\\ A3
Al A2 Q A3
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which all vanish at p = 0 since they contain the square of a chiral
(resp. antichiral) propagator. Hence

22
ry = 0(h) (10.26)
(In fact we shall prove below that ry = 0 to all orders.)

The next case which we treat is a theory containing massless
fields for which an auxiliary mass term has been used. Then the need
may arise to compare a normal product N[(s»l)aQ] with (s~1)aN[Q] - for
instance in checking massless limits via s » 1. Let us assume subtrac-
tions degrees §,p for Q satisfying d(Q)< 6§, r(Q)> p,8>p > 0. Then
the relevant Zimmermann identity reads: '

(s-1)°N8 Q) - 1= NG [(s-1)%Q0 - T+ g rqiNeialQi - T (10.27)

again rgi o(h) (10.28)

and the characterization of the Qi relative to the Q is analogous to
the previous case (d(Qj)gv §+ a, r(Qi) > p+ a; equal guantum numbers
for naively maintained symmetries). Since now (s—l)a Q is not an over-
subtracted quantity it may appear again amongst the Qi (and may be
eliminated there by repeated use of (10.27)).

Let us as an example again consider the Wess-Zumino model (3.26),
now in its massless limit. The criteria (9.32) (9.33) are satisfied
with an auxiliary mass term

P o= Lo o(s-1)(fdsa? + [d3R%) (10.29)

m

0O

and s participating in the subtractions as dictated by the forest-for-
mula (9.17). Hence we have finite diagrams, i.e. finite Green's func-
tions (at non-exceptional momenta). The Zimmermann identity (10.27)
corresponding to (10.17) reads
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[m(s-1)A%] - T 2

Hi

m(s-l)Ng'[Az] T + Ng [qm(s-1)A

+ rADDA + a3 + nbbA ]-T

2 2

+ VOA + xm(s-1) DDA + ym“(s-1)"A

(10.30)

Similarly to the massive case the coefficients are best calculated from
normalization conditions.

The last case we shall present is the Zimmermann identity

Ng [Q] - T = NG [Q]-F+% roits (90« T (10.31)

Here

§ > d(Q) o < r(Q) (10.32)

¢ > d(Q) o < r(Q)

In other words: the common basis for normal products with mixed degrees
is spanned by the products with smallest IR-degrees and the highest
UV-degrees involved.

An explicit example will be given below in connection with the
0'Raifeartaigh model. '

For the proof of these (and related) Zimmermann identities we re-
fer to the literature (for ordinary component theories [I11.16,18],
in superspace [1I11.11]). We should Tike to make only one comment. The
main property to be proved is that fhe carrection terms between two
differently subtracted normal products is again a normal product. This
requires regrouping the two forests involved and showing that the re-
mainder is again a forest for certain insertions restricted only by
power counting and the naive invariances. The hard part of the proof
is thus the existence of equations (10!14) (10.27) (10.31), not the
actual determination of the coefficients involved (as could have been
suggested by our presentation).
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Section 11. The action principle

Under this heading run essentially three theorems which describe
the variation of (1) a parameter, (2) a field, (3) an external field
of the theory. As will be seen in the subsequent chapters they govern
all studies of parametric dependences and symmetries, hence are truely
fundamental. Their mast detailed proofs have been given in the context
of the BPHZ-renormalization scheme, but they hold in an analogous fash-
jon in all other schemes developed thus far and are therefore considered
as general theorems valid in perturbative gquantum field theory. -
In order to formulate the principle we have to specify somewhat
the action on which we base our theory. We write

Fesf = To * Tint (11.1)
where Ib is the free part of the theory which determines the free prop-
agators; Fint is the tree approximation interaction plus all sorts of
counterterms (depending on h) which may be needed in higher orders for
ensuring normalization conditions or symmetries. It is Tint which ap-
pears in the Gell-Mann-Low formula (7.1). Since the notion "effective
action" has different meaning to different people let us emphasize the

difference between Toff (11.1) and the full functional
r= (0 () o 2p(2) (11.2)

of one-particle-irreducible Green's functions (vertex functions): al-
though they coincide in the tree approximation (zeroth order in h)

P(D) = Té?% = classical action (11.3)

they differ in all higher orders n 21 in ™h

(n) _ p(n) v(n)
r = reff + T (11.4)
Here rég?) collects all trivial graphs (point vertices) at the consid-

ered order in h, it is the local contribution to I at this order, where-
as F’(n) stands for all genuine loop graphs of this order: i.e. T'(n>

has at lTeast one loop (and h-dependent vertices such that the total
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h-power equals n) and is the non-local part of the functional T. (Cf.
the analogous discussion following (10.9)). This distinction will be
crucial in the treatment of symmetries.

Let us now state the theorems.

(1) Action principle - variation of a parameter

ar _ (Oleff ;4

3x LA 4

.7 (11.5)
for any parameter A ofléff.

(2) Action principle - variation of a propagating field

(a) in ordinary space

§£_*[6reff je-r(e) ¢
56 °L55 L 4-d(o) (11.6)

("linear field equation")

8T
8T oy OTeff 1 4-r(e)+r (o’
* 5[0 5 ]4-£(¢§15E@'§ T (11.7)

("bilinear field equation")

(b) in superspace *

T [Greff }3‘r(A)

5A Sh03-d(A) " T (11.8)
8T
C ST o eff 1 3-r(A)+r (A
AsEc A 3—d(A)+d(A'% T (11.9)

for chiral fields A,A’

sr_ Tefs j2-rie) |
56 = L8s  d2-d(o) (11.10)

The difference in power counting assignment between ordinary space
and superspace arises from the different integration measures dx
versus dS = dxDD, dV = dxDDDD which are "integrated away" with the
corresponding §-functions. ’
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8T
5%

STors 12-r(0) + (o) (11.11)

= [0 55— J224(0) N 2(@ )

®I
for vector fieldso, ¢

(3) Action principle - variation of an external field

Suppose in Iéff"there is a non-linear field monomial Q coupled
to an external field n, then

ST ST
[dz ORI A T (11.12)
with
§ = 4-d(®) + 4-d(n) = 4-d(9) + d(Q)
(11.13)
p = 4-r(®) + 4-r(n) = 4-r(d) + r(Q)
in ordinary space (dz = dx)
§ = 3-d(8) + d(Q)
(11.14)
p = 3-r(2) + r(Q)
in superspace, for dz = dS, dS
§ = 2-d(®) + d(Q)
(11.15)

p = 2-r(0) + r(Q)

for dz = dV

Let us note that (2) controls linear and inhomogeneous field variations,
hence is suitable for deriving Ward identities of (spontaneously broken)
Jinear symmetries, whereas (3) is of a very general nature and may be
used to control non-linear symmetries. It will serve us below for BRS-

invariance.

For the general proofs of the theorems we refer to the literature
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(ordinary space [111.19,20,18] superspace [II1.11]), but we shall il-
lustrate them by treating a simple example.

Let us consider the Wess-Zumino model (3.26) with free action
r =L ravAa + 0 (fdsa? + [d3R%) (11.16)
o 16 8 '

and interaction given by

-1 5 2 eily . A 3
Tint = %E—-deAA - & (JasA® + [d3R%) + 75 (JdSA
ez 3
+ [dSA”) (11.17)
We then define
Taes = To * Tint (11.18)

*
and Green's functions by

=

CTA(L)...A(M)A(L)...A(m)]} = R <TA..,A...e‘T1'nt>O (11.19)

(0)
(cf. (7.1) and (9.17) for the subtractions R). Since the criteria (9.32)
(9.33) are fulfilled with § )= 4-2N  + Ll we know that (11.19)

yields convergent Green's functions (from convergent diagrams) and fur-
thermore that supersymmetry and parity are maintained. The coefficients

z,a,x may be fixed by normalization conditions:

FFF =1 FAF =m FAAF =g (11.20)
either at p = 0, then they have their tree approximation value

z =1 a =20 A =g (11.21)

or at p2 = pz, a normalization pdint, then they are formal power series

in h and functions of m,g,u?:

*  Vacuum-to-vacuum diagrams are suppressed.



~-156-

2
2=z (T, 9 =1+0(h)  a=amutig) = 0(h) .
H , ) .
A= ATy ,9) = g+ O(h)
H

Due to the subtractions and (11.17) we have also <F> = 0.

Let us now derive (11.5) for the parameters g,p?,m of the model.
to begin with we re-interprete first the Gell-Mann-Low formula (11.19)
by writing [1II.21]

6™ = cTa(1). . A(MA(L). . . A(m)>
(11.23)

ei(z-l)Al-a1A2+A1A3 G(n,m)
(0)
here

N 1 3
by = Ny [3g [dVAA] (11.24)

1

N, (5 (JasA? + [d3A?)]

>
l

L= N, [hs(fasa® + [a3h)]
i.e. the full Green's function G(n,m) is understood as being obtained

m)

from the free one, 6283 , by inserting into the latter the normal prod-

ucts Al,AZ,A3. (I.e. we have used the definition
pe6t™M ot A Rm)s (11.25)

and then repeatedly applied the Gell-Mann-Low formula.) Differentiating
now (11.23) with respect to g we obtain

o glnm) _; 2lint (iTintg(n,m)
3g a9 (0) (11.26)
Tint , glr.m) '

59

(an equality which one may also check explicitly by going through the
series expansion of the exponential).

On the functional Z (11.26) reads
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7= [ int T, ~12

59 39 ‘4 (11.27)
and hence on T

ol
d - int .
N PR, (11.28)
. ol ar

Since TO is independent of g, one may also write ag1nt = Bgeff

and thus one has finally (11.5).

The same procedure goes through for differentiation with respect
to y?. If we now differentiate with respect to m we have to consider
not only the analogous contribution to the above, namely when 3/3m acts
on the vertices, but also when it acts on G( ), the free lines. With

the free propagators (3.18) (3.19) one ver1f1es that

; 4, S(1 2)(k2+m2) 18,
om > f T2 = x (11.29)
0, k 0, (k -m + 15) 0, 0,
analogously for §ﬁ - > - and also for
&, ko,
; 2inD06=(1,2) 18,
— > = = X (11.30)
om = -
o, k 8, (Kt +ie)f o 5,

I.e. on each line 3/3m equals the ‘insertion 1A2 {in accordance with
its power counting &= 4). Since furthermore

3l (0) = %2 (11.31)
(once we assign &= 4 to I’(O)) we finally have
8l = ibyeZ = 3 [Ty ], + 2 (11.32)

and thus on T (11.5)

e-contributions in the numerators are neglected in view of the
eventual Timit e~0.
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8.0 = [3Tapel 47 T (11.33)

This concludes the derivation of (11.5).

Let us now give a derivation of (11.8).
The aim is to prove that

ST
T effy .
35 - [3K~_~]2 r (11.34)

with (cf. (11.18))

6Feff Z a=g m-a 2
S T§~DDA + = A+ 16 A {11.35)

>

Since TI'is the vertex functional and a linear term inserted always gives
rise to one-particle-reducible graphs, (11.34) is more precisely to
be written as

g{x:%BﬁﬂJrﬂi—a-Ader {%AZ]'r (11.36)

Legendre transformation yields
4 §Z
LB o C g ma C A a27 .

- Jy = 15 DDS—J—;{+ T FJ;*“z'[ls’A] Z, (11.37)

Going over to Z = eiZC we find
. _ 2 rm 02 m-a &2 A a27 .
-1.JAZ-—1-EDDT:+T-S——+N2[1T6—A] A (11.38)
A A

or

z =s  OZ m-a 8Z A 27,

16 DD m%‘m +Tm = -\JA(Z)Z - NZ [16 A ] z (1139)

i.e. for a Green's function with n chiral, m antichiral external Tlegs
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<T“%—ﬁﬁ+!%3AMZMUJ“.MnﬂHJ”.MmH>

= +

6
n v
) i8(2,2,) CST(A(L)...A(K)...A(n)A(1)...A(m)>

k=1

FCT(N, [- %E»AZ](Z)A(l)...A(n)ﬂ(l)...A(m)> (11.40)

A
(A(k) means omission of the leg A(k).)

Equation (11.40) is the suitable form for a proof starting from
the Gell-Mann-Low formula.

Let us consider a Green's function with n chiral, m anti-chiral
legs and one leg whose chirality we do not yet specify (Z). Then the
graphical alternatives are

j.e. 7 is connected immediately with another external Tline (“discon-
nected" part), z enters the diagram via a bilinear or via a trilinear
vertex of I}nt'

Combining now two such Green's functions:

=Y

%ﬁ 0DA(z)

we see that the disconnected diagrams yield
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n I - -
kzl T (ks DOA(z) + %-A(z))A(zk)>(o)<T(A(l) ACK). A(MA(L). A(m)p
V.
. E <T (5 BBA(z) + T A2z o) <T(A(L) A(nyﬁ(;) A(K) . A(m))>
. 16.(2,2,) (T(A(L)..A(K) . .A()A(L) . .A(m))> + O
) (11.42)

due to (3.14) (differentiated with respect to Jpsd3 resp.).

The bilinear vertex diagrams contribute

<T (- = DOA (2) - =7 A(2)) % (11.43)

whereas the trilinear interaction vertices contribute <T(- %€-A2(2)>,

as can be seen from

(ks 00R(2) + D A(z)) Jay 1% + 3AARY) = - Jg AE(2)
(11.44)
(s B0R(z) + D A(z)) a7 15+ FR(AE(Y) = 0

The power counting assignment follows from the fact that amputating
an external line attached to a vertex V of degree 4 raises the degree
by two (NS+NS—1)

§ (y) = 4-N_(y) + [ (8; - 4) 4+ Lol (11.45)

. i
w leVw
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hence if for any diagram y containing V the total counting must not
change one has to Tower the counting of the vertex V (from 4 to 2).

Collecting the contributions-(11.42)-(11.44) we obtain (11.40);
going backwards to (11.36) we have proved (11.34) i.e. the action
principle (11.8) for the Wess-Zumino model.

The name "Tinear field equation" for (11.8) is obvious from
(11.40): amputating the lines A(1)...A(n)A(1l)...A(m) one obtains the
operatorequivalent of the .classical fieid equation:

o . z-1 axr L @
-[1-/\) —(‘—I‘B—*DDA-FEA)

;ﬂ;
(el]
[we ]
=t

For the proof of (11.9) (e.g. with A'=A) one proceeds exactly as for
the previous case, i.e. one writes first all graphical possibilities

of connecting the vertex A(TEDD A+ D A) with the remainder of the dia-
gram and then goes through all consequences arising from use of the
free propagator for the line carrying %E,BD A+ % A. The result, (11.9),
we shall not prove in detail.

Section 12. Symmetric operators

Suppose we have proved for a theory that a (rigid) Ward-identity
holds:

W = 0 x € symmetry algebra (12.1)
and let A be a parameter of Teff' Then the action principle (11.5) de-
fines via

8T

5 - N ( gx—~* crzad, 0T (12.2)

a unique insertion 4, . Now act on (12.1) with 3/3xand on (12.2) with
wx and form the difference:

S - .
[ oWy ]«r= W (8, r) (12.3)
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If 3/3x commutes with wx we have

0= Wx(Ax'F) = waA + O(hAX) (12.4)
(here we have used (10.9)) which expresses nothing but the invariance
of the insertion AX gnder this rigid symmetry transformation WX. We
have thus found a criterion for the construction of symmetric operators:
within a symmetric theory (12.1) any differential operator 3/3x which
commutes with the Ward-identity operator generates a symmetric inser-
tion AX'

The simplest examples are provided by unbroken symmetries where
the corresponding wx does not depend on a parameter, e.g. in section 11
(Wess-Zumino model) derivatives with respect to m and g generate sym-
metric insertions whose tree approximation are just the mass, respec-
tively the interaction terms. It is natural to ask, whether the third
invariant - the kinetic term - can also be associated with a symmetric
differential operator. The answer is yes: for all Tinear homogeneous
Ward-identity operators of the type W = fdx d' §/80, the leg counting
operator

- .
Kz fax(o o5+ 0 &) (12.5)

is symmetric (commutes with W). In the example (use (11.9) and (11.24))

S
SR

4

e (deA-%K + a5 O = Wy o T (12.6)

— 4 »
= [2 by + 28y +3 A3]4 r

In fact there is a one-to-one relation between symmetric insertions
and symmetric differential operators.

In the case of spontaneously broken symmetries W depends on para-
meters and the definition of symmetric insertions is then greatly sim-
plified by utilizing differential operators appropriately symmetrized
by making their commutators with W vanishing (cf. below the
0'Raifeartaigh model).

The above treatment is appropriate for rigid symmetries linear
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in T'. The T-nonlinear BRS-symmetry (5.84) (5.85) enforces a slight modi-
fication.

We shall call an insertion A BRS-symmetric if

6(1“(60)) = O(ez) (12.7)
for 1l0) - r0) 4 en (12.8)

and IS(F(O)) =0 .

According to (5.84) (a-gauge) we have

+

(0) (o) (0) (o)
o) < a(rl®)) ¢ I S S S

(6AF(O), o0 (9 sr©) ar () gpr (@) 5p () gpl0) g0}

S _yrio)
+===)AT T e
Sc_ &c_ \ So §c,  do 6c,

+ conj.)% + 0(52)

- 0y ¢ ol sehort®) oty
(12.9)
i.e. A is symmetric (in the g-gauge formulation) if
(6 + Trfdv (D(?S%: + %))AF(O) - 0 (12.10)

A somewhat stronger notion is also useful: we shall call A8 -symmetric
if already

sar'® = 0 (12.11)

i.e. if an insertion is symmetric and does not contain the ghost field
c_ it is ¥-symmetric.
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As far as methods are concerned let us remark that the use of an
infinitesimal parameter € was the means to linearize the action of 4
on the compliete functional Téo). It is no surprise then that we arrive
at the operator Bf(o) = 4 as the one defining symmetry of an insertion.
In fact, in more complicated cases (1ike the one treated in section
5.4) it is the above.technique and the question "How does an insertion
transform?" which leads to the correct $-operator. I.e. it is not nec-
essarily the requirement: “linearity" which defines that transformation
law.

If A is a BRS symmetric insertion generated by a differential op-
erator ‘

p-rlol -2 p(o) (12.12)

then (12.10) yields the definition of a BRS-symmetric differential op-
erator

@ + Trjave (2 + 2 & o) 2o (12.13)

and (12.11) the definition of a f-symmetric differential operator:

3_ (o) _
b5 =0 (12.14)

For the extension to higher orders one simply drops the superscript
(0) and thus has as definitions for BRS-symmetric insertions:

§ §
+Tr‘chp —— e e A'F=O 12.15
B+ Trfove (s gz e s (12.15)
S . Sywa -0
Gaf + Tr[dve (Gc_ + 66_)) = r=20
and for BF—symmetric:
B_(a-T) =0 (12.16)
r
. (9 -
3565 M =0
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For the B-gauge formulation let us only give the definitions of symmetry
for insertions A not depending on the field B.

Writing the equivalent of (12.9) and acting on it with §/6B one
finds that A has to satisfy the respective ghost equation of motion
(cf. (5.89) (5.90)):.

(o]

A 1 == A ' B)-

EE?A+.§ §fiop 5 " 0 {a,B)-gauge (12.17)
GA 1““6A_ B_ \
Sc_ 128 DD Sp 0 (B)-gauge (12.18)

and then A will be (BRS-) symmetric if it satisfies
ta = 0 (12.19)

(i.e. B independence of A enforces the validity of the ghost equations
and makes the notion of BRS-invariance coincident with that of 6-in-
variance).

The extension to higher orders is obtained by replacing & by AT
and 6 by ‘3f

As the final example of symmetric operator we should like to dis-
cuss operators invariant with respect to abelian gauge symmetry. In
the a-gauge formulation we have derived the Ward-identities in SQED
(4.69) ’

tr—-

2. ==
Wl = 5= (O + aM”™) DDO
(12.20)
Wl = 1O+ aM) DDO
A 8a

The physical Hilbert spacef}ﬁp in SQED is defined by that subspace of
the entire indefinite metric Fock - space J whose states |phys > satisfy

(008)~ | phys » = 0 = (B8¢)” | phys > (12.21)
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We therefore call on operator Q gauge invariant, if

(1) it commutes with DDo in ¥:

[q,000] = 0 = [Q,DBe] (12.22)
and {2) its matrix elements in ab are u-;ndependent.

The requirements (12.21), (12.22) make sense since DDO, 000 are
free fields once the Ward-identities (12.20) are satisfied (cf. the

discussion in section 4.). A sufficient condition on the gauge varia-
tion of an operator Q still guaranteeing (12.22) is the following:

w,(1)0(2) = P(2) @+ oM)5(1,2) (12.23)
(P denotes an operator) [II1.22].. If (12.23) is satisfied with P =0

we call the corresponding Q's symmetric operators. Examples will be
given below in chapter V.



CHAPTER 1V

RENORMALIZATTON : HARD_ANOMALIES

In the present chapter we answer the question which symmetries
(out of the class of superconformal and gauge symmetries) can be estab-
Tished to all orders of perturbation theory, at least in the asymptotic
(deep Euclidean) region. I.e. we are searching for hard anomalies. It
will turn out that supersymmetry, rigid gauge invariance and R-symmetry
are anomaly free, whereas the conformal symmetries, abelian gauge- and
BRS-invariance have in general anomalies which are essentially super-
symmetric extensions of the known anomalies in ordinary (non-supersym-
metric) component theories. Although N = 1 supersymmetry 1inks certain
anomalies it does not prevent them as one might have guessed from the
very special character which anomalies have as far as their symmetry
properties are concerned.

The main tool of our study is the action principle established in
the preceding chapter in combination with the algebraic technique of
Becchi - Rouet ~ Stora (BRS) [IV.1, II.12]. Independent of any regular-
jzation and regardless of any specific subtraction scheme this technique
permits to determine all possible anomalies of a symmetry. Anomalies
are thereby understood as peculiar non-trivial solutions of a system
of consistency conditions provided by the algebra of the Ward-identity
operators., Once they are algebraically characterized in this way, usu-
ally a one-loop calculation suffices to determine their presence in a
model - and a theorem has to guarantee absence to all orders (if feas-
ible).

As concrete illustrations of the general theorems we shall treat
the extension to higher order of the models presented in chapter II,
in the tree approximation.

-167-
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Section 13. Rigid symmetries

e e o o e v 0 i o o o o e i s e s e D o e B o o g Mk st ] o

Suppose a set oﬁ (Tinear) field transformation taws is given
i [Qx,dﬂi = 6x®; (13.1)
and the charges QX sdatisfy an algebra

[Q Q1 =1 fp, Q, (13.2)

Xyz
Here ¢ may be a superfield or an ordinary one; the algebra may be a Lie
algebra with structure constants fxyz or e.g. the supersymmetry algebra
(1.4) - (1.6). We may then translate the transformations into the langua-
ge of functional differential operators

W, = -i [dz 8.0

X (13.3)

A %10{“

acting on T, the vertex functional, and having the same algebra as the
charges

W W dy =0 Fy, Wy (13.4)

The aim is now to codstruct order by order in the loop expansion the
functional |

r=r gl (13.5)
with rlo) - classicai action, such that
Wr=20 (13.6)
i.e. the Ward- identity holds for the respective symmetry. If we succeed
in devicing such a I';to all orders for the given set of w 's we have

perturbatively 1mp1eﬁented the given symmetry to all orders

In order to illustrate the systematic construction of such a I' we
Took first of all into the one-loop approximation. Suppose
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7= 10) 4 g (L) (13.7)

is the vertex functional as calculated up to one loop from a given F(O)
which is symmetric:

W o) =g (13.8)
(Everything is finite due to our subtraction procedure.)

The action prinkip]e, section 11.2, combined with Zimmermann ident-
ities, section 10.3, tells us that

W, = hAX-F = jhAx + o(h?) (13.9)

(the right-hand-sideibeing of order h s a consequence of (13.8), also
(10.9) has been used)).

Applying W, on (13.9), combining it with the equation for order Ny
and using it also fo& NZ we find that the algebra (13.4) constitutes
constraints on the pbssib]e insertions A, [Iv.1, IV.2]

=g 2
W byt wy By 51 fxyz A, 0(h?) (13.10)

i.e. we have a classical equation to solve, namely finding the general
solution 4 for (13.10).

Let us assume fhr the moment that for any local insertion Ax which
solves (13.10) there exists a local A with

A, =W, A | (13.11)
then we can define ‘é?% = P(O) - ha i.e. have
I =T~ haA (13.12)

as our final vertex [functional of order h and convince ourselves that
indeed
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wxr = WXF - h%wa = 0(h?) (13.13)
By induction one can%proceed to all orders. But the crucial assumption

is (13.11): there ma& be solutions A, of (13.10) which are not variat-
jons; there may be A&'s of the form (13.11) but having a A with power-
counting degrees notfpermitted for a term of Peff (i.e. either &>4 or
p<4), In all of thes% cases we call such a Ax an anomaly for the corres-
ponding Ward-identit& (ultraviolet anomaly if AX is not a variation or
variation of a A with 6>4; infrared anomaly if it is a variation but
p(A)<4)., If furthermbre an explicit: computation shows in a model, that
the anomaly has nonvbnishing coefficient then the symmetry in guestion
can never be restoreb in the ordinary loop expansion (of a renormalizable
theory), i.e. there ﬁs no permissible choice of counterterms in Te

ff
which could compensate the corresponding breaking of symmetry.

o oo ot o S e o a1 1

13.2 Symmetry breaking

The case of sportaneous symmetry breaking is covered by the pre-
ceding subsection: shifts by constant amounts in certain fields do not
alter the algebra of}the Ward-identity operators. But due to the shifts
the dimensional assignment of the insertions Ax changes and infrared
anomalies may be picked up. Those have then to be treated in a specific
way (cf. chapter V).

Explicit symmetky breaking can be reduced to the one of spontane-
ous with the help of%a shifted external fieldnwhich transforms suit-
ably (R. Stora in [RL14]). Suppose that on the classical Tevel one has
added to a symmetriciaction F(O) a breaking term B:

r=rl® 4 (13.14)

woo) oo W T =W B#O (13.15)

Then this action has' to be converted into one which is invariant under
the original transfokmation + such of an external field #:

pn) o (o) o [dzb (13.16)
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ﬁ =7 + no IdZnOb =B
(n) . faie a S ,
Wil =W+ 1Id¢5xn = (13.17)
8, A -8
n=0
W pn) g
(13.18)
homog .. (n) . ~ § a _
W v . 1{dzlsxn(1) E¢R77-sz2n(z)b(z) =0
at n=0: WT = -i[dzgb = NX B (13.19)

The renormalization ﬁrogram for (13.18) is then exactly one of the pre-
ceding subsection anh (13.19) renormalized will yield the renormalizat-
jon of the breaking B [IV.1,3]. (For explicit examples cf. chapter V.)

s o L i e e e S

Let there be giyen a set of superfields. They may be chiral, anti-
chiral or vectorsupe%fie]ds, they may be propagating or external fields.
Their F resp. D components may be shifted. Supersymmetry transformations
are then (on functioba]s) generated by Ward-identity operators wa (W&)
which have a homogen?ous as well as a shift part:

s o8 S . A
W, =-ifdz (5a©k =+ 8V = = -1[dz 8 &) = (13.20)
§¢ 4] §o
‘ K k k
2 =0+, (13.21)
Vi = @2 fk for shift in a chiral field

1 : r .
Vi = 1'@ 0 dk‘ for shift in a vector field

They satisfy the supersymmetry algebra (1.4 - 1.6)

ey = 20% WP
oo ooy

Wy Hg} = 0 = {Wg,, g} (13.22)

i
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is the translation Ward-identity operator:

If the c1assicaﬁ theory we start with is strictly supersymmetric,
i.e. vy = 0 in (13.2@), then the supersymmetry Ward-identities

W, =0 Wir = 0 (13.23)

follow from the subtraction rules defined in Section 9, which preserve
supersymmetry. For this one has to use an explicitly supersymmetric
Tafs (expressed in terms of superfields), the terms of which have UV-

and IR-dimension d < 4, r > 4, with associated subtraction degrees
§ =p =4, and no maﬁs]ess field of dimension zero must be present.

In the general case of spontaneous or explicit breakdown (vk +0)
in (13.20)) we have to work in field components and to consider the
Ward-identity operatbrs (13.20) in their component form. Suppose that
finite diagrams, henke finite vertex functions are constructed accord-
ing to some subtractﬁon scheme, e.g. the BPHZ procedure [I11.4,13] .

We start with a Feffi(W1th subtraction degrees § = p = 4, and no mass-
less field of dimensfion zero present) which coincides at h = 0 with

the classical action?r(o) fulfilling the supersymmetric Ward-identities.
Then, in higher ordefs, the action principle (11.6, 11.7) yields (at

s = 1 if needed)

WD = BT

By + 0(hd)
‘ (13.24)

—— —

WeT

]
>
.
—
it

Do 0(ha)

where use has been made of (10.9) in the right-hand-side. The power
counting assignment Ef By is determined from the dimensions of @u :

its homogeneous partjraises dimensions at most by 1/2 its inhomogeneous
parts lowers at mostiby 3/2, hence

S(0) =5 #l8,) =3 (13.25)
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i.e. in Aa all 1ntegrated monomials with one spinor index are permitted
whose UV-dimension is smalier than or equal to 9/2, whose IR-dimension

is greater than or ehual to 5/2. Now, the algebra (13.22) together with
(13.24) and trans]atﬁon invariance

wﬁr =0 (13.26)

implies consistency conditions on the possible insertions Aa:

Wy &g + Wenr =0 (ha)

it

NOL AB + WB Aoa

W. AB + NB A& =i 0 (ﬁA)

0 (ha) (13.27)

As explained in sect. 13.1 the quantum problem of satisfying a Ward-
identity has been re@uced tc a classical problem., The solution of it
is provided in the following theorem [IV.4].

Theorem 13.3 Let

fdx ipi(X)

>
H

| (13.28)
B = o P20

be polynomials in the fields and let (13.28) satisfy the consistency
conditions (13.27). Then the general solution A of

woc A= Acx
(13.29)
Wa A= A&
is given by
A= Asym + A (13'30)
where
wu Asym = W Asum = 0 (13.31)
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and Ais a local, translation invariant functional of UV-dimension <4.

The IR-dimension r(A ) being >5/2 (see (13. 25)), E can have terms
of IR-dimension >2. Let us first suppose that r( ) > 4. Then, by the
process described in Section 13.1we may absorb A into Feff order by
order in K and arrﬁve at the desired Ward-identities (13.23). If on
the other hand A conta1ns terms of IR-dimension less than 4, those can-
not be absorbed and kemain in the r.h.s. as infrared anomalies. We shall
discuss such cases ih Chapter V. We note that these anomalies are soft:
they have UV- d1mens10n less than 9/2, s1nce d < r for any insertion,
hence d( a) < r(a a) < 9/2 for A, wa A with r{A ) < 4, We can therefore
write the result as

Waf‘w o , W&I‘m 0 . (13.32)

where ~ means "up to%terms of UV-dimension less than that of the other
terms of the equations" - here 9/2. These terms are negligible in the
deep Euclidean region of momentum space.

We shall encounﬁer situations where supersymmetry is softly broken
already in the tree approximation, e.g. by non-supersymmetric mass terms:

wOC F(O) = mass contributions (13.33)
Qur arguments apply ﬁn this case too, namely for the hard terms, and
still lead to the softly broken Ward-identities (13.32) in higher orders.

Let us go through the 1list of our examples in order to familiarize
ourselves with the sbope of these statements.

13.3.1 Wess =~ Zum1no mode]

------------------

The massive case has been treated in section 11 as example for the
action principle (cf. (11,16)). So let us look at the massiess limit
achieved via the auxiliary mass term [I.6]

- 1 .
Ty(s-1) ° s«-l (fdsA? + [dSA?) (13.34)
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Assigning r = d = 1 to the fields A and A all criteria (9.32) for the
fields are satisfied, i.e. the Gell-Mann-Low formula (7.1) (9.17) yields
finite Green's functﬁons for non-exceptional momenta, if we use as sub-
traction degrees just the standard ones (9.1) (9.2)

@ () = aan )+ T (5,-4) + ol
B (13.35)
A O N N O N ORI
‘ iew

Choosing s = 1 at th% end of any calculation is taking the massless limit.
Since the subtractioh procedure (section 9) maintains supersymmetry we
need not rely on theprem 13.3 but know already from the supersymmetric
form of the action pwincip]e (section 11.2) that we have strict super-
symmetry: '

war =0 w&IF = (13.36)
(Of course, with another subtraction scheme or in components one might

use theorem 13.3; one then had to show that the soft anomalies are
absent.)

PSP P S gy

13.3.2 Q!Raifeartaigh model
The norma]izatibn conditions (3.45) - (3.49) and the symmetry re-
quirements: spontanegusly broken supersymmetry (3.41), R-invariance (3.42),

parity (3.43), I-invariance (3.44), fixed uniquely the action in the
tree approximation: :

rlo) - %-6- fav B A+ [dS ( AAy + 3 (A + f®2)A12)
| (13.37)
+ &S @ AR, + & (A + 18980

For the extension to higher orders one first has to check the degree
requirements for codvergence and one finds from propagators and vertices
of the quadratic fidld part in r(o) that the assignment - in components:
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d(Ak) =1 ] d(\l’k) = 3/2 » d(Fk> =2
r(AO) = r(AZ) =1 r(Az) = 2 (13.38)
r(v) = r(A) +.1/2 . r(F) = r(A) +1

together with the subtraction degrees:

§(y) =4 -7 d N+ ) (8;-4)
K Ca (13.39)

= 4 - N+ .- 4

oly) Erk 0 %v (o5 - 4)

Teads to finite diagrams (i.e. the criteria (9.32) are satisfied and
the vertices satisfying (9.33) are permitted). Here we have added to
(13.37) an auxiliary mass term for the multiplet A :

M(s=1) 1 acal =72
My(s-) © 5L (fasnd + [dSAD) (13.40)
(cf. [IV.5] for more details).

Let us now apply theorem 13.3 for the supersymmetry Ward-identity
(3.41)

- ~. 5/2
%ur - [wa 6] 9/2 ° I )
‘ (13.41
Wer =W a1 2.7
a o 9/2

and let us look at those terms of & which are naively R~1nvar1ant.*
Amongst those thereiis the monomial jdxAOAO <Ao denotes the first
component of the superfield AOZ' This term has IR-dimensions 2, its
supersymmetry variaﬁion fdxwoqu has,IR-gimension 5/2. Therefore

W, [dxA A, s permitted in A , but [dxA A cannot be absorbed in I'cc
because of its IR-dimension: inserted into any (otherwise finite dia-
gram) it causes IR{divergence

* It will be shown in subsection 13.5 that only R-invariant terms have
to be considered,
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A0

y TT7T 5 ~ [ dk %r : %?'f(p:k)

Fig. 13.3.2

with f(p,k) # 0 at k = 0. If now by:exp11c1t calculations the coefficient
of wa fdxAOﬁO in (13.41) turns out to be non-zero, we have what we have
called above an IR-ahomaly: the supersymmetry Ward-identity cannot be
proved to be strict1& true (in the h-expansion). This coefficient has
been calculated [IV.5], it is proportional to g2e3/m* # 0 (already in

one loop). We shall in chapter V show how to deal further with this
anomaly.

13.3.3 SQED

In the version with massive vector field (4.66) (4.69) one just
performs UV-subtractfiions according to

s(“)(y) =4 . ZNS -~ 2N, + Y (8. 4) 4+ Jul (13.42)
v AR 2
ey
with the (8.12, 8.13) for |w|, and has convergence and manifest super-
symmetry.

But for the case of massless vector field we have pointed out in
section 9 (cf. Fig. 9.2) that there are IR-diverent diagrams even in
the gauge o = 1, (4.32). A possible way out is (actually as in ordinary
QED) just not to rely on the auxiliary mass term and subtractions with
respect to s - 1 but%jnstead to show that due to the specific couplings
the UV-subtractions Ho not lead to IR-divergences. Technically easiest
is to introduce formé]]y the auxiliary mass:

T(s-1) = T M ls-1)% Jav o (13.43)

and to choose as IR-subtraction degree just the upper bound (9.28) for
it:

0@ iyy = 604y 41 (13.44)



-178-

Due to the specific form of the subtraction operator (9.20) one finds

| () () (w) (w)
g dme g m -t
(w) () W sl
= Tg,s-l (y) + rS,s (v) - Tg,s.‘l Yg,s
(w)
] TS,S m (13.45)

i.e. at the end of the calculation, where one puts s = 1 one has effect-
ively just performedithe UV-subtractions. In this form one can now go
through the criteria (9.28) - (9.31) and indeed prove convergence for
the vertices of the tree action (4.67) and the gauge o = 1. Supersym-
metry is then again manifest, theorem 13.3 is not needed within the
subtraction scheme of section 9 [IV.6].

13.3.4 S'QED

- - -

The tree action.

rlo) = Lo jav(o(a + MP(s-1%)0 + Re® A, + A e % A )

v

m (delA-l_A_ + [dS A_A,) (13.46)

1
e

® z@+%@2 o v,
where we have already added an auxiliary mass term, tells one the de-

grees and dimensions to be assigned and one finds [IV.7] that the dimens-
ions

Table 13.3.4
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together with the subtraction degrees

(13.47)

©
—
=
~—
H
[&2]
H
D~
-
a1
=
a3
—
)
~—

lead to convergent diagrams for the vertices of the tree action.*

= F(D) it assures, that

Using now theorem 13.3 for Fint int

S A e Ta [l 5/2
W, T =48,T= W, 4] 972 r (13.48)

but of course not, that A is made up from the vertices of ng%. In fact,
if one wants to exclude infrared anomalies one has to go through the
entire system of Ward-identities which serves to define the model.
Supersymmetry alone is not sufficient to restrict appropriately A.

We shall present thig analysis below.

13.3.5 SYM

Due to the self+interaction of the vectorsuperfields the conver-
gence problem is eveh more involved than in SQED or S'QED. Since for
many considerations, in particular for the question whether in the
Slavnov identity (hard) anomalies show up, masses are irrelevant, one
may put mass terms for all fields irrespective of symmetries. One is
then only interested in asymptotic supersymmetry:

W7 0 WeT v 0 (13.49)

and this is guaranteéd by theorem 13.3.

This non-supersymmetric assignment could also be used to construct
SQED along the lines of S'QED. It would then provide a subtraction
scheme using s-1 non-trivially, but also enforcing a Teff which
were not naively supersymmetric.
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ORI SRR~ U S N T

Suppose a (semi~) simple Lie group G (e.g. SU(n)) is given, also
a set of fields which transform under the adjoint representation and
another set of fields which transform under a unitary transformation
generated by Hermiteaﬁ matrices T (i =1,..., number of generators).
We may then put the first set into matrices T (generating the funda-
mental representation of G), write the second as vector and have a trans-
formation Taw (5.19) (5.19a):*

oz o 1! @ =1 <lo) (13.50)
Az (A) (13.51)
Spig @ = Lol w= o't (13.52)
SpigA=-1GA  @= 0Tl (13.53)
Spig A= iAG (15.54)

(w1 real constant parameters)

The Ward-identity operator

- §
W, = -1 [dz Srig.w ) (13.,55)

(sum over the fields.¢, appropriate integration measure dz understood)
satisfy then the Lie algebra (13.4) with fxyz being the structure con-
stants of the Lie algebra of G.

The main theorem governing the renormalization of models with the
above symmetry has béen proved by BRS [IV.1].

Theorem 13.4

There are no anomalies possible for rigid transformations belonging
to a semi-simple Lie group G. I.e.

* " :
For the subsequent considerations it is irrelevant whether the fields
®,A are superfields or ordinary ones.
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W T =0 (13.56)
In the case of spontaneous breaking there may arise infrared anomalies

i.e. the Ward-identity of the spontaneously broken symmetry can only be
proved up to a term with too low infrared dimension:

W T= [ww Al o T (13.57)
8(4) <3, p(4) = 2 or 3; hence A cannot be absorbed in I' cc [1v.8].

Explicit breaking reveals the content of Symanzik's theorem [IV.3]:
breaking terms of ultraviolet dimension less than four only yield break-

ings of the same dimension.

Their algebraic properties are explained in [R.14] (R. Stora).

13.5 R~invariance

.- o o -

The transformations

ilRyel = 8pw = 1(n + 63,+ B35)0 (13.58)

where n is a real number, the "R-weight" of ¢, have a non-trivial com-
mutator with supersymmetry

[R,Q,) = Q (R,Qy1 = - Q (13.59)
and appear even on the right-hand side of the superconformal algebra
(cf. section 2). Indéed, the latter closes on real superfields @& with
n(®) = 0, on chiral $uperfie1ds A with n(A) = - 2/3 d(A), where d(A)
is the dilatational weight of A.

Acting with

- S
Wp = - 1 [dz 8pig T (13.60)

on T we obtain via the action principle (section 11.2)
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WaT =l T=dp + 0(h Bg)
(13.61)
S(AR) = P(AR) = 4
(we have also used (10.9)).
Now we observe that
(1) . 1 (1)
AR = ﬁ;-wR A (13.62)
for any non-invariant integrated 1nsert1on Aé i)
( : R-weight of A( )), thus we have
inv 3 (1) f
WoT = 2p 213—; Wp &%+ 0(h ap) (13.63)

Testing with respect to hard invariants one finds zero for their coef-
ficients, so it remains to absorb all absorbable term A(i). Assuming -
which is the case for all our specific examples - that the tree action
has only soft R-breakings, we may absorb at least the terms Ai of UV-
dimension 4. Soft breaking terms (i.e. terms with UV-dimension strictly
less than 4) may not be absorbable because they may cause conflict with
normalization conditions. We formulate this result as a theorem.

Theorem 13.5

The R-symmetry is at most softly broken. I.e.
WR r~20 (13.64)

To illustrate the theorem in concrete cases let us look into our stand-
ard examples.

13.5.1 Wess-Zumino_mode]

s ] s gy o7t o Gro M i o o

For the massive version (11.18) and the action principle (11.9)
yield explicitly
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Wl = [wR Peff34 ‘T

[- & (2n+2) (JasA? - [dSAY) (13.65)

it

A =73
+ g (3n2) (JdsA® - JdSA)1, -t
i.e. the superconformal choice for the weight
_ 2 _ 2
n= - §-d(A) = -3

makes disappear the 'second term, whereas the first one can be reduced
to a soft term + corrections by combining the Zimmermann identities
(10.17) and (10.18):
Wl = = 2 [fdsA® - Id§7\2]3 T
(13.66)
b= rolfasa® - @SR, e v

(the 1 terms combine in WR I' to total divergences and drop out in the
integration). In order to determine ro we test with respect to

53
and obtain
SA(1)8A(2)8A(3)
3
ia _ a - —--—2 ._...42 .
- 2Tp3 " 2 5, (0.7 1p3) = = T3 LJdSA® - [asA®), « 1
= (13.67)

ar‘2
+ T 53(1,2)65(1’3) + 0(hr2)

Recalling that the higher o-components of.F123 in momentum space are
of the form 6%2353 Y(Pz,p3) (cf. (8.11, 8.13))we find by differentiat-
ing with respect to:(e/aez)2 (8/863)2 zero on the left-hand side:

_ a 3 2 ;3 32 2 ryYA T
0= --I?-(é“é'—z*) ( ) [deA - dSA ]3 TAAA

56
3 (13.68)

+ 8 %—rz + OCﬁrz) .

The insertion on the right-hand side is soft, hence does not contribute
at large momenta, hence ro = 0. This-argument via asymptotic behaviour
[1V.9] shows that the effect of the mass is negligible in the asymptotic
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region and that there is no hard anomaly and this is the statement of
(13.64). In fact this can independently be checked by formulating with
the help of the auxiliary mass immediately the massless theory [I.6].
There the vanishing of the coefficient of the hard insertion is an
immediate consequence of the normalization conditions.

For the massless Wess-Zumino model we therefore have strict (super-
conformal) R-invariance:

WR T =0 (13.69)
s=1

13.5.2 0Q'Raifeartaigh model

o o W s oo o

The general argument above for establishing R-invariance is needed,
the consistency conditions amongst supersymmetry and R:

Wo B, = W, fp =8, + o(ha) (13.70)

restrict then B, to an insertion with a definite R-weight:

Wo B, = B+ 0(ha) (13.71)
hence only those have to be considered in the solution of (13.27). Only
in the R-invariant sector IR-anomalies are possible, since AR was a
§ = p = 4 insertion.

To avoid confusion we state again the result:

wé"’)r’ =0 (13.72)

W T ~0 (13.72a)
‘s=1
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13.5.3. SQED

On the basis of a Feff which is just made up from the terms occur-
ring in the tree approximation it is clear that for

wn==r.o | (13.73)

since Feff is naively invariant. For other choices of weights the matter
mass term is not R-invariant, has to be expanded in a basis of N4 pro-
ducts and that will be determined by supersymmetry and gauge invariance
(cf. next subsection). It will turn out that the correction terms have
to be gauge invariant i.e. are just the tree approximation terms which
are R-invariant and then do not contribute:

M 1= - Bl (wea) [fasAA_ - [dSAA,1, T (13.73a)

The subtleties really involved in this procedure will be pointed out
below.

P pupnl

Although R-invariance (with weights n(A,) = n(A_) = -1) is an
accidental symmetry +in the tree approximation it plays a vital role for
the construction of higher orders. Since it is intricately related to
the other symmetries we shall discuss it below in the next section where
abelian gauge invariance is considered,

13.5.5 SYM

R-invariance with conformal weights is a very valuable tool in or-
der to restrict the counter-terms which are needed for establishing
BRS-invariance. One puts general mass terms to render the theory com-
pletely massive and then proves asymptotic R-invariance along the Tines
of the main section.
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Section 14: Abelian gauge invariance

14.1 SQED

We noted already in section 13.3.3 that for the massless vector
case finite diagrams can be constructed with

Les = fdSL + [dSL

_ 1
L = L1+&—L2 + (mt+a) Ly + 1,
L. = - med N. [DDOD® DODO], L, = - & ix N, [DDDDO DD®)
1 7-128 "3 > =2 7 128 73
L= = 2N, [AA ] L, = 1001
3 T "3 LO40 47 5
1 7 e -907
Ig = g N, (A,e%A, + A e PR (14.1)
Introducing
o, = fdsty + fdsL, (14.2)
we may write Feff as the sum
_ 1
Topp =0 * 50 ¥ (m+a)A3 t by (14.3)

But convergence was only ensured for o = 1 and having as interaction
vertices just A3 and A4, A3 being’ the oversubtracted mass term. Let
us recall that we used as subtraction degrees

=
it

4= oyly) - N () ¢ T (s -4+ gl
' iev (14.4)
0@y = 6®y) +1

(range (8.12) for w) and assigned in the check of the criteria the in-

frared dimension 3/2 to the superfields A_, 0 to ¢.

The supersymmetric and (up to AZ) gauge invariant form of Topf
implies via the action principle (11.8),-(11.9) that supersymmetry is
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maintained
W, =0 Wel =0 (14.5)

and also that the gauge Ward-identities hold in their naive form

_ o a S 8 1 =
WAI': (DD-SE‘—QA+-S—A-:+QA_T6 —)I‘ “"gDDD@
s . (14.6)
S = 8 -
w, = (DDsr-gA =—+gA —)T =%00D29
A 8¢ * &R, oy 8

But what is needed for deriving the Ward-identity of R-symmetry and also
e.g. for the Callan-Symanzik-equation is slightly more than the above.
We need a Zimmermann identity relating the oversubtracted mass term A3
to its minimally subtracted normal product

b = - 1 NolJdSAA_ + [dSAR ] = fdsL + [dSL (14.7)

and this does not exist! Indeed with its counting § = 3 we find for its
diagrams:

s@hy) =4 - an, - o + (3-4) + 14l (14.8)
for instance with N = 0, NV = 2 (in Fig..(14.l)
Am
A e Sy =1 el
Fig. 14.1

therefore its w = 0 ~ the Am'pDD - component is not subtracted and will
thus cause IR-divergence, e.g. in a diagram like Fig. 14.2
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(similar to Fig. 9.3). Now a IR-divergence of an integrated insertion is
best studied by looking into diagrams containing its non-integrated
counterpart. So one might try to establish a Zimmermann identity bet-
ween N3 [A+A~] and N2 [A+A_]; both being formally gauge invariant one
expands in a basis of gauge invariant, chiral insertions of dimension 3.
A member of this basis is L1 and again one has trouble: it does not
exist either. In the diagram of Fig. 14.3 one has also

U

L

5(‘“)=-1+l‘§l

Fig. 14.3

and £ = 2. Hence the Q-component is subtracted (at p

0) and the sub-
traction term contains 1/(k2)2 i.e. is IR-divergent. By explicit cal-
culation one finds that the unsubtracted Q-component does not vanish,

has no factor k and thus the problem is real.

it

To overcome this difficulty [IV.6] one first goes over from L1 to
L1 + L2 in the basis: an insertion which is not gauge invariant in the
sense of section 12 (cf. (12.23)):

(1) (L + L) (2) «T = Il‘e" s (1,2) DD ¢(2)

(14.9)
wi (1) (L + L) (2) 1 = -5%-6-00 5z (1,2) Dodoe (2)
but exists. Then one defines an insertion without any subtraction
0% = - ko N [000DG 0D L 5%
L,=DD&L, = - ¢ N,[DDDD® BDo], &2 = szg N, (000 DDe]  (14.10)

and chooses as basis elements of chiral, gauge invariant N3-normal pro-
ducts:

Lyin = Ly + Ly = Loslgslys DOL (14.11)

Lkin is gauge invariant because the non-invariant part of L1 + L2 is
exactly compensated by LO (their variation is linear in the quantized
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field, hence there is no collision with renormalization) and it exists
provided L1 + L2 and L0 exist. This is shown in [IV.6].

We now have a Zimmermann identity
(m+a)Lm = (m+a)L3 + rkLkin + rgL4 o DDLm (14.12)

and also its conjugate

(m+a)Lm = (m+a)L3 *rbin * r9L4 + rmDDLm (14.13)

with real coefficients P Tas T which are, of course, finite. If we
now try to integrate (14.12) with the chiral measure we obtain on the
left-hand side still a divergent quantity, but on the right-hand side

too: since

[dS(Ly + Ly) = 35 N,LfdV @ 0] (14.14)

which exists, the divergence must come from the integrated LO part.
Hence

* v —
= . < .
L NO[IdJLO + [dsL ) (14.15)

exists. This insertion will show up below in the Callan-Symanzik egquation.

In order to establish the R-Ward-identity (13.73a) one needs the
difference of the appropriately integrated Zimmermann identities (14.12,
14.13). And in this difference all correction terms - including those
coming from LO - compensate:

Na[fdsL ] = Ng[[dSL ] = N,LfdSL,] - N4[Id§fé] (14.16)
hence (13.73a).

Let us conclude this discussion of the global aspects (we have not
yet introduced currents) with a remark on the a-independence of Green's
functions. Since we have convergence only for o = 1 it obviously makes
no sense to consider 3 /00 in the theory with massless vector field.
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In the completely massive theory 3/3a is the variation of a parameter
governed by the action principle and this we shall still present.

We enlarge Tops (13.74) to

_ 1 2
Tapp = 2901 + 5 0y * (mHa) Az + 248, + Mhy
(14.17)
o _ 1. 2

and use intermediate normalization conditions for the vector mass (nor-
malization at zero momentum),

The action principle (11.5) on the functional Z yields for the
variation of a:

R4 - areff
Q.

]4' VA
da (14.18)
- 1
= Ly2181 = T 8p ¥ 3g3hy * Bu7ghy )L
With the help of the Zimmermann identity
where £, = - 3 LN [DDo DDol, &, = S 1., & = - L N[AA ]
2 % 1728 "2 > %4 T 7 t50 % T "ot
which after dV-integration yields
Ay =Dy + 1 By (14.20)
(14.18) becomes
- 1 _ r .
8y L = (8,298 - (—X-?'AO + auaA3.+ (By2q * ;2—)%] Z (14.21)

Choosing now

6]
= - - r
2y =1 3.a=0 zqujds?—u (14.21)
1
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we obtdin
1
3 1= - ~§-A A (14.23)
o

This shows that the physical S-matrix is a~independent since the a-
variation is an unphysical insertion, AO,,vanishing between physical
states.

For later use we note a generalization: the a-independence of phys-
ical matrix elements of an operator Q is conveniently expressed by

1
aa(Q Z) = - ;? AO-Q-Z (14.24)

14.2 $!QED

Above in section 13.3.4 we have already given the subtraction de-
grees which produce finite diagrams. We have now to construct a Peff
such that to all orders the symmetries of the model are established.

Although abelian symmetries are seemingly “"simpler®" than non-
abelian ones they are definitely less restrictive than those as far as
their cohomology properties are concerned: consistency conditions of
the type ‘

w(l) Q(2) - w(2) Q(1) =0 (14.25)

for an abelian (local) Ward-identity operator w do in general not
imply that Q is a variation. This is the case for non-abelian sym-
metries (based on a semi-simple group) (cf. sections 13.4 and 15).

Hence in determining Feff one has to restrict it suitably from the very
beginning and then to show that the restricted Feff is nevertheless rich
enough to prove the desired symmetries. "Rich enough" means that it pro-
vides all the counter-terms needed for the symmetries which are not
naively maintained by the subtraction scheme. At this point R-invariance
becomes useful: it is homogeneous in the fields i.e.



-192-

Wol

- 4,

= [ Wy reff]4 T | (14.26)

and we may and will choose a Tags which is naively R-invariant (weights:

n(A,) = n(A_) = -1, n(®) = 0).
Similarly, amongst the gauge symmetries connected with the super-

field

A=A+ o0+ 0%F (14.27)

the symmetry generated by A(x) is homogeneous with respect to the IR-,
gv-dimensions of the fields and thus reff may be chosen naively A (and
A) invariant. (The variation of the breaking term which contains s-1,
cf. (13.46), is linear in the quantized field, hence not dangerous.)
As far as the other symmetries are concerned subtraction degrees dif-
fer for different fields hence non-naive use of the action principle
has to be made. As example consider the gauge variation

R L
(14.28)

(r(v,) = 3/2, r(Ay) =2, r(x) = 1/2))
Supersymmetry is anyway inhomogeneous.

As far as discrete symmetries are concerned one can only rely on
CP since parity was broken "by hand" in the tree approximation, D being
pseudo-scalar.

The remaining task is now to write down the most general Teff satis-
fying CP, R-invariance, A-(ﬁ~) invariance and to check that the Ward-
identities

WP =0, Wr =0 (14.29)
wel = i0M W= - JZ 0 (A-iag) (14.30)

can be satisfied at s=1. At our disposal'for restricting the insertions

By» E&, A, s Ap We have the algebraic relations:

v
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(14.31)

(Wg, Wpl= - 20
the algebra of supersymmetry (cf. (13.28) and its soldution) and also

Wy, wA] = 1w6aA
(14.32)
[We, W, 1= Wz,
ar TA SuA
for the gauge transformation A;GuA denotes gauge transformations with
supersymmetry transformed parameters.

It has been shown in [IV.7] that these restrictions are strong
enough to make all insertions AX occurring in the right-hand side of
the Ward-identity WXF to variations.and that the coefficients of all
IR-anomaly candidates vanish. Thus, there remains an entire massless
vector superfield to all orders and supersymmetry breaking only affects
the mass splitting in the matter multiplets.

Section 15. Non-Abelian gauge invariance

- e - - o 5" o o0 S - o -

In Section 5 we have introduced non-Abelian gauge transformations
in the context of supersymmetric theories, studied the most general
transformation law and converted gauge transformations into Becchi-Rouet-
Stora (BRS) transformations. We were led to define the theory by the
Slavnov identity (5.85) - we shall work now in the (o,B) gauge defined
by the condition (5.86) - and found that due to the vanishing dimension
of the superfield ¢ , already in the tree approximation the theory ad-
mits the replacement (5.115)

op oy =Tile) ey T T Gk Sifig.

oo

. ...0. (15.1)
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with arbitrary coefficients Cok We had to fix the Tatter 1in terms of
infinitely many parameters 2 by the normalization conditions (5.182).
We have also shown that the qﬂk's are gauge parameters like a, i.e.
the physical quantities do not depend on them provided the enlarged
Stavnov identity (5.165)

- 8r 8r.

+fas qrr B SL 4Ly L S

+ fdS {Tr (BSL 4 8L 8L 8L 8L,
§A

+xoT+ ) X, 93, I =0 (15.2)
o wk wk 3« ‘
holds, where Y, X,k are anticommuting parameters, the (a,B)-gauge con-
dition (5.86) being modified into '

%%=a55€+%ﬁ%0¢+%;@5§ (15.3)

To simplify the problem we have required rigid gauge invariance (cf.
the Tlast remark in Section 5). ‘

= ] .éI. =
Wr= - 1szsrig ? 5 0 (15.4)

with Gm-gtp = ilg,w] (15.5)

for ¢ =29,¢c,,0,n,0,A,Y

i1 i i
) T! w=wT

1t

®

(o]
=
i
]
s
el
I=
€
th
el
-
—*
-

(15.6)

if the matter (Aa) transforms under a unitary transformation generated
by Ti°
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As a consequence the coefficients §$(11 i) in (15.3) are in-
" e {

variant tensors under the rigid group and completely symmetric in the

1nd1ces'(il...ik). We have first written the classical solution of (15.2)

at xy = 2y = 0 (5.78, 5.81, 5.73, 4.35, 5.20, 5.172)
r{®@,c,.A,0,0,%,¢_,8) =T (2,c,,8,n,0,7)

+Trf{dV(BDOD® + B DD +aB§+%~X(c__§+E_B)] (15.7)

=(0) . -0 !
T w~7TrIdS[DD De? ] dv Ae®A
128¢ ) J

+fdSTm A A+ h AAAT +c.c.

b abc'a b ¢

- [dS Y E, A~ [dSAC, Y (15.8)

b=t L, =T for ¥ o=0,c,,C,B,0,0

(15.9)
n=p -3 (D c +DDc )
and
Q. ( = = 1 - 1 -
Je,c,) =c, - T+ xle,c, +E] + 3y [0,0e,c, -]
+ .. (15.10)

is the special (%»k = Q) BRS-transformation (5.65) of @, more simply
written in the exponential form as

se” =e’ ¢, -C, e (15.11)

We then found the general classical solution (5.177), rigid in-
variance (15.4) taken into account:it has the form (15.7) but with
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fgo) (15.8) replaced by - we add here the contributions of the matter
fields which were not considered in (5.177) -
f(o)((I),c+,A,n,0',Y,pk,zk) =T
+3 z {TrfdV n G (2,p)
0 k k

+ [dS [hE(p)TY‘(ac_l_) ¥ h?(p) YA] + c.c.] (15.12)

where & is given by (15.1) with Cuk an arbitrary function of o and the
%uk's and, with the notation

(p) = esa ) 7 = (xg) (15.13)
c, = t(pley A= t,(p)A
5 = 1 o Y o= 1 Y
t_(p) EA(p)
1 A_ 1
h = - 2=t = ,
" i apk c h!( T apk t (15.14)
o= S Tefdv g ?'1(4>,p>|
% é = %(0,p)
6, = - 57— @‘1(6,:»)'
Pk ¢ = %(2,p)

tc(p) and tA(p) being arbitrary funétionsvof the gauge parameters. The
normalization conditions (5.180-5.183) completed with appropriate con-
ditions for the matter fields fix the solution (15.12) with

t.(p) = ty(p) =1
(15.15)

ka(p) =C (akal; k! f,_ k)

i

solution of the egs. (5.140)

At the very beginning we had of course required the supersymmetry Ward-
identity to hold
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WT =0 Wl =0 (15.16)

and also found that superconformal R-invariance is maintained up to soft
breakings: '

WRF ~ 0 (15.17)

The aim is now to generalize - if possible - the above Ward-identities
to all orders. The missing one, after sections 13.3,13.4,13.5, is the
Slavnov-identity (15.2) . In ordinary component theories the Slavnov-
identity may be ruined in higher orders [II.lZ] by an anomaly which is
hard, not the variation of a local insertion of UV-dimension smaller
than or eugals to four, but passing through the consistency conditions
following from the BRS-symmetry. The subject of the present section is
to perform the corresponding analysis for the supersymmetric case i.e.
to find out, whether the Slavnov identity (15.2) will be broken by a
hard anomaly. For these considerations masses are irrelevant and, since
masslessness of the superfield ¢ causes problems with the IR-convergence
(see end of sect. 9), we add mass terms to (15.12) such that all fields
become massive and thus try to prove Ward identities up to soft break-
ings:

WT ~ 0 WT ~ 0 (15.18)
Wl ~ 0 (15.19)
wwr ~ 0 (15.20)
4(r) ~ 0 (15.21)

With the theorems of Sections 13.3, 13.4, 13.5 the Ward-identities
(15.18-15.20) are proved. Our remaining task is to check whether a
suitable choice of hard counterterms enables us to prove the Slavnov
jdentity (15.21) at each order of perturbation theory.

- o - - o - - - -

In order to check, whether one can prove the Slavnov identity
(15.21,15.2), we follow rather closely the discussion of the tree approx-
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imation (Sections 5.2, 5.3 and 5.5). Differentiation of (15.2) with
respect to B and use of the gauge condition (15.3) yields the ghost
equation (5.170) (from now on every eqguation holds up to soft contri-

butions)
Qrs[gg+éﬁﬁDD%5]T~-%xﬁﬁg. (15.22)

As a consequence the looked for solution I' can depend on ¢_ only via the
combination n (15.9). The introduction of T defined by (cf. (15.12))

T(Q;C.*_sAanaOaY:C‘_sB) = I:((I),C+,A,H,O,Y)
(15.23)

+ TrfdV [BOD & + B DD © +a BB + 5y (c_B + c_B)]

then permits to rewrite the Slavnov identity in the form (5.171):

A(r) ~ B(T) = Trfav

315

s T
O} O
>}"1[

+ [dS [Tr oL &L + terms (5,E+,?,A)
+] g3 ~ 0 (15.24)
k k

Let us define the T -depending linear operator

sT 8 ST & 8T 8 60 6
tJos [Tr g5, * M ac, & T AV Rt SR Y]
+  terms (5,E+,A,?)
t1z3, (15.25)
k k

which fulfills the identities - due to the anticommuting properties
of the odd ¢n charge fields -

3, Bly) =0 , Yy (15.26)

and
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3,08 = 0 (-8Bl SR L vy (15.27)
: J J J J
J
Here Bj stands for the commuting fields ¢,A,c and Fj for the anti-
commuting fields n,Y,c,; the integration measure is dv, dS or dS accord-
ing to the type of the integral. From (15.27) follows

’5Y B, - 0 , if B(y)=0 (15.28)

We shall denote B by 8if y is the classical action F(%) (15.12) (with
conditions (15.15)) without the mass terms. Since f(o) fulfills the
Slavnov identity 6 is nilpotent due to (15.28):

52 =0 (15.29)

The variational operator & corresponds to the transformations

= (o) = (0)
bo = %% bn = &L

={0) = (0)

. Or . or

‘BC_‘_-&; 60—‘5—6_}_

- (0) -(0) (15.30)
8A =%‘T %Y:-gl '
6pk =z,

We note that the f-transformations of ¢,c, and A are their BRS trans-
formations.

We now apply the action principle (11.5, 11.12) for the STavnov
operator (15.2, 15.24) and obtain

B(T) ~ AT = A(®,¢,,A,n,0,Y,p,52, ) + 0(ha) (15.31)

where the local insertion A has dm-charge 1 and dimension 4 according
to the assignments of Table 5.3.1 and the rules (11.13). A fis
supersymmetric, R- and rigid-invariant, and does not depend explicitly
on c¢_ because of the ghost euqationf(15.22).
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Acting with 'Bf on (15.31) we obtain as a consequence of the
jdentity (15.26)

0~ Bza+ o(ha) (15.32)

Repiacing here‘af by 5n~vjaf + 0(h) and keeping only the terms of dimens-
jon 4 yields the consistency condition

48 = 0(hb) (15.33)

We see that for obtaining this consistency condition it was crucial to
Tinearize the action of the Slavnov operator on I in the form (15.25)
or else, at least to realize that an insertion transforms under :Bf as
far as BRS-transformations are concerned (cf. the corresponding dis-
cussion for BRS-symmetric insertions in Section 12).

-~ - - " oy [ 1 S o i - e A . o S oy

The problem of proving the Siavnov identity has thus been reduced
to solving the consistency condition (15.33) for local functionals 4
of classical fields, a classical problem.

It is clear that due to the nilpotency of 4 any A& of the form
B =428, ,AN,0,Y,P 52 ) (15.34)

where A is is a local insertion of dimension 4 and ¢w-charge 0, super-
symmetric, rigid- and R-invariant, is a solution of the consistency
condition. If we were able to show that any solution had this form
then we could prove the Slavnov identity (15.21) at each order. Indeed,
redefining Feff by

1 FN

Pefr = Topf = 8 (15.35)

yields the new vertex functional

“ ~

r'=r - A+ 0(ha) (15.36)
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Applying the Slavnov operator on it and using (15.24, 15.31, 15.25,
15.34) then proves recursively the Slavnov identity:

s(I') ~B(r') = B(r) - 354 + 0(ha)
~ b -8 + 0(ha) = O(hA) (15.37)

If to the contrary there exists a so1ut1on A= a,for the consistency
condition such that there is no local A with a = 6A a is a candidate
for a possible anomaly. If its numerical coefficient, which has to be
calculated explicitly, turns out to be non-zero at some order the ano-
maly is truely present. It cannot be absorbed as a counterterm like in
115.35~15.37) and the Slavnov identity cannot be established. This means
that the theory cannot be defined as a gauge theory, in particular no
Green's functions of gauge invariant operators exist - and no unitary
S-matrix either (in cases where the theory can be defined on shell).

It will turn out that the general solution of the consistency condition
allows for exactly one anomaly [IV.10], namely the supersymmetric ex-
tension of the well-known chiral anomaly [IV.12, 1I.12, R.1, R.7].

Let us now go ahead and prove this statement. The consistency
condition (15.33) reads, with the 0(hA) term ommitted,

6A(2,C,,A,n,0,Y,p, 52 ) = 0 (15.38)
To solve this is a cohomology problem. Let us call cochains the local

functionals of the fields (and of the gauge parameters) of dimension 4,
supersymmetric, rigid- and R-invariant. The coboundary operator will

then be the nilpotent variational operator 6, cocycles the cochains &
fulfilling (15.38) and coboundaries the cocycles A of the form (15.34).
Cohomology classes will be defined by the equivalence relation:

PN

by by iff 34 such that A, - 4, = 6 A (15.39)
A cohomology is called trivial if all cocycles are coboundaries.

The first step in solving (15.38) consists usually [I1.12] in
expanding A in a basis of dimension 4 field monomials. Here the situatior
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is however complicated by the vanishing dimension of the superfield ¢:
the basis will have infinitely many elements. A recursive procedure is
thus required. We expand A as

A= Z An (15.40)

where A is a homogeneous polynomial of degree n in the fields b,C A,
n.o,Y and in the gauge parameters G We also expand the variational
operator {(see (5.31)):

b= ) 4, (15.41)

where &n increases the order in the fields and gauge parameters by an
amount of n. For n=0 (use (15.30) keeping only the bilinear terms of
7 (0) (15.12)), we have explicitly

- 1 ——
4.9 =c¢, ~-C 6 n = -——s DODD &
0 + + 0 6492
bo Cy = 0 60 g =-0Dn 60 g = DDn
4 A =0 6 Y =L1.00A 4 ¥ =+ ODA
0 0 16 0 15
bo Pk = Zk b Zy = 0 (15.42)

ﬂo is nilpotent.

The following lemma will help us to reduce the t-cohomology problem
(15.38) tothe much simpler one of the ﬂo-cohomo1ogy. We shall use the
sign 2 for the equivalence relation (15.39) within the 6o-cohomo1ogy:

10

AzA2

2 a2 - 6 A (15.43)

iff 34 such that &
Lemma 15.1 If the general solution of the egquation
60 A =0 (15.44)

is a 6O—coboundary, i.e.
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Awx0 (15.45)
then the general solution of the 6-invariance equation
44 =0 (15.46)
is a f-coboundary, i.e.
A= 0 (15.47)

N.B. This condition is sufficient, but not necessary as we shall see
in explicit examples.

Proof Let us suppose that &, expanded according to (15.40), is a co-
boundary (15.47) up to order n-1 in the fields and gauge parameters:

A 0n = An + On+1 (15.48)
where 0n represents terms of okder n and higher. Eq. (15.46) implies

0 =64 = ﬁAn + On+1 = ﬁoAn +'Qn+1 (15.49)

since 6-€Jincreases the order by at least 1. Hence

6b, = 0 (15.50)

~

Then from the hypotheses (15.44, 15.45) there exists a A
such that

i

b =B A (15.51)
Thus
boa A+ 0 g =BA 0~ 0, (15.52)

which proves the statement at the next order n.
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It is shown in Appendix C that the general solution of the 4 -
cohomology equation (15.44) is given by

RO

A(Q’C,}.’A’n’O‘!Y"pk’zk)

yifasve2a-Ja8 AV - L fav Adc, - C9)m

+1

dS AAAC. . +1' .JdS AAAZC
ab

abci i abci a b cTH
+r X3 + r'§3 (15.53)
with
Xy = Trfds c, DDD® DDD? (15.54)

X,Y,r and r' are arbitrary coefficients, whereas the coefficients]
are subject to the constraints

abci

i k k ko _
Mapci figk = Tdbeg Tda = Tadej Tdb = TabdjTde = © (15.55)
Similar constraints hold for ]ébci' We see that the 6O~cohomo]ogy is

non-trivial at orders 2 and 3 in the fields. The coefficients x,y,r,r',
1 and 1' are independent of the gauge parameters.

We solve now the t-cohomology problem for A expanded according
to (15.40), beginning at its lowest order which is 2. §-invariance
implies

0 =64, + 0y 6OA2 + 0g (15.56)
Hence 6OA2 = 0 and, from (15.53), Ay 2 0. Thus
h=8,+0y="B08,+0y= éaz + 04
= 6A2 Ayt 0y s Ag + 04 (15.57)

Now f-invariance gives, at order 3, 6OA3 = 0. Thus, from (15.53)
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60A3 + rX3 + r'X3 + O4

>
b4

rX3 + r'X3 Tyt 05 (15.58)

124

and, from 6—invar1aﬁce at order 4,
r61x3 + r'81x3 + 60A4 =0 (15.59)

where the operator 51 is defined by (15.41) and can be calculated using
(15.30) and the trilinear terms of the action (15.12). Eq. (15.59) ex-
plicitly reads (at 3K = 0 for simplicity)

bodq = - T Trfds 2(0008)2 - r'TrfdS &2(DDDo)? (15.60)

One can check that a necessary condition for the r.h.s. to be a 60—
variation is r' = -r., Then (15.58) becomes

A = Y‘(X3 - x3) + 0y = ra+-0,
(15.61)
=rat i, + 0g

where a is defined - uniquely up to a f-variation - by
ba =0
(15.62)

a= Trfds c,(B000)? - TrfdS &, (00B0)? + 0,

and can be calculated iteratively as a power series in ¢, linear in
c

4 E+. o is not a G-variation since its lowest order term X3 - X3 s
not a éo-variation, which means that it is an anomaly: A& is the super-
symmetric extension of the usual chiral anomaly.

The B-invariance of A (15.61) yields now at order 4, éOA4 = Q,
Then By has the form given by the terms in A,Y,c  of (15.53).

Replacing there & by

@) 1:%+0, (15.63)
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with ¥(¢) given by (15.1), we can write

2

pera+y {fds Y& A~ [dSREET
Lojavi e, -8 eF-c, v BN
*1abei 95 AgApAcCLy * Tapei 95 AApAcS,
+ 0, (15.64)

One can check now by an explicit computation using (15.30) and the
classical action (15.12) that

1 ! fx =
- Ig-ﬁjdv AA = 15 fdv A(E, - c,)A
S 4fdS Y EA = [dS Y T A - Lo fav A el A (15.65)
- 3 hope de(E+A)aAbAC

(and similarly for the terms in ?,E+,A) which shows that the y-term

in (15.64) is a f-variation, up to terms trilinear in A and A which

can be absorbed by a redefinition of the coefficients 1abci and 1'abci'
Thus A is equivalent to the r.h.s. of (15.64) with y = 0. Now, due to
dimension and chirality terms trilinear in A or in A are only present
at the order 4, with the form given in (15.64), so that they must be
separately f-invariant. This yields the constraints

..‘I

K K -
7 Vabei Ti5k = ldbej Tda = Vadcj Tdb ~ Vabdj Tde = © (15.66)

(and similarly for ]labci)‘ They are incompatible with the rigid in-
variance constraints (15.55) - note the difference by a factor 1/2 in
the first term - unless ]abci = 1'abci = 0. Hence

AxY‘UL+05 (15.67)

The %o~cohomology being trivial at order 5 and higher, Lemma 15.1
can be applied from now on. The general solution of the consistency
condition (15.38) is thus
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A(®)C+9Aan !G’Y’pkszk) R Y‘a(@sc+:pk’zk) (15'68) )
where @ is the chiral anomaly defined by (15.62).

We note that a depends on the gauge parameters due to its definit-
ion and to the p, z\~dependence of 4 (see (15.30) and recall that the
classical action depends on them). But the anomaly coefficient r is
gauge independent. This can be readily checked: the 6 -invariance of A
implies

0=46(ra) = Br)a = (zp. r)a (15.69)
k Pk
hence

3., r=20 (15.70)

- - 0 " - 0 1t i o oy oo A i o S e O St i o e o oo

In the last subsection we have seen that the algebra of BRS-trans-
formations admits an anomaly. It is then crucial to perform an explicit
calculation by which one finds out in which models and in which pertur-
bative order the possible anomaly indeed shows up. The algebraic argument
above on the potential existence of an anomaly is by construction general
enough to treat a rich class of models.

The Slavnov-identity reads according to the above
2
A(r) ~ ra +ta + 0(R%) (15.71)

where the coefficient r and %A are at Teast of order T (one Toop) and
we know from (15.62) that in the expansion in the order of fields a

begins as
a=a3+a4+,“
ag = Tr(fds DDD@DOD ¢ c, - fdS pDOD @ DDD @ T,) (15.72)

i} 550 o1 T50 o3 oK _ (d< 00D o 00D oF K
= dj5, 0 ds DOD @' BDD ¢ c§ - [dS ppD o' DDD @ T})
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In order to calculate r we begin with a case where it is zero due to
a discrete symmetry. Suppose the theory admits parity

2+-0 o8, (@) =T( (15.73)
as a symmetry. Then
(s(r) P =s(r) (15.74)

but Ay~ - Qs

and consequently r = Q.

This situation is in particular realized for the pure SYM case
(i.e. no matter fields present) and this result will be used below.
For the general case the most convenient way to compute r is to per-
form a test which is specific for a contribution in @ which cannot be
a variation and not to absorb any part of A as a counterterm in the
effective Lagrangian. The term a3 is certainly not a variation and the
component expression

uvpo i J.k
fdx € auvvgpvoa+ (15.75)

contained in it will serveus as guide for finding a good testing opera-
tor X. It is isolated by applying

R 3
1 voaB 3 8 __ S (15.76)
520 € ap¥ad evi(2) el(3) say(1)
Therefore
~ e X A(T)
0 =0 (15.77)
dijk VvpoB 9 3 63
K= S VPR 2 2 (3 5.82),(8,0,02)3(8,3,)1 T ~
3.2% d° & E o782 3 0% T sl (1)507 (2)60%
where d2 = dijkdijk and we have normalized
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Trt TJ = § 1
(15.78)
Tr [11,TJ]Tk = i3k Tr T( k) o gk '
It is perhaps worthwhile to repeat that
XAy = 1 X6A = 0 (15.79)

since the test X is specific for the non-variation term jdxe"'évava+.

We now have to calculate the effect of X on 4 (') in order to ex-
press r in terms of Feyman diagrams. Since the test does not contain

matter_field derivatives and only one ¢ —derwvat1ve from 4(T") only the
SF 6?
6n )
f-type couplings or are independent of matter couplings and therefore

will vanish in the complete test or due to the fact that pure SYM has no
anomaly. I.e.

part can contribute. Those parts havwng a P®® as factor contain

3

8 s (l)
Tk (0 = DDyr 5y g
6C1 6@2 6®3 ¢1®2®3
contribution (15.80)

tor

———

Dl F]Jk(l’g’B)

i

Thus the complete test yields

A g™ VP08 3 —
t 3.00 2 -§-(g@gvae)2(3® o 35)3(3535)1 (D )1T73k(1,2,3)

6=0

O
@
'U

(15.81)

In the actual computation of T one can also drop all diagrams

consisting solely of vector Tines. Agknoted at the beginning of this
section in a pure SYM r = 0,.s50 those contributions cancel. There re-
main the matter loops,(Fig. 15.1), and we have to choose now a subtract-
ion scheme for their evaluation. We apply the subtraction scheme of
section 9 and have only to give the subtraction degrees for the dia-

grams in question.
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1)

2')

3')

4')
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The integrand being expanded in powers of © the subtraction degree
of the wth power is '
6, =4 -23+ =24y (15.82)

and w is dictated by the test (15.77) to be 8, i.e. § = 2. An integrand
plw) I(w)(p,q;k) has to be subtracted as

R = 10)(p,q50) - 10)(0,05k)

15,1 (0,05 - 3 11(3,5,1) @) (0,034) (15.83)
(1= p,q)
Then
8p,3d, VI = -(j)ﬂdk(apaeqe 1) 8P, 94y ) p:q:o) (15.84)

(V abbreviates the differentiation with respect to ©'s in (15.81)) and
r is obtained by multiplying with the numerical factors given above
and taking the limit p,q » ». Evaluating at large momenta is enforced
by the asymptotic validity of (15.71).

Calculated this way r is the sum of the contributions of the
8 diagrams in Fig. 15.1

4!
r= ) r (15.85)
A=l A
and we find

rs + ré + ra + ré = (
(15.86)
ry = r& =0

i.e. the diagrams containing at least one purely chiral-chiral propagator
do not contribute. For the remaining ones we find
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3 .87
1 gk (15.87)

r =r, +rq =
LR YO VI

Tr TiTI7

Recall that T;bfare the generators for a (unitary) representation
of the matter fields

(15.88)

Section 16. Renormalized Supercurrents

In this section we deal with the problem of constructing supercurrents
to all orders of perturbation theory. Like in the tree anproxiration
we start with the trace equations

~2wdr = b,°T
(16.1)
‘ZWGF = A&°T
and try then to decompose B, into current plus breaking part
= 5% . 6
A, =D Vua + ZDaS . (16.2)

The new feature is now that Aa, V, S are local insertions (cf. sect. 10}
with specified subtraction degrees and only the existence of Am is
guaranteed directly by the action principle (cf. sect. 11). Decomposing
A, according to (16.2) represents just an algebraic problem in those
cases where Aa is given explicitly (e.g. in the Wess-Zumino model

and in SQED) but 1is much more involved in the general case (i.e. in

SY') where it is virtually impossible to write down Ay in n-th order

and to go ahead. There a detailed abstract analysis which is based

on BRS-invariance has to show that all contributions to Aa can indeed

be decornposed as desired.
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16.1 The Wess-Zumino model

- "~ -

In this model all calculations leading to the renormalized super-
current can be explicitly performed [1.6]. We need the bilinear rerorm-
alized equations of motion as they are given by the action principle.*

AR = (2o 00(AR) + S M(s-1)A% + A A%)5 - o (16.1.1)

(similarly the conjugate). They follow from

Pope = Jast + JdST (16.1.2)

where (cf. (11.18), (11.36), (13.34))

L= [Z; 00(AR) + & M(s-1)A% + 1 a%13

and the power series
z = z(g,M,pu) = 1 +0(h) (16.1.3)
A= A(g,M,u) = g + 0(h)

are fixed order by order in h by the normalization conditions

N 1PI
< TA(0,8;) A(p,0,) > = 1/16
pZ=-p?
©=0
s =1
22 42 N - 1PI 1
< TA(0,0,) A(p,© q,0,)> =5
55?‘552 ! ‘ 3 |peeara(pra)eepr O
S=
2 N 1P1
s < TA(0,8;) K(p,0,) > =0 (16.1.4)
3@1 p=0 "
s=1

(The Tast one is automatic, due to the subtraction scheme, cf. (10.3).)

* . p o]
We use the simplified notation ["']6 instead of Nd[.A.] for a normal

product.
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The equations of motion are in fact needed as the contact terms (6.19)
with conformal weight n = -2/3 prescribe (employ also the action prin-
ciple) i.e.

- = [- 12 02y
2w T = [ 2w, refme I =4,T (16.1.5.)

and explicitly

7/2
2 Z == 1 “ypl Z mm,aiy, 1 2
B, = [- 3 D (Tg DD(AR)+ 7 M(s-1)A%)+2D A(Tz DB(AR)+ 7 M(s-1)A )]7/2
(16.1.6.)
Aa can be decomposed as in the tree approximation
A =D%',+2DS (16.1.7)
o o 04
where
4 e AR A 3
Vis= "% [D AD;A - AD D, A + ADaDaA]B
1 243
S =-17 [M(s-1)A ]3
We note therefore that the breaking is already of the standard form S
(cf. sect. 6.5), i.e. the supercurrent V' has an interpretation. In
order to come closest to the classical approximation and to be able
to study the massless limit s > 1 we now use the Zimmermann identity.
(10.30)
23 ~ &A cxzz213
M(s-1)A ]3-r = M(s-1)m «T + [r DD(AA) + GDDA ]3 T
+ X M(s-1)DDA + Vaa (16.1.8)
1 272 ~
m.r =15 (A ]Z-T + ¥ M(s-1)A
§=-2 for a=r,u v, x
= 1_q - 3 ) ] ) y

it

(We have used also that t
cf. sect. 13.5.1.). It yields in addition to the soft term M also hard
terms which can be differently grouped depending on whether one con-

0, (10.30), as a consequence of R-invariance;

siders the massless model (s=1) or the massive one (skl).
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16.1.1 The massless case

The value s = 1 defines the massiess model and the breaking term S reads

1 -

- N
S = - 1 [FOD(AR) + UDDA]; - 7 VDA . (16.1.9)

The U, V terms can be absorbed into the current, the ¥ term can be re-
written as a B-type term yielding eventually

B&V(s=1)

0 T *ZWQF + rDDDaB-F | (16.1.10)
with
(s=1), . 1l A 7 2 ~. U 2 7243,
Vog T = Vool [ -3 r{Du,Dd](AA) t 3 u1gudau(A ATSer
1 <. 2 o
+ ?-v1cudau(DDA-DDA)
1 17,92
B = - ‘2‘ [AA]Z
This supercurrent is strictly conserved
3“vés=1)-r = iwr (16.1.11)

with canonical r-weight n = -2/3 for the field A. Hence R-current,
supersymmetry currents and the symmetric energy-momentum tensor which
it éontains are all conserved, in correspondence with the strict con-
servation of these symmetries. A1l anomalies of the superconformat
group can be expressed by the real superfield B. Let us Tist them
{cf. (6.28))

MR =0+ c.t.,

H
trace identity: DR, = ¥OOD B + c.t.,
ad a
8“? =0+ c.t.,
Y N
trace identity: ?XA = - g-DBﬁDB +c.t.,
He
3 Qpa =0+ c.t.,

, e A O himnnR
trace identity: QH a8 = 21rDDD&B + c.t.
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i =0+ c.t
) o R (16.1.12)
8“6 = ?A + c.t
y A ’
= - 3 TODODB + c.t. ,
He _ M fé
aS!JOL oa&Qpi—Ct s
= -2i¥DDD.B + c.t. ,
o
up _ YN
3 %V -ZKJX-fct .
= —?vaﬁﬁDB +c.t.,

{c.t. abbreviates "contact terms "; ¥ is defined in (16.1.8); B is
defined in 16.1.10).

16.1.2 The massive case

For the massive model, s + 1, it is also of interest to find the super-
conformal anomalies and in particular to derive the Callan-Symanzik
equation from the trace equations of the supercurrent. It will turn

out that this is a standard procedure for supersymmetric theories.

Since we aim eventually at

A = ¢ l .1.13

vwe introduce first the insertion
[—3—5]3-1" - [Léﬁ D (AR) + 2 22 a3)3 op (16.1.14)
39 137 39 T6 3g " |3 e

If we try to express the r-term in (16.1.8) by SLeff/ag, we see from
(16.1.14) that we have to combine the latter one with the equation of
motion (16.1.1) in order to get rid of the term [A3]§ which does not
show up in (16.1.8). Absorbing similar to the massless case the U,V,X-
terms in the current and combining appropriately (16.1.14) with (16.1.1)

we arrive at the following trace equation
poy(stllp o o (Y)p L op ser (16.1.15)
e} o o

where



! . 2 - 2
Vé;% ) I = Vu& P-+[§Auu10“.8 (A°-R)]-T
. %z-aV1c“.a“(DDA—ﬁDA) + Lo M(s-1)iohgs, (A-R)
S = - %—-aM(s—1)1n + %-Ba L
2 8 5
Wil e o2 ayip (a S0 - op s

The breaking is of S-type and the contact terms have now become ano-
malous: instead of n = -2/3 there .occurs the anomalous R-weight

n' = - d¥ =

wijro

a (1+y) (16.1.16)
related to the anomalous dimension y of A. In fact, the notation anti-
cipates already that the Callan-Symanzik functions o,B,y appear and

how they are expressed by the Zimmermann coefficient ¥:

a = 1-2y
A
B =3y gr (16.1.17)
g .
Y = 2r
2+47- %-xagz/agx

The current conservation equation following from (16.1.15) is given by
a“v£5*1>-r = w1 4+ 1(DDS-BB3) T . (16.1.18)

It indicates breaking of the R-symmetry and the superconformal sym-
metries by the chiral multiplet S. According to ( 6.28') we have the
following 1ist of conservation equations and trace identities:

a“ﬁp - §(DDS-DBD3) + c.t.(v)
trace identity: ﬁaﬁa& = —ZDQS + c.t.(y)

HT -
9 TUV =0+ c.t.

trace identity: Tkx = ~<% (DDS+

(ww }
[ww ]
o

)+ c.t.(y) (16.1.19)
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H =
3 Qua 0+ c.t. (16.1.19)
. P T P cont.'d
trace identity: Q“ T4 121D&§ +c.t. (y)
a“ﬁ =0+ c.t.
pvo
10 J L
y A
= - 3 (0DS+B03) + c.t. (y)
we L M §8
3 Sua = OQ&Q[J + c.t.

= ~121DQS + ¢.t. {y)

p - )
arK = vaT y t c.t.

= -3x,(DDS+DBS) + c.t. (y)

c.t. means contact terms, c.t. (y) contact terms with anomalous con-
tributions. Their space-time integration yields the W's of (2.7) with
anomalous dimensions, resp. R~weight for A and A hence the respective
(broken) Ward-identities. In this way the superconformal structure

of the full renormalized theory is most concisely expressed: all ano-
malies in the conservation equations are described by S, all anomalous
contributions to contact terms go with v.

We still have to clarify the status of the integrated R-Ward-
identity since the hard S term hints to a hard breaking and similarly
the identification of «,B,y has to be performed. To this end we inte-
grate (16.1.18) over space-time and use (6.18):

WY(Y)T = -(JdSS - [dS§) T (16.1.20)
Explicitly:
WRiy)T = 1y oM(s-1) (fdsT - [dST)-T

—

- %~B[Idsa L - [d59 t]-

16.1.21
q g ( )

The soft term M. is to be expected from the tree approximation; the term
dz/3g 1in BgL (s. (16.1.14)) drops out since it is real; but the com-
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pensation of the trilinear A-terms is non-trivial: they cancel against
the anomalous dimension part of the left-hand-side because (s. (16.1.17))

B = 3y 575 (16.1.22)

Hence we confirm again theorem 13.5, namely that the naive conformal
R-symmetry (n = -2/3) is 1ike-in the tree approximation only broken

by soft terms. (16.1.22) can be considered as genuine expression for
the non-renormalization theorem of the chiral three-vertex.

By the same technique we shall now identify the Callan-Symanzik

functions. In (6.27') we had defined a generalized energy-momentum
tensor

~ ‘-—L _ )\
To=-T6 Wyt V 29 )V (16.1.23)

v
pv

=T (16.1.24)
’ pv

Then the local dilatational Ward-identity reads

a“ﬁu - ?p“ £ ixnh (16.1.25)

with (s. (6.54))

P . .
trace h]dden in the trace. Together

they form the local dilatational contact terms

and some additional contact terms w

P
= Wipace T X W, (16.1.26)
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Space-time integration yields

W =[xl (16.1.27)
hence
0. 3., ez
I =-%1[fdSS + [dS§]-T . (16.1.28)

In our concrete example, with S from (16.1.15) and the anomalous contact
terms, we have the relation

oD 1

Wiy)r = g aM(s-1) (fdsm + [dSm)-T (16.1.29)
- 1B (fdsL + [dSD)-r
1.e.
W y)r - foM(s-1)8,°T - 1637 (16.1.30)

where A T = %—(jdsvn + [dSM).T
The last relation we need comes from naive dimensional analysis:

Wr = i(May + 2473 2)T . (16.1.31)

(M is the auxiliary mass parameter, cf. section 9; y® is the normal-
ization point, cf. (16.1.4); note that WD refers to the canonical
dimensions.) Taking the zeroth @-component of (16.1.30) and combining
it with (16.1.31) we arrive at the Callan-Symanzik equation

(2u23uz + My + Bag - YN = dM(s~l)AO-T . (16.1.32)

W= fdsa S 4 [dash S
SA SA
is the leg counting operator. This equation identifies now the functions
a,B,y which we introduced above (16.1.17) as special combinations of
the Zimmermann coefficient ¥ and the normalization factors z,hi.

For completeness we discuss still the transition of the Callan-
Symanzik equation to the renormalization group equation, i.e. the
limit s = 1. Clearly the right-hand-side of (16.1.32) goes to zero
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with s > 1, but what happens with the left-hand-side? We wish to show
L =0 (16.1.33)

s=1

(the Lowenstein-Zimmermann equation) for then we have derived the
renormalization group equation andia1so,the independence of the ver-
tex functions from the subtraction scheme parameter M.

The action principle (11.5) yields
Mar = [Ma, T .. ]%r (16.1.34)
M M lefflaTt o -

hence we study the insertion

3

1 a1 3
(M3, L]3T = (35 W3y z DD(AR) + LI

78 M am
(16.1.35)

We combine it with [agL]-r, (16.1.14), the Zimmermann identity (16.1.8)

and the equation of motion (16.1.1) in such a way that all hard terms

are eliminated in favour of MaM, Sg and AS/S8A. Integration over the

sum of chiral and antichiral parts then yields

(May + éag - YN = &(M(s-1)a T (16.1.36)
where a,B,v are the (unique) solutions of

&+2:{'1=O,

agxé - 3y + M3 = 0 (16.1.37)

dra + ang 27y + ZMBMZ =0

(These equations ensure the absence of the hard terms [DD(AA)]?,
[A3]§ , [M(s~1)A2]§ in (16.1.36).) But B,y can also be directly cal-
culated via normalization conditions (16.1.4) applied to (16.1.36).
The result is

B=\?=Q, (16.1.38)

hence from (16.1.37)



a =1, BMA =0, MBMZ = =27 (16.1.39)

i.e. only the kinetic counterterm z-1 has non-trivial M dependence and
(16.1.36) reduces to

MaMF = M(s-l)AO-F (16.1.40)
At s=1 this is the result (16.1.33) which we wanted to prove.
As an interesting by-product we still note that the Callan-Symanzik
functions constructed with the' normalization condition (16.1.4) are
mass-independent:

a(g, Mz/u2> = a(g) ,
B(9, Mz/uz) = B(9) , (16.1.41)
v(9, Mz/uz) = v(g)

For the proof we differentiate the Callan-Symanzik equation with respect
to M at s=1 and use (16.1.33):

(3,,8)3 T - (3yy)N'T) =0 (16.1.42)
M g S-‘-l M S:]_

On the normalization conditions(16.1.4) this leads to

wB = dyy =0, (16.1.43)

whereas dyt = 0 (16.1.44)
follows from (16.1.17).

16.1.3 Summary

Let us collect our results. Both, massless and massive case permit

the construction of a supercurrent with interpretation, i.e. with con-
served, symmetric, improved energy-momentum tensor Tuv and conserved,
improved supersymmetry currents Qua’ Qp&. In the massiess case we can
have a strictly conserved R-current too; then the resulting supercon-
formal structure is based on naive R-weights and dimensions and its
anomalies are described by the real vectorsuperfield B (16.1.10),
(16.1.12). In the massive case another superconformal structure emerges,
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namely with anomalous dimensions and weights, n' = - 2/3 d' and the
anomalies now being given by a chiral field S (16.1.15), (16.1.19).
The transition massive-massless is smooth in the sense that in the
massless limit the S formulation is also possible, the difference to
the B picture coming about by the different choice of contact terms
i.e. weights and dimensions. Let us note parenthetically that the
different superconformal structures make themselves felt on the super-
gravity level, where the supercurrent is the source for fields (cf.
[R.11]).

pruy vpupaig A T

Let us first recall the effective action of the model (cf. (14.1)).
It is in form just the classical action (plus counterterms), but now
each term is understood as N4—insert10n.

Pogs = fdSL + [dSL (16.2.1)

1 2
by tg by - 8(M +b)L5 + (m+a)_l.3 + z4L4

L, = 735 Ny [0BDeDB0R],

L, = ks N, (000D6000] = 3L 0O N, [0DaDDe] = DD,
L= gy (A

Lg= 500 I, Ig=1g Ny [Ae%% +n e 9% ],
L = - 55 Ny [00(6%)]

215 245 3, b are formal power series to be fixed by normalization
conditions such that m,M are the physical masses of the matter, res-
pectively vector field. ’

We shall also use the notation

Tos = ) z,0; (16.2.1")

where

Ay = fdSLy + fasT, .
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Next we need the contact terms (6.56)

- - S 55 &
W, E 2DDDa¢ 55t ZDQQDD 55
(16.2.2)
S $ $ S
+n DOL (A+@:+A_W)+2DQA+€:+ZDA_@~:

(recall: n = n, =n_are the R-weights of the matter fields). Now we

can proceed and deduce from the action principle (11.9)

-Zwur = Aa.r (16.2.3)
where

b, = [-2wureff]7/2 (16.2.4)

i.e. is a local insertion of power counting 7/2. Wureff has just the

classical form and can therefore be decomposed in the same way as
(6.57)

- -&‘ ' - 64 2
Ay, F D Vad 4(n+1)(m+a)DdL3 + §-(M +b)DaL5 (16.2.5)
- 1 - -
+ 6 (n + 3)D0D I - 5z D DD N2[®(W—W)}

. g 1 12 f1.3 2 M 1.9
veo= N, [- T W -5 2V Ve (MOD)VT - 2V IR
vi. o [0 .5, ](R.e9%. + A e 9% ),

a6 o’ o
V2, = D (A e 9%)e9%, (e"9% )

Qo ¢

B (8 «99),-92 ge
Dd(A+e e 7D (e A+) R
v3, - 560 o DDB.o ,

Qo o}

4 1 _ R R
VOL(.)(. = il Oa&Z)u(A_'_A_ A“A+) N

Mo - 1 = 1.2
VO(.& = *Daq)D&(D + % [Du,D&]qD s

(V9 is given in (6.57); ¥ = DDDD®). The new feature is that all terms
are insertions (normal products, cf. section 10) of the same power
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counting and that therefore the mass terms appear in their oversub-
tracted form, their difference from the minimally subtracted ones
yielding all the non-naive, the quantum aspects of the problem. Since
they are different for the cases where the vector field has a mass

or not we shall treat them separately.

16.2.1 Massless vector field*

For M2 = 0 we have an existence problem of the insertions. As noted in
section 14.1 there is even in SQED and even in the Feynman gauge «=1
a non-trivial off-shell infrared problem, hence we have to check ex-
plicitly whether all operators we need exist infraredwise. This check
has been performed in [IV.6] for all terms appearing in (16.2.5) and,
although individual ones are indeed infrared divergent, the sums V',Vg
as well as all terms needed below are not (in the gauge a=1 which we
use from now on)..This means that for n = -2/3 we have already a super-
current with S type breaking. But the breaking S is hard and has a
gauge varying piece (the term DQDD N2[®(W-@)]) which does not naively
vanish between physical states. Similarly the current V' is not gauge
invariant (not even when sandwiched with physical states) due to the
term N3[v9] in it. These defects have still to be cured.

The means to do so are provided by the Zimmermann identities

(m+a)Lm'F = ((m+a)L3 + rkLkin + rgL4 + rmDDLm)'F : (16.2.6)

NO[Q(‘{/-\P)]-I‘ = Nz[cb(w-q?)]-r v (L-T)er (16.2.7)
where (s. (14.11), (14.7))

Ls. = L1 + L, - L

kin 2 0
-1 < S ST
L, = 75g NO[DDDDq)Dch] = »eg DD &, (16.2.8)
L =-L1n [aA]
m 4 2 TS

The existence of the unsubtracted insertion L, & and NO[®(W~@)]

which is an ultraviolet problem is shown in [IV.16] on the basis of

* For simplicity we normalize 21:z4=1.
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the gauge Ward identities. It is also shown there that Lkin’ Lm, L3
and L4 are formally gauge invariant. (16.2.6) relates the oversubtract-
ed matter mass term L3 to its minimally subtracted version Lm; (16.2.7)
relates the minimally subtracted gauge term N2[®(W~@)] to an undersub-
tracted (i.e. non-subtracted) version of it which vanishes between
physical states. With the Zimmermann identities we have isolated the
soft mass contribution and the gauge varying breaking part which va-
nishes between physical states. With the help of

0L = 4 Ny[v2, ) (16.2.9)

we can absorb Em correction terms in the current. Now we observe that
Vg, the gauge varying part of the supercurrent, exists without sub-
traction. This makes it easy to fepair this part of the current: we
add and subtract No[Vg]. A1l of these manipulations together lead to

B T = -2w T - 2D ST - 6(n + 2)B0D I.T (16.2.10)
o o o 3 o 5
with
L
v, =y - 36y (Xm, + 3(nel)e W -y
inv 3 128 "m 0
- g
Vo = NV ]
- , . _ 1l &
S = -2(n+1) ((m+a)Lm rkLkin 5 rgDDIS) + SO
oL v
S, = T@?’ﬁﬁNo [o(¥-v)]
Vi, is indeed invariant since the gauge variation of N3[V ] is Tlinear

in ® hence compensated by the variation of NO[Vg] to all orders, com-
patible with renormalization. The supercurrent V altogether is, also

to all orders, gauge invariant between physical states. Indeed its
gauge varying part VO is an unsubtracted normal product and can there-
fore be shown to vanish in the physical sector by naive manipulations.
The breaking S contains also a gauge varying part, So’ for which the
same comment applies. The remaining terms are the soft mass term and
two hard breaking terns appearing first in one Toop with the Zimmermann
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coefficients " and rg. Let us divide the further discussion as in the
tree approximation into the cases n = -2/3, n = =,

Case n = -

wiro

The entire breaking is of type S, we have a supercurrent with interpret-
ation, the current is gauge invariant between physical states. In this
form, i.e. with canonical contact terms,lit gives rise to a supercon-
formal structure governed by the chiral anomaly multiplet S which con-
tains two independent basis elements, L ., and bb Ig. This structure
exists Tocally but care has to be taken when one wants to integrate

(cf. sect. 14.1, B does not exist). It is thus preferable to find a
form in which one can integrate with impunity. Interestingly enough

this version emerges almost automatically when one looks for a super-
conformal structure with anomalous weights and dimensions i.e. when

one tries to derive the Callan-Symanzik equation from local dilatations
via the moment construction (cf. the analogous dichssion in the Wess-
Zumino model, section 16.1.2). The way to proceed is to replace in S

of (16.2.10) the hard terms (going with T sg respectively) by derivat-
ives agr and additional contact terms. We therefore write down the
trivial identity (use (16.2.1) with 2y =2y = 1)

(gd, - N

g ¢)L~T = (gagaL3 + L1 + LZ))-F . (16.2.11)

Ny

I

de@@Q ,

the matter field equation

A, S %%? =(2(mba)Ly + 2L,) T (16.2.12)

and combine them with the Zimmermann identity (16.2.6). The result is
a trace equation with anomalous contact terms:

’&'N » - (Y)‘ - ~-
OV o1 = 2w ¥)r - 20 Ser (16.2.13)

Here, the supercurrent V consists again of a gauge invariant part and
one having no physical contribution
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inv 0’
~ _ 1,1 14,2, 1 3 4 91 .
Vipy = N3 gV -5 Vo e vie V™ + V0] v,
v
c = - %5-1 (T%§~+ (lo)r,) - (16.2.14)

The breaking is of S type and reads

3.2 -
:)~3639L

wiro

(1+o)(m+a)L§ + S0 (16.2.15)
L% is the modified local matter mass term

“n

it
—
+
—

(16.2.16)

which we announced above: it exists also when integrated. The terms
(ag - NV)L and L% are gauge invariant operators in the sense of section
12. The anomalous contact terms are given by

(Y. _ _ 2 8T ST : ST ST
w1 = - 5 A, S A S+ 208, B 0 G
&R 8T == 8Ty ' 2
-2 (DDD@@ 35 - DOLCD DD _5) -3 B(N(DDOLL) r. (16.2.17)

The coefficients B,y,o0 are the following functions of the Zimmermann
coefficients and counterterms

B = - %—(l+o)rk s
v = - _é_ (Lea)ry (16.2.18)
l+o = I L
l~rg+ ?~rkgag1n(m+a)

They will be identified below. The matter part is clearly one which
gives correct anomalous R-weights and dimensions to the matter fields,
n' = -2/3 d¥ (cf. with section 16.1.2): the vector field part consists
of the tree contact term part plus the term going with 8. This form
has to be checked to give still canonical R-weight zero to & (a real
vector superfield must have this weight if R is unbroken), but never-
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theless a non-vanishing anomalous dimension to ¢. Hence we study first
its contribution to a“Vu;

. ,}J"’.‘g. CORAN Ter
in 3 VU : 3 1B(DDN¢L DDNQL) T (16.2.19)
Integration over space-time yields
Y -
- 3 1B(JdSNL - IdﬁNQL) r
= - L4 Ny (Jdst - JaSD)-T =0 (16.2.20)

I.e. the R-weight of & is the canonical one: n(%) = 0. (16.2.21)

Next we study the local dilatations in order to derive the Callan-
Symanzik equation. As usual, cf. (16.1.25), the moment construction
yields

a¥D T = 1a’r + B(DDN,L + DON[)-T (16.2.22)

¢ y0D(A, SL) & yBO(A, %%:) -5 (003 + D
. + - -+

Integrating over space-time and taking the zeroth ©-component of (16.2.22)
we obtain

Up or = 0 = WP T &g SL
[dxa D“ I'=0=iWT + y([dSA, oA + deAt 6ﬂ+)
- B(gag - Nv)r
+ (1+o)(m+a)(deLa + Jdgta)‘r (16.2.23)
With the relation
. )
imy I = W°T (16.2.24)

coming from naive dimensional analysis (16.2.22) becomes the Callan-
Symanzik equation

(md_ + B(gd, - Ny) = YN,IT = (1+o) (mra)af T, (16.2.25)

g
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Here

&>
*
i

a4
deL; + [dSL

and we have identified the Callan-Symanzik functions B,v,l+o.

This concludes the treatment of the case with conformal weight
n=-2/3+>nY = -2/3(1+y). We have a superconformal structure with
anomalies described by a chiral multiplet S (16.2.15) and anomalous
weights and dimensions given by y.

Case n = w,

The supercurrent (16.2.10) takes the form

\
T R A S AL A
ol oo 1T OO 4 ad m o
' (16.2.26)
_— 7 . L4 ot
4 [Da,D&J 15 + 161rmoadau(Lm Lm)

and the trace equation (16.2.10) reduces (after reshuffling of terms) to

) Igel = Wl - 2(m+a)l T + 2r L 4 T (16.2.27)
where
I} =(1 -~ rg)I5 - Zrm(Lm + Lm),
- S S
W = A+ 5A + A A ,
+ -
bin = byt - L

As noted in section 6 the commutator of these w5—transformat10ns with
supersymmetry is trivial and similarly the supercurrent V<oo> is in a
sense trivial: its first component (correspondingly the @@-component
of Ié) is the axial current belonging to the transformations

¢=0, sg”)A = iA_, s&)E, = -ia (16.2.28)

but its higher components do not contain any other non-trivial current.
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The remarkable property of the current Ié is that its anomaly ZrkLkﬁn
is not renormalized i.e.

2

e * TETiEn | (16.2.29)

is of one loop order only (s. (16.2.132) and (16.2.133). The proof of
this property will be given below (in section 16.2.4).

16.2.2 Massive vector field

The supercurrent constructed in the preceding subsection for a massless
vector field has been seen to exist only for the Feynman gauge o = 1.
We shall show below that its gauge independence can indeed be proved

by starting from an'appropriate1y chosen operator for a massive vector
field and going to the limit of vanishing mass. Apart from this motivat-
jon the supercurrvent for a massive vector field is interesting in its
own right since it permits a complete treatment: in a massive theory’
one can really go on the mass shell, physical states can be truely
defined and thus gauge invariance of operators really be checked in
more than a formal sense. The task is, exactly as in the massless case,
to replace the oversubtracted mass terms by the minimally subtracted
ones and to bring the gauge varying terms into a more transparent form.
Hence we need the Zimmermann identities

(m+a)Lm-T = ((m+a)L3 + rkLkin + rgL4 + rmDDLm)-T , (16.2.30)

and we still work with L instead of L1 alone since we wish to be

kin
able to go to the limit M » 0, where L1 diverges infraredwise.

2 _ 2 R
(MT+b)L +T = ((M+b)Lg + t L, + t DL )-T . (16.2.31)
1 ax o 2
Ly = - ?§-N1[DD(® )]

is the minimally subtracted vector mass term.

Ny [o(¥-8)]-T = (N[o(v-¥)] + v (L - L))T (16.2.32)
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We shall also need the identity

2
(gag‘— Ng - ZQBQ)L-F -3 (L, - LT
(16.2.32)
2 1
= ('ZLkin - 16(M°+ b + 5 gagb)L5 + gagaL3 + (gag - 2a8a)z4L4)F .

(We have anticipated from sect. 16.2.4 that one can choose:
zy = 1, aaab =ad a = 0.) The last ingredient is the local counting
operator for the matter fields

g or 6T

N GA:'+ A " 2(ma)ly + 24l (16.2.34)

The breaking terms in (16.2.5) can now be rewritten in terms of soft

mass terms, gag + ..., and contact terms (note: n = - 2/3)
- %A(m+a)DuL3 + 3 (M2+b)DuL5
6 g
= Da(lem + XZLM + x3(gag...) + x4At 3A ) +y DDLm) (16.2.35)

I+

The four coefficients X; are determined by demanding the absence of
the hard terms Lkin’ L3, L4, LS‘ The term going with y will eventually
be absorbed into the current by using (16.2.9). We shall not write
down the actual values for X; since in the subsection 16.2.4 we shall
construct another basis for all formally gauge invariant chiral in-
sertions with dimension three: one which is gauge invariant in the
sense of section 12, namely symmetric and oa-independent. The terms

of the above basis do not have this property. Anticipating this result
we may write the breaking as

3 _ ~ ~ 1 == 3
-5 S =m(l+o)l + 28L; - ¥E + y55; OD N Lo(¥-¥) ] (16.2.36)
2
+ 2M LM
here
- 8 $
E:A+—6—‘:+A_E—A:—,

A

and il’ Lm are symmetric and a-independent equivalents of Lkin and Lm
(cf. below (16.2.73), (16.2.74)).
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We still have to segregate those parts of LM,VM which contribute
gauge invariantly. They can be found by introducing the physical vector
field ¢!

o' = ¢ - ot (16.2.37)

L _ {pp,DD}
o = 6o ®
It satisfies

L@07(1) = e (@ + af)sg(1,2) (16.2.38)
i.e. - as an operator - it commutes with the operator DD® (analogously
with DDo). The separation of transverse contributions has to be combined
with a proper treatment of the remaining longitudinal ones. Now, for

any formal product & ¢BDo where & is any differential operator one can
in fact define [I1.16] a normal product N, [& ¢0D¢] which does not con-
tribute between physical states. With the help of this normal product

we can decompose

t

NI[LM] = &1[L;] + N*[L;] >

(16.2.39)
c T
Na[Vy] = Nvg] + N V]
where
L1 zs 2
Ly = g OO (-200" + (o1)) (16.2.40)
L Lx = L1 < L L2
Vy = - D000 - 0D - ¢ [Du,Dé](-ZQCD + (07)°)
+ D o5,0" . (16.2.41)
o a

Now the current and the breaking consist of strictly gauge invariant
(i.e. symmetric and o-independent) terms plus those which are not gauge
invariant but vanish on the physical mass shell.

6% T = -2w I - 2D ST (16.2.42)
oo Qa o
2

V= V' + absorp.terms + (M +b)N3[V;] + N*[Vbj + é-N*[Vg]
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V' is given in (16.2.5), absorption terms are a multiple of V4 (cf.
(16.2.5) and (16.2.9)); V; and V; are given above and V9 is written
in (6.57). S is presented in (16.2.36) with definitions of Ly Ly
given below (16.2.74), (16.2.73) and LM replaced by (16.2.39).

16.2.3 Massive vector field, masstess matter fields

For massive vector fields the convergence criteria of section9

permit massless chiral fields. We shall shortly discuss this case
since it allows for the B-type breaking (cf. section 6.5) for a super-
current.

Instead of m+a we have now an auxiliary mass m(s-1) and all relat-
jons above remain essentially unchanged. The Zimmermann identities
(16.2.30), (16.2.31) are reptlaced. by

2 3 3

m(s—l)[Lm]z-F = [m(s-l)LmJB-P + [?kL1+FgL4+rmDDLm]3'T ,  (16.2.43)
’ 1 ) 3 3

(M +b)[LM]1-P = (M +b)[L5]3~F + [t4L4+tmDDLm]3'F (16.2.44)

where we have used L1 instead of Lkin since for a massive vector field
Ly exists. Using (16.2.43) and (16.2.44) for the breaking terms DuL3

and DaLB in (16.2.5) we obtain
3 64 .2 3
Da(-4(n+1)[m(s—l)Lm]3 + = (M +b>[L5]3 )T (16.2.45)
- - 64 o o Bh g a1
= Da[4(n+1)rkL1 + (4(n+1)rg- = Ly + (A1) - 5 tm)UDLmJS-F
64,2 1 2
+D [ 5 (M +b)[LM]1 - 4(n+1)m(s—1)[Lm]2]-r

The gauge varying part SO, (16.2.10), can be rewritten as B-type breaking:

1 = " 1 as - -
Sy = Topg DONy[@(8-¥)] = 1qpg ODN [-2DDeD0o + o{pD,0D}o]

0 Q

DﬁNOBO » By =8B,

H

(16.2.46)

since there are no symmetric counterterms annihilated by OD.

Finally we observe that
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DODeDDDY = DO(DeDODe + DoDDD® + ©DDDDY)

i

(s ]
O
low]

- (16.2.47)

This means that at s=1 all S-type breaking terms are of the form
S=0DB,B=8 (16.2.48)

hence can be rewritten in the B-type breaking version. We thus arrive
at the following trace equation

6% .or = -2w T + 600D BT (16.2.49)
Qo o o
with
V. = N[v'. ]+ 4lp ,5.18
00 3" ad o’ &

V' given by (16.2.5) ,

2 2
L a2 - Ntl = 1
B = - 57 (M4b)[o ]0 - 125 T [Bl]g,+ ((n+1)Fy - §§~f4)[15]2
2
s 324 1 oorr
21Ty - 3 By - 1aag )t + B

The main difference of the supercurrent (16.2.49) to the one in the
S-type version lies in the term Bl‘ It is not gauge invariant hence
has to be treated 1ike the VM—term.'We employ the field ®T (16.2.37)
in order to extract the gauge invariant contribution of Bl’ and the
N,-product, cf. (16.2.39), in order to have the annihilation of the
remaining gauge varying parts between physical states. This yields
the final form of the current and the breaking

~

v

th

T+ N[v], (16.2.50)
=

vlCD

>

B=8 .+ Ne[B]. (16.2.51)

|®=¢

What we have constructed herewith is the precise analogue to the
B-version of the Wess-Zumino model, section 6.2.1. For massless matter
we have a superconformal structure with naive R-weights (n(¢) = 0,
n(A,) arbitrary) and breaking described by a real vector superfield.
Cur;ent and breaking are gauge invariant between physical states. For
n = -2/3 we could have sticked to the S-version and hence the analogy
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to the Wess-Zumino model is complete: there are indeed two different
energy-momentum tensors possible even in the presence of a gauge in-
variance.

16.2.4 The gauge invariance of the supercurrent

For massless vector field the supercurrent has been constructed as
formally gauge invariant operator in Feynman gauge (a=1). It is thus
very important to check its potential a-dependence and, in fact, to

show that it is a gauge invariant operator in the sense of section 1Z.

In order to do so we construct gauge invariant local insertions in the

massive model and study then the Timit of vanishing vector field mass

[Iv.12].

Before entering into the actual derivation of gauge invariant

operators, we have to ensure the a-independence of the physical S-matrix.

For Taff (16.2.1) the action principle (11.5) yields

H

1
(8,211 - 57 8, +3,ab3 3,240, - B3;bAg]-2

With the Zimmermann identity

= r r
xo = d% + 5 15 + rm(Lm + Lm) (16.2.
where.Z2 is defined in (16.2.1),=Z0 is its unsubtracted version, or,
integrated
AO = Az + rA4 s (16.2.
we find
_ 1 r - .
3 L = [aazlA1 - oz by *+ 3 ahy + (3 2y + Tzl 88dbA5] Z.
(16.2.
Hence for the choice of counterterms such that
@ r
z)=1,09,a=29b=0,2=- { dB gz + 1 (16.2.

the desired relation is obtained:

3. 7-= {aa Tegfl*Z (16.2.

52)

53)

54)

55)

56)
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.1 )
2L = -2z bl (16.2.57)

It shows that the physical S-matrix is a-independent since the w-vari-
ation is an unphysical insertion, AO, vanishing between physical states.

A generalization needed below is the corresponding expression for
the matrix elements of an operator Q. They are a-independent if one can
show that

1
Bu(Q-Z) =-oT AO-Q-Z (16.2.58)

(the right-hand-side of (16.2.58) represents a double insertion.)

The appropriate tool for finding gauge invariant insertions are
gauge invariant differential operators i.e. differential operators
ax which commute with the Ward-identities (14.5), (14.6) and are a-in-

dependent. Candidates are to be found amongst mam, MBM, gad aaaand

gi
the counting operators N¢, NA' Before actually combining them it is
useful to observe that AM - which is, of course, not symmetric - is
in fact a~independent. For the proof we start from the local Zimmermann

identity
AR rm(Lm+Em)}No[®2]-Z , (16.2.59)
hence have

by N [021-2 = {oy + va,} N [08]-2 , (16.2.60)

and therefore

1 21, _ 24.
- = AN (o z = au(NO[¢ 1-7). (16.2.61)

After integration this is the desired result

- l? A AM'Z =9

& b6 AM~Z) . (16.2.62)

ol
If we wish to build up gauge invariant operators from the above dif-
ferential operators we may therefore cancel unsymmetric pieces with
the help of Ay and the Zimmermann identity (s. (16.2.31))
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2 2

(M= + b)ay = (M + b)ag + t;0, (16.2.63)

5 474

As long as By is to be multiplied by a-independent coefficients, the
a-independence is maintained. A short calculation shows now that

(Mo + My, + u M)Z = [(mra)ay + 16t,0,]+7 (16.2.64)
i.e. is symmetric. It is also a-independent since

ny = 16 (1 + ;34?) (16.2.65)

is a~-independent and mam, MBM commute with aa hence have the same pro-
perty. Analogously it is seen that

1. 1 2 1
~-Zeg:~—2-(gag-N®-2qaa+u1MAM)z=[AN&-(AMO)
-l gnan, -2 (gaz, ¢ Ml wit)A, )02 (16.2.66)
7 99383 = 7 \99% %4 * WEEp *1/% e
8

is symmetric. To see its o-independence requires also a lTittle calculat-
ion:

2

7Y - (G- e 4
au(G Z) = (G 2)8062 G az— AOZ + oF AO VA

- ‘i‘?’ 8,6'2 (16.2.68)

H

(G' = G - ”1M2AM)’ i.e. G is a-independent since G‘; Xq and AM are so.

Hence we define as gauge invariant insertions finally

]

” 2
m A3Z : (mam + MaM + MSM AM)Z (16.2.69)

~

Alz :

i

GZ . (16.2.70)

| =

In the context of the supercurrent we need local gauge invariant
insertions. Let us first construct tm’ the gauge invariant representative
for the minimally subtracted local matter mass term. We begin with a
Zimmermann identity on the level of vectorial densities:
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Zylol = [xz oy rm(Lm+Em)]Lm-z (16.2.71)
which implies

I S
aa(Lm Z) = - sz A L «Z (16.2.72)
i.e. the a-independence of Lm' We normalize the relative ccefficient
between'lm and Lm such, that

(16.2.73)

(which is possible since a is a-independent). The integrands El’ EB
of 81,83 can differ from gauge invariant local insertions only by ﬁDEm,
hence by suitable normalization of Uy, Ug they are gauge invariant

and we can define
~ Ty 1 L M
Ll i= Ll + a (Lz LO) 7 go aL3 i (g'c) 24 + Wb H1t4)1_4
+ uy B0L (16.2.74)
mby := (mba)ly + 16t,L, + uBDﬁE . (16.2.75)

Since DﬁEm is already gauge invariant, u; and uj can even be chesen
to vanish at a=1. The last gauge invariant operator is provided by
2z - (J 25—+ d =57 (16.2.76)
- + 8, - &8J_ i B
the Tocal version of the matterlegs counting operator. [1, Cg, DD[m, E
constitute a basis for all gauge invariant chiral, local operators of
dimension three. Thus there is a Zimmermann identity

m(l+o)L = mly - 2BL; - vE + uDB[m (16.2.77)

with a-independent coefficients.

As the notation anticipates this relation is nothing but a local Callan-
Symanzik equation. The proof and the identification of the coefficients
consists in the integration of (16.2.77) and insertion of (16.2.69),
(16.2.70):
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m(l+o)Am = mA3 - ZBA - A’ (16.2.78)
(mam + MBM + B(gag - Ny - 2@8@) - yNA)Z
= (m(1s0)h « MGy + Bu )BT (16.2.79)

After all of these preparations the o-dependence of the supercurrent
is easily discussed. Using (16.2.77) in combination with (16.2.30)
and (16.2.74), (16.2.75) we have the form of 8,y,1+0 as function of
Zimmermann coefficients and counterterms:

1
B = - 7 (1+o)rk,
Y = - (140) v + o (16 + Buy o)ty + go— 893 2, . (16.2.80)
224 224 +b 224 g g "4 ° T
2y+0 = BgBQTn(m+a).
_ 2
Case n = - 3
We recall the trace equation (16.2.42)
=0
D%V, 5l = -2w T - 20,S°T (16.2.81)

with the current

V= v+ absorp.terms +(Mb) R[] + Nvi) + 2w, [VI] (16.2.82)

and the breaking

- %~S = m(1+o)fm + ZBfl + YE
e MR L]+ ML) + g DON [o(¥-T) ] (16.2.83)
z - %-(g + SM + 5, - %—YE)

Equation (16.2.61) tells us that Nl[LM] is a-independent, hence between

physical states so is ﬁl[L;] (s. (16.2.39)). Since ﬁl[L&] is also sym-

metric, S is symmetric and a-independent, i.e. gauge invariant between
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physical states. The r.h.s. of equation (16.2.81) is gauge invariant
between physical states and there are no terms v ol with the character-
istics of the current satisfying Da = 0. Hence V is gauge invariant
between physical states. Since the N terms do not contribute there we
may call the first three terms of (16.2.82) the gauge invariant super-
current of the massive theory

Vi, = V' + absorp.terms +(M +b)ﬂ (v } (16.2.84)

Let us now discuss the Timit M » 0 with which we claimed to control
the a-independence of the supercurrent with massiess vector field. The
breaking (16.2.83)

2 2
S =S5+ SM + SO + 3 vE (16.2.85)

is composed of the gauge invariant part §, the term SM which vanishes
in the 1imit M > 0 (for the proof s. App. of [IV.12]), the term S,
which coincides with the one of the massless theory and the contact
terms. What we still have to show is that for M » 0 S goes into §—SO
f (16.2.15) and that the function y or more generally, (16.2.80) also
goes into (16.2.18). Since S and the coefficients B,vy,0 are o-indepen-
dent we can control the limit at any convenient point, e.g., at o = 1.
3/\

-5 S

m(1+c)Lm + ZBL1

il

(m+a)(1+o)Lm + 26(L1+L2—LO) - BgagaL3

—8(98924 + n1t4)L4 + absorption terms. (16.2.86)

Since (s. (16.2.56))

Z =1 (16.2.87)
a=1
and 1im ty = 0 , (16.2.88)
M0

(for the proof of (16.2.88) s. [IV.12] app.)
we find '
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. 3 ~ *
Tim (- %5 S) = (m+a)(l+o)L_ - B(ga_ - N,)L (6.2.89)
20 2 m g v
where
ol n Bk (16.2.90)
m_ m  (l+o){m+a) "o m - m+a o e

coincides with (16.2.16), and we arrived at the value of S in the mass-
less vector case (16.2.15). B,vy,0 (16.2.80) go over into (16.2.18)
hence breaking and contact terms go over into those of the massless
vector theory. Thus the current goes also a~-indpendently into its mass-
less vector counterpart and one can check explicitly that e.g.
1im MM = 0 (16.2.91)
M0
(s. app. of [IV.lZ]). This finishes the proof of a-independence (between
physical states) of the supercurrent (16.2.13).

Case n = «

The equation to be studied (cf. 16.2.27)) reads

7= EZ-2(ma)lyl . (16.2.92)

First we replace L3 by its gauge invariant counterpart EB’ (16.2.75),
then we use the gauge invariant Zimmermann identity (16.2.77) and obtain

e ~ ~ 1
DDIS'Z = (E - 2mLm - ZrkL1 + 7—rkgag1n(m+a)E)Z s (16.2.93)

where in I2 we have absorbed all terms Dﬁ[m, L, having appeared under
way and where we also divided by (1+0). Anticipating from section 16.2.4
that "y is a-independent and of one-loop order we conclude that the
r.h.s. of (16.2.93) is a-independent i.e. gauge invariant. Ié is thus
the gauge invariant renormalized axial current belonging to the trans-
formations (6.69). With the help of

EZ = (- 2 24L4 - 2(m+a)L3)Z (16.2.94)

and the definition (16.2.74) we may rewrite (16.2.93)



The term Zrk(Lkin"') is thus still gauge invariant and may be defined
as a new basis element

~, 1 ‘ .
L = Lein = 7 (9324 + mty + 5 2498 In(mea))Ly + u BT (16.2.95)

replacing tl' With it the anomalous "trace" equation for I'5 takes
finally the form

DDIé-Z = (E - 2mLm + 2rkLi)Z . (16.2.93")
In this formulation one can easily check that the Timit M + O exists

and coincides with the result (16.2.27) for massless vector field.

16.2.5 The non-renormalization of the axial anomaly

In a consistent gauge theory with rigid Abelian Ys—symmetry the con-
servation equation for the corresponding current has the general form

a“ju5-r = wgl + rOUT (16.2.96)

where 3“5 is the axial current and @ a hard term, the anomaly, which
is also a total divergence

A = a“Bu (16.2.97)

Usuatlly Wg commutes with the respective gauge Ward-identity, hence
the difference Sujps -0 is gauge invariant. The non-renormalization
theorem for the anomaly then states that in any renormalization scheme
and any gauge a definition of jus and Ol as individually gauge invariant

operators can be found such that r is of one loop only.

r=rvh . (16.2.98)

The relevance of this theorem in perturbation theory originates from
the fact that non-perturbatively one is in many cases able to give
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an a priori geometric and topological meaning to the relation between
jus and Ot (by the so-called index theorems). There r must be of one
loop. Hence, if perturbation theory is supposed to be smoothly related
to the non-perturbative theory one better finds in perturbation theory
the non-renormalization theorem. Since these two ends of the theory

are very well separated it is no question that separate proofs for

them are indeed required; i.e. one cannot derive the non-renormalization
theorem for the perturbation theory from the index theorem without
additional hypothesis.

The proof of (16.2.96) and (16.2.97) in perturbation theory pro-
ceeds in two steps [IV.13]. First, the separaration of Q in

Wel = QT (16.2.99)

into a“j“5,cn {and possibly soft terms in cases where the rigid Yg-
invariance is softly broken) has to be performed. This is an essent-
ially algebraic problem whose solution relies on the different gauge
variation properties of j 5 and Bu: ju5 ts gauge invariant, whereas

Bu is not and can thus be characterized eventually by its gauge variat-
ion. Second, it has to be proved that r is of one loop order only.
This property originates from the fact that at some stage in the de-
finition of BU one arrives at an operator which is naively definable
i.e. has finiteness properties. Its normalization can thus be fixed
once and forever and requires no readjustment in higher orders of per-

turbation theory.

In the present context, SQED, we first have to find out which
current is a candidate for the non-renormalization theorem. A1l pos-
sible currents are contained in (16.2.5), labelled by n, the R-weight
of the matter fields. The Zimmermann identities (16.2.30), (16.2.31)
show that as "basic" elements in the breaking occur only L L

DDLm.

kin> ~4°

Qut of these at most Lkin shows the phenomenon of becoming naively
gauge invariant after application of derivatives: recall (16.2.46)
DﬁBl = DD(poDDD® + DoDDDO® + oDDDD®) = DDDEDOD®, (16.2.100)

whereas Lj, DD[m are naively gauge invariant since I, [m have already
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this property. Hence, in a (partial) current conservation equation
Lkin should be the breaking term, all others should already be absorbed
in the current. From (16.2.10) one can see that this is impossible for
any n without destroying the interpretation of V as a supercurrent:
absorbing 15 from S creates a B term. Hence abandoning the interpretat-
ion of V as supercurrent we turn to the easiest case, namely n = o,
and study the "trace" equation (16.2.93') for the current Ié which
has Lkin
proof of a non-renormalization theorem fqr equation (16.2.93")

as its only hard breaking term. We are thus led to try the

B01LT = wgeT- 2(mta)L T - Zrkti'r,- (16.2.101)

(w5F are the Legendre transformed contact terms EZ).

According to the above line of argument the first task is to charak-
terize the breaking algebraically. The action principle yields

Wgl' = QT (16.2.102)

with Q being a chiral insertion of dimension three. The softly broken
conservation law

Wel = fdx(DDw5 - Dﬁws)r = soft term - (16.2.103)
then permits in Q only hard terms of the form

Q = Dﬁd5 . (16.2.104)
Hence we study

wel' = DDJ.+T + soft terms , (16.2.105)
where J5 is real, has dimension two, R-weight zero and we know that

0D wy, Js = 0,
(16.2.106)

i

DD wx J5 0,

since W commutes with the gauge Ward-identities (14.6). The.list of
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all terms J5 (which are not invariant) is the following

th

Jg = ag oDDDDe + a2(D®ﬁDD® + DoDDDe)

+

a3(DD¢DD® + DDoDD®) + 3, pDoDDO

+ a(DD0eDo + DDDeDs) + aﬁiDDQDﬁ@

+

a7¢{DD,ﬁD}® . (16.2.107)
Imposing (16.2.106) leads to
a, =a; , a;=0 i $1,2 . (16.2.108)

We may therefore write the general solution as

= rBl + j5 (16.2.109)

[$2]
¥

= aIS + b(Lm + Lm)

Cae
[$2]
]

consists of gauge symmetric terms.

The gauge variation Bf' of B, is linear in the quantized field
hence can be defined naively and defineslthe operator B1 up to sym-
metric terms. Furthermore, J5 is unique since there do not exist im-
provement terms for it. Suppose now that

Jg = r'By+a'ly + b(L+ ﬂm) (16.2.110)

is constructed with a Bi

Bi = Bl + y115 + yZ(Lm + Lm) (16.2.111)
which has the same variation Bq as B1 but represents another quantum
extension of 81 (classic) than Bl‘ In this case, inserting (16.2.111)
into (16.2.110) we find

Jg = r'B 4 (a' + yiri)ig + (b'+ yzr')(Lm + Em) (16.2.112)
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and comparing with (16.2.109) we see that

P, (16.2.113)

? and thus independent of the repre-

i.e. r is uniquely determined by B
sentative B1 chosen. This fact suggests also that r 1is a-independent
which we now wish to prove. We know already (cf. (16.2.73)) that Lm is
a-independent, just because there is no other symmetric chiral insertion
of dimension two. Similarly, since 15 can mix with Lm + Em’ there is

an o-independent

I5 = (1+u5)15 + um(Lm + Lm) (16.2.114)
For the o-dependence of B1 we note first
aa(wAB~r) = aa(wKB-F) =0, (16.2.115)

hence aa(B-P) can differ from the term vanishing on shell only by sym-
metric insertions

3,(BT) = = o A BT + (xglg + x (L + L ))eT (16.2.116)

S

Thus, there is an a-independent B
B=8+bgly+b (L + Em) . (16.2.17)

(Note that the relative coefficient between B and B is one.) We may
therefore rewrite (16.2.109) in a gauge independent basis

Jg =vBeal, +b(L + L), (16.2.118)

with the coefficient r unchanged. The fact that DDJ5 is a-independent
shows that all coefficients r,ﬁ,B have the same property.

Having characterized gauge independently the anomaly and its coef-
ficient we proceed now to the second part of the problem: the proof
that r is of one-loop only [IV.13, IV.15]. For this we recall the Callan-
Symanzik equation

r = (pa” + B(gag - Ny - 208 ) - YN,)T = soft, (16.2.119)

A

where pau = mam + MBM, and note the important relations
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b
(v

[Cowe] = (16.2.120)

1]

[c,wA] B, (16.2.121)

(WA is the gauge Ward-identity operator ( 14.6 )) expressing the respect-

ive symmetry of C. Acting with (16.2.120) on T and recalling (16.2.105)
we find

Dﬁ(CJS-F) = soft (16.2.122)

as a constraint on CJS. Since there are no terms satisfying (16.2.122)
trivially, it implies

CJS'P = soft. (16.2.123)
We now apply (16.2.121) to (16.2.123) which yields

C(W,JgeT) - B, (Jg°T) = soft . (16.2.124)
Using (16.2.118) we see

W gl = rB) (16.2.125)
hence (16.2.124) implies

c(rB}) - 8r8) = 0, (16.2.126)
or

(uau + Bgag - Zaaa)r -2rg = 0 . (16.2.127)
Since r is dimensionless and a-independent this means
-2)r=0, (16.2.128)
and since B starts with order h, we have finally

(gag -2)r=0, (16.2.129)

i.e. r is of order gz.
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For the explicit calculation of r we identify it first with a
Zimmermann coefficient. We note that DDB, ﬁﬁfs, Em used in (16.2.118)
is just another basis than Ll, Lm’ E which had been used in section
16.2.3. Hence we may write instead of

rbbB = rly + .

(16.2.130)

1

rDDB = r(L1 t s (L2 - LO)) + .

by changing appropriately coefficients of 5615 and DD[m. Comparing
with (16.2.93") we can identify

r = Zrk (16.2.131)

where " is the coefficient in the Zimmermann identity (16.2.6) or
(16.2.30). Hence its value is given by
1PI

re = =32 (ma) < des3N2[A+A_(3)JE(p,1)¢(o,2)> 0 (16.2.132)

At order g2 the diagrams contributing to this vertex function are simply
+, - -

+
(1) o(2) o(2) (1)

and they yield as numerical value

2
reoop =9 (16.2.133)

kK g(16m)2

16.3  Supersymmetric_Yang-Mills theory

priputy r@ppang” S Ehy DR IR A SR g RS

16.3.1 General preparation

In the Wess-Zumino model and in SQED the renormalized supercurrent
was obtained by using explicitly Zimmermann identities for oversub-
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tracted mass terms and a subsequent reorganization of the result. ATl
manipulations could be performed on a few terms in a direct fashion.
The case of SYM is much more involved. Since BRS-invariance is a non-
Tinear symmetry the construction of BRS-invariant operators is non-
trivial. We have seen already in the tree approximation, sect. 6.4,
how many terms depending on external fields and ghosts were needed in
order to describe completely the off-shell structure In higher orders
a somewhat abstract procedure is therefore necessary [IV.14].

We think of a general SYM-theory maintaining parity (hence being
consistent, cf. sect. 15.4) with matter fields in the adjoint, resp.
a unitary representation and we shall assume all fields to be massive
but neglect all soft terms i.e. treat the theory only far off-shell,
in the Euclidean region (indicated by ~ in the following). Considering
mass zero limits would necessitate the study of infrared anomalies
(s. chapt. V) which has not yet been carried out in detail for local
operators.

At this stage we suppose to have established the following sym-
metries (asymptotically in momentum space):

rigid gauge invariance: wuf ~0 (16.3.1)
conformal R-invariance: HRF ~ 0 (16.3.2)
supersymmetry: W,r ~ 0, W&F ~ 0 (16.3.3)
BRS-1invariance: A(TYy ~0 (16.3.4)

(c.f. (15.18) - (15.21) and the corresponding discussion).

Our aim is to construct a BRS-invariant supercurrent V fulfilling
a trace equation

]
D7 (Vg ] ~ -2w,T - 2p [seT] (16.3.5)

where the anomaly S is a BRS-invariant, chiral insertion of dimension
three and the contact terms w, were given in (6.79) and commute with
rigid, R, supersymmetry and BRS transformations. This construction
will be performed in section 16.3.2.
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As in the previous cases, a suitable choice of a basis for S will
show its connection with the Callan-Symanzik equation (section 16.3.3)}
although this connection is not straightforward since the usual moment
construction of the dilatation current does not yield at once the true
dilatation VWard identity, as we saw in section 6.4 (s. (6.78)). Restrict-
jons on the anomaly S, hence on the coefficients of the Callan-Symanzik
equation, will also be seen to follow from R invariance (16.3.2), which
can be expressed via the contact terms W, by (6.72):

Wpl' = fdxwrl ~ 0, (16.3.6)
w = D% - D.w® (16.3.7)

Let us finally mention another important point,which will be fully
discussed in section (16.3.4). Starting directly from R-invartance
(16.3.6) one infers the existence of aconserved supercurrent V&:

Wl ~ a“[vg~r] (16.3.8)

its ©=0 component being the conserved axial current associated with
R-invariance. Vé fulfills a trace identity of the form

T -
D [vud~r] ~ =20 T + DDDG[B-F]

(16.3.9)

which is related to the former one (16.3.5) by the redefinition

/0 2
Vot = Vos - §M[Du’Dd]B

il

(16.3.10)
s = % 508 .

The essential difference between the two formulations lies in the BRS
properties: V and S are BRS-invariant, V' and B are not.

16.3.2 The BRS-invariance of current and breaking

In order to establish the trace identity (16.3.5) let us first formulate
the problem in terms of the functional Z (J, JA, £,5 0, Y, o) for Green's
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functions (see Appendix B). The trace identity thus reads

h

D&[V .'Z] ~ =2 T

b Wl - zna[s~z] (16.3.11)

where the contact terms w, are obtained from (6.79) by Legendre trans-
formation:

$.

L7 = - b Ty S 55 S
waZ =21 DDDaJ 57 * DaJDD <3 DDD@p 55t D,,0D 5
6 S, S
- g"DOL —S-E: - ODOL e b DOLE_'F §€+}Z
+ yratter 5 (16.3.12)

Q

The properties of W, we shall use are:
(the first follows from R-invariance (16.3.6))

0w, - Dé‘“ =w , JdxwZ~0, (16.3.13)
bow, =0 (16.3.14)
[Z,wa] =0, (16.3.15)

(g (1w (2)] = - 2 £ 8°(1,2)D.E, .

i

(16.3.16)
[G(1)4,(2)] = - g D B08°(2,1)00 507

Here A is the Slavnov identity operator (c.f. (B.23), with obvious
change for the a-gauge)

I

- §Z
57 = - Trf[dVJ =

S 4 rg

. 8 L8
+ de{Tr§+DD 53 Sy }

- C.C. ~0 (16.3.17)

tH
~
]
—
(o]
(ww ]
[
o
O
©
+
o -
Naat
+
| I—1
N
i
[en]

Gz

) s s (16.3.18)
7 = [ 1y OODD & + ! glz~0.

i
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W, also commutes with supersymmetry. These commutators with wa, W& and
wR define W, as a superfield of R-weight n = -1.

The action principle
o i
*Zwaz ﬁ“AdZ (16.3.19)

defines a dimension 7/2 insertion Aa which is a superfield with R-weight
n = -1 and, due to (16.3.13)-(16.3.16), fulfills

[ax[0%s - 0,521+ 7 ~ 0 (16.3.20)
ﬁﬁ[aaz] ~ 0 (16.3.21)
,S[A&Z} ~0 (16.3.22)

(16.3.23)
1 . rexS ss 87
375 0,008°(2,1)00 557y -

i
] =t
(o]

In particu]ar'Aa is BRS~-invariant (16.3.22) but satisfies the inhomo-
geneous ghost equations (16.3.23). A special solution of the latter
which also fulfills (16.3.20)-(16.3.22) is provided by the point
splitted insertion

£ (2)+7 = (502 g%‘ 35 §__p BBop g;é__y
a i o (8g, (z, o p(z_
-0 b6 —S 55 —% — _ 56 —S5— pBBOD —2O
o 88 (z,)  6o(z) §(z,) 5J(z_)
+ (2, 2) §z (16.3.24)

where z, = (x t €,0,0), € space-like. For any point-splitted insertion
of the form

§'2 1{ S $ $ $

25(z) 2= ()" % Lz (16.3.25)

§T,(2,) St,(z) " 8g (2] 8r,(2,) ¢

(;1-= source of the elementary or composite field @i)

we can define the normal product
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:0(z): = 19p(2)g,(2z): = Vim FP A% (2) (16.3.26)
e+0
by subtracting from A% the singular part of its Wilson-Zimmermann short
distance expansion [IV.16,17]. Let us note that if A% FUTfills some
identity like (16.3.20)-(16.3.23), then :A: shares this property.
In this way we can obtain from (16.3.24) the insertion

V) :(c_ DQDDDDQ + DqDDC_DDQ - DD@DUDDDDQ): (16.3.27)

as a special solution of (16.3.23) with (16.3.20)-(16.3.22) fulfilled.
It coincides in the treee approximation with Ai (6.85). One easily
checks that it can be decomposed

co v s vl (16.3.28)
where :82:, :V2: and :V3: are the normal product versions - according
to the definition (16.3.26) - of the classical objects given in (6.88,
6.89). They are BRS invariant, ;BZ: is real and :V2’3: are axial vector
fields. We can rewrite (16.3.28) as

SRy 3
o= Dy + 2Dy S (16.3.29)
with
o1 2o 3.2 5.7:8°
Voo = = Teg (Vesi* Vs ~ 3 [Da,Dd} B™:)
T - .1 =m.p2.
S = - ggy DD:B%: . (16.3.30)
.82 = :DDeDB® + DDQc_ + DDQE_:
Then (16.3.19) becomes
Wl ~t 0 .7 +2087 402 (16.3.31)
o 13 o a o

where A& fulfills the conditions (16.3.20)-(16.3.22) and the homogeneous
ghost equations

9(1)[A'(2)-z] ~ 0, g(l)[A&(Z)-Z] ~0 . (16.3.32)

o3
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Let us now go back to the formulation in terms of the vertex funct-
ional r(%,A,c ,p,Y,0). Eq. (16.3.31) reads

A4,
2w T~ 4 :eT(0,A,C,,0,Y,0)
(16.3.33)
+ A&'r ((I)aA:C+:nsYao') B

where we made explicit that A&-F depends on c_,p only in the combination
(5.109)

n= o+ rpgs (0Dc_ + DOC_). (16.3.34)

This is due to the homogeneous ghost equation (16.3.32) and holds also
for ' but not for waP. A&‘T fulfills the same condition, (16.3.20),
whereas (16.3.22) becomes

BF[A&-F] ~ 0 (16.3.35)

with T and 35 defined in (5.98, 5.113).

We shall now show by induction that A&-F can be expressed as

BT b [Vo@ r] + zoa[s r] (16.3.36)
where V&& and §' are axial vector with R-weight 0 resp. chiral with

R-weight -2 insertions of dimension 3, obey the homogeneous ghost equat-
ion (hence depend on n) and are BRS invariant

3r{v&&-r] ~3F[S‘-F] ~ 0 (16.3.37)

This is of course true at order zero as we have seen in section 6, with
the result (c.f. (6.100, 6.88))

ster = - 281 4 o) . (16.3.38)

wiro

Let us assume (16.3.36) to hold up to and including the order n-1:
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1 'é(y v, (-
AT ~ D [V, T] + 20@[5 r]
(16.3.39)
+ H" Aén) + 0(hn+l)

where V&d and S' obey the BRS-symmetry (16.3.37) to all orders. The
local functional Aén)(®,A,c+,n,Y,o) represents the - still unknown -
contributions of order n.

The constraints (16.3.35), (16.3.20), (16.3.21) yield for a{M
6 E:BT , see (15.30))

class
s oM -0 (16.3.40)
poal™ =0 (16.3.41)
Jax(ooa{™ - Dda(”)&) -0 . (16.3.42)

The general sotution of (16.3.41), (16.3.42) is found in Appendix E to
be

4 B
o{M) - o1+ 2 ség) (16.3.43)

where V§3> is an axial vector superfield and Ség) a chiral superfield,
both being local functionals of @,A,c+,n,Y,0. The constraint (16.3.40)

applied to (16.3.43) yields the equation

o (3] + 20%s(0) < 0 (16.3.44)
which we have to solve. As constraints on all solutions we have the
respective dimensions (dimV = dimS = 3), the R-weights (n(V) = O,

n(S) = -2) and the fact that S is a chiral field. One lists all possible
S-terms according to the number of derivatives which they contain and
finds after quite some calculation that only the following four types

of solutions exist:

(n) s{B) = - LOOT g, Ty chiral ,

B~ = B
D&TOLB + DD T(SLB) (16.3A45)

sv{) = 2(0 .
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which may be summarized by

(n) _
ASOLB h

pvln)

¢76)

where D_ and &, have the property
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(A4 g
o
juw )
o

w-
(g

Nf
(o}
(=]
o
[

—

(ppdd + D$OoD - 6 DBDD)

+4D.0D
)

- 4 ﬁ-DDD
o

oB ?

3

ad

B

B

%@ A) . + 20°@ )

oo

for any superfield A.

N

B

w.? - 4 p popPu
Q o

oaB=

B&:

0By B 4 4 0 5.0P5.u P
o o

BB

)

(16.3.45 cont. 'd)

(16.3.46)

(16.3.47)

To prove that 6V(n), 65(") as given abové are indeed variations
is a cohomology problem similar to the one solved in section 15 for
the BRS-invariance for I'. The result is that the expressions on the
r.h.s. of (A)...(D) are indeed variations. Hence in (16.3.46)

U =40

and
(n) _ -
Sch 9 U)oaB + 4-inv
(n) _ ~ »
Vo = @0 g+ 4-inv

(16.3.48)

(16.3.49)
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tlhen we insert this result in (16.3.43) the U-terms cancel due to
(16.3.47) which means that (16.3.43) holds with V(") and s{" 4 -invariant.
V(n) and S(n) can be expanded in their respective basis of -invariant
local functionals with the appropriate dimension (d=3) and quantum
numbers:

i i i
. = 16.3.50
{v,} and {SmB} {eaBS } ( )
Since the explicit basis of V is not needed later on, we shall not
elaborate on it. For the basis of S we first observe that there is no
symmetric S(aB) fulfilling all requirements - a fact anticipated in
writing (16.3.50) - so that ‘

5(n)

; (n)
VLR (16.3.51)

can be expanded in the basis {51}. The latter consists in two classes

of terms:

a) s' =g 08 with
Bl = 4(ne) , BN = g(ne?*th), k=12, (16.3.52)
B3 - A+e5A+ AR, 8% - Tr e %en

) S =Trff L et A, T = 4Tr(ec,) .

(Note that the BRS-invariant 82 (6.88) does not appear in the 1ist since

it does not fulfill the ghost equation.) The classical basis {SW} can
be extended to a guantum basis

~

{§‘lr(<p,A,c+,n,Y,o) :3.[8-1] ~ 0} (16.3.53)

identical or equivalent to the basis (16.3.52) at zeroth order. A par-
ticular choice for it will be given in the next subsection. The basis
iqr V is similarly extended to a basis of Bf-invariant insertions
VT

Since V(n) and S(n) contribute in (16.3.39) at order n, one can
replace in their expansion the classical basis elements (16.3.52) by
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their quantum extensions, the difference being of order n+l. This de-
fines :Bf-invariant insertions V(n)-r and §(n)-r which, when substituted
in (16.3.43) and then in (16.3.39), gives rise to

| A&y . ' n+l
paeT ~ DV, r] +2p [S'er] + o(R"™™) (16.3.54)
(I" and S" being absorbed in V' and'S').

This shows that (16.3.39) holds at next order in n together with-the
invariance property (16.3.37) and therefore finishes the inductive
proof of (16.3.36).

We can finally write the supercurrent trace identity (16.3.31) or
(16.3.33) as

B[V _.+T] ~ -2w T - 2D [S-T]
a0 e [0
(16.3.55)
V.=V .+V., S= S+ S
ad oo ot
with V, S defined by (16.3.30), ahd V', S' being ZBT~1nvar1ant and ful-
filling the homogeneous ghost equations.

16.3.3 Renormalized supercurrent and Callan-Symanzik equation

OQur aim is now to construct a basis for S§' in (16.3.55) similar to the
one found in the previous cases (section 16.2, 16.3) which .allowed us

to make the connection between the supercurrent anomalies and the Callan-
Symanzik equation. But now we have to take care of the fact that the
moment construction (see (16.1.24)-(16.1.28)) leads to a dilatation

Ward identity operator w'D (6.77) corresponding to dimensions (2,0,3)

for (¢,p,c_) instead of their canonical dimensions (0,2,1). To the

latter corresponds the true dilatation Ward identity operator wD (6.78)

D

WT D

w 1

i3

T+ 20T (16.3.56)

i

N N¢ - Np + N+ Ne s

=
1

f@éw (counting operator)

The analog of eq.(16.1.29) reads

WpeT ~ - 3 1[fdSS + [d33]-T. (16.3.57)
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- Let us first rewrite the breaking S in the trace identity (16.3.55) in
the form

S=5 +5" (16.3.58)

with

N S
- 1bx

2

B™: 1

S =008 , B + 4 8L

(16.3.59)
:BZ: was defined in the last subsection {see (16.3.30) by the point-
splitting procedure (16.3.25), (16.3.26).

:81: is defined here in the same way. Both are quantum expansions of

the classical Bl, B2 in (6.88). The precise definition of :81: is

plip 28 _ 80, 1 . 55 SR - .
BTl =0 - p 55+ 28 :0{DD,DD}® + Q(DDc_ + DDc_):-T
(16.3.60)
From the reality of B_ follows
[fdSS_ - [dSS }-T =0 . (16.3.61)
One can check moreover that
[fasS_ + [d33_)-T ~ 3 AT
(16.3.62)

N =N -N ~N -~ NE

The Tast result requires the validity of the ghost equations (16.3.18)

inside the symbols : :, which we check on an example. Let (using (16.3.25),
(16.3.26))
Ao = :c_DBDDQ: (2) (16.3.63)
AZ = & Tim FP (E)Z [ 8 BBDD + (z,+>z )] Z
7"8*0 i 6g+(2+) So(z_) + -
~ % lin FP ?— 1280 [gz—%i—7~g+(z_) v (z,e2)]2
e+0 +3 74
_ h, 8z
= - 1280 ¥ &, 3, (16.3.64)
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Or:

AT = 1280 € S . (16.3.65)

For the last equality in (16.3.64) we have used the vanishing of the
anticommutator term

s s )
{EEITE:T , £, (2 )} = 87(z,,2.) =0

following from e, =6_= 6.

From its definition S_ reduces at zeroth order to the full break-
ing S we have computed in the tree approximation (see (6.100, 6.103,
6.105)). Hence the remainder S"+T in (16.3.58) is of order h. Let us
expand it in a basis of ‘Bf-invariant chiral insertion S' defined by

[[dss' + [d38']-r = v'r (16.3.66)
where ¥' stands symbolically for a basis of symmetric operators as

the one constructed in Appendix D (with obvious changes when going to
the a-gauge):

{vi} N &lé’ JA+’ Jh’ W;, ag"ah’ aak}

uVé = N® - Np - Nc_ - NE_ + 2&9@

Jfg+ = NA+ + NAn - NY+ - NY~ + conj. (16.3.67)
qu = NA - NY + conj.

Al = NC —.NO + conj.

+

(ali Vi commute with the ghost equations and with parity). One can con-
vince oneself that @he definition (16.3.66) determines the §1 uniquely
[IV.14] since the V' form a basis of symmetric operators. The expansion
of S" then reads

~no

S"eT = 3 % ;8T oy = 0(h) (16.3.68)
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Inserting it in (16.3.58) and then in (16.3.56), (16.3.57) gives the
anomalous dilatation Ward identity

WP

P~ =i ] avr (16.3.69)
i

where we have used (16.3.66) and (16.3.62). We observe that the cor-

rection term 24 T in (16.3.56) 1is exactly compensated by the S_ con-

tribution to S (16.3.58), due to the property (16.3.62). This was indeed

our motivation for the construction of S_ via the point-splitting tech-

nique.

As usual, naive dimensional analysis tells us

ima I = WT (16.3.70)

(here m comprises all mass parameters of the theory). Hence combining
(16.3.69) and (16.3.70) yields, with a slight change of notation for
the coefficients oo the Callan-Symanzik equation

[mam + Bgag + By + E ekaak

(16.3.71)
el - YA;”A+ S Yy v Ir - 0

Restrictions on the coefficients a; = {B,v} result from asymptotic
R-invariance (16.3.2):

0 ~ W' ~ - [JdSS - [d33]-T (16.3.72)

(c.f. (16.1.20) and following equations for the case of the chiral model).
Due to (16.3.61) the S_ contribution to (16.3.72) disappears, which
leaves the homogeneous equations

] a;[fas8’ - fa387)-r ~ 0 (16.3.73)
1

The 0y being of order % at least the restrictions at their lowest
order are quickly established by replacing the g1 by their classical
Timit S'. The latter are obtained by applying definition (16.3.66)

to the classical action (see (6.80) and section 5):
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$9 = g TP, L ST =T

k.4 6oTrn(a2K*! 4 0(02K*3)) |

s = 400Trno , (16.3.74)
s* = -Tr(oc,c,) + YP + TrdB(nQ),

A

3

(%2}
il

2z265Tr(e‘¢Ae¢A) + 3hTrA

% @ A apch
Hence (16.3.73) yields at the one loop order - Sg, § ", S, §-3hS
giving identically vanishing contributions -

B = 3y, + OCHE) Ly, = O(K) (16.3.75)

The restriction implied by (16.3.73) at higher orders will depend in
a complicated way on the normalization conditions. Like in the Wess-
Zumino model (16.1.22), such restrictions are the genuine expression
for the non-renormalization theorem for hard chiral vertices.

We may summarize these results by saying that the supercurrent
still contains all the information on the superconformal symmetries,
but due to its non-improved character (occurrence of the term S ) it
has to be extracted with some additional work: one always has to treat
separately the S_ contribution in the breaking. Since there exists a
local quantum extension of it, (16.3.59), this is only a technical
complication but no question of principle. The supercurrent still yields
all relations amongst the anomalies of the superconformal group.

16.3.4 The "conserved" supercurrent
The BRS-invariant supercurrent V cohstructed in the last subsection is
not conserved. Indeed its trace identity (16.3.5) yields, using the
definition (16.3.7),

a“v“~r ~ iwl + i(DDS - DDS)-T (16.3.76)

(Recall that S has operator dimension three, i.e. is hard.)
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In particular its © = 0 component is a non-conserved axial current.
On the other hand a conserved axial current jUR associated with R-in-
variance exists, fulfilling

R Rp = (16.3.77)

= 1WF

@=0
as a consequence of the R-Ward identity (16.3.2). (I.e. its non-conser-
vation is soft.) We define the conserved supercurrent VQ as the

- unique - supersymmetric extension of j“R:

ali Rer o dw
Ju

VieT = jNer 16.3.7
u 0-0 3y (16.3.78)

The supersymmetric extension of (16.3.77) gives then
BUV&-P ~ iul (16.3.79)
The currents j“R, VQ are uniquely defined by (16.3.77), (16.3.79),
since there is no improvement term, i.e. no axial vector insertion
a with
H

a“au-r =0 . (16.3.80)

In order to look for a relation of the current V' with the BRS-1in-
variant supercurrent V let us try first to derive a trace identity. De-
fining the insertion Bu by

S0y, . .

BV ' ~ -2wal + Bm T (16.3.81)
we see from the conservation law (16.3.79) that it must obey the identity

D78, I - DB '=0 (16.3.82)
together with (see (16.3.14))

obB T =0 . (16.3.83)

B is given in the tree approximation by (6.100):
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(16.3.84)

8L, BZ given by (6.88).

We shall now show by induction that the general solution of
(16.3.82) and (16.3.83) is given at all orders by

B . = DBD BT (16.3.85)
a o
with B = B , dim(B) = 2 .

The proof is similar to the one used in subsection 16.3.2 to establish
the trace identity. Let us assume (16.3.85) to hold up to and including
order n-1:

B 7 = 000 B-T + WB(Mep 4 o™y | (16.3.86)
a a ¢}
Conditions (16.3.82) and (16.3.83) yield at order n the constraints

pogtM _5.g(Ma . g
o ¢

b

(16.3.87)
658" = 0
a
Their general solution is given in Appendix E:
8M) - poo 8(") 4 pBs(n) (16.3.88)
a o (aB)
with (1) - g(n)

n

[0
R-weight -1. By checking all possibilities one concludes that there
is no such object:

Here SE %) is chiral, symmetric in its indices, of dimension 3 and has

sggé) -0 . (16.3.89)

Substituting (16.3.88) in (16.3.87) and redefining B » B + h"8" estab-
lishes (16.3.87) at its next order, which ends the proof of (16.3.85).
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This result yields the looked for trace identity (16.3.8)

B*V',+T ~ -2w I + DDD B-T (16.3.90)
Qo (o] (6]
with'B = B, dimB = 2 .

The relation to the trace identity (16.3.5) is then immediately given
by the redefinition (16.3.10).

Considering now the BRS-invariance of B and V' we recall subsection
16.2.for the abelian case (cf. (16.2.48)) where we have seen that

FF = DD(DeDOD® + DepDDe + ¢DDODe) = DOB (16.3.91)

is of the desired form. But B, hence V', is not BRS-invariant. This
holds a fortiori in the present non-Abelian case.



CHAPTER V. RENORMALIZATION : SOFT ANOMALIES

The analysis of the renormalization properties performed in the
preceding chapter led for all completely massive theories in the class
of our examples to a satisfactory result. Of the examples containing
massless particles, the Wess-Zumino model, SQED and S'QED still per-
mitted an immediate treatment in the loop expansion, for the former
two also all the desired vertex functions of operators were constructed
without too severe an obstruction from the infrared region. (By this
we mean that they exist for non-exceptional momenta.) For the
0'Raifeartaigh model, however, we could prove the supersymmetry Ward-
identity only up to an IR-anomaly and for SYM we did, because of the
1/(k2)2-pr0b1em, not even attempt to go beyond the analysis of the deep
Euclidean region. In this chapter we shall attack these problems. For
the 0'Raifeartaigh model we shall find fhat the IR-anomaly can be ab-
sorbed by going over from the h-expansion to an expansion in vk In h.
The validity of a strict Ward-identity implies then a well-determined
mass generated by radiative corrections: a mass “sum-rule" [V.2]. For
pure SYM an IR-regulator will be introduced which breaks supersymmetry,
but maintains BRS-invariance. One constructs then Green's functions
of BRS-symmetric operators and shows that they are independent of the
regulator and thus have also supersymmetry [V.5,6].

SECTION 17. MASS GENERATION - THE O'RAIFEARTAIGH MODEL

In section 13.3.2 we have seen that within the h-expansion super-
symmetry cannot be maintained -in higher orders (in fact starting with
one loop). The supersymmetry Ward-identity contains a non-vanishing
contribution on the right-hand-side of dimensions p = § = 5/2:

~267-
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WL o= g;g [U ]er (17.1)

Since Um starts with
_ = 2
U, = ull fdxR A, + o(h%) (17.2)
one is tempted nevertheless to absorb the breaking as a counterterm

in Toff and one is then lead to consider along with the divergent dia-
gram of fig. 13.3.2

0 0 b ¥,
A, Ay
F . e f -
A, J A S A A, A b A,
FIGURE 13.3.2 FIGURE 17.1

all other divergent diagrams of comparable magnitude: h not taken as

a formal expansion parameter all the diagrams of fig. 17.1 are non-neg-
ligible higher order contributions, which due to the IR-divergences
become as important as the one of fig. 13.3.2 and hence have to be taken
into account at the same approximation order. This suggests [V.1] par-
tially summing the perturbation series, and thus a shifting of the pole
in the <AOAO> propagator to a non-zero value: a mass is generated for
the AO field. Its value is determined by the Ward-identity (17.1). Of
course with this summation one has left the perturbative framework which
before served to construct the Ward-identity. It is preferable to work
within one scheme within which one establishes the Ward-identity and
decribes the mass generation. This has been proposed in [IV.8] and then
applied to the above model in [V.2] in a modified form. We are going

to present now the main ideas.

The supersymmetry Ward-identity is supposed to determine the mass
of the Ao—fie1d. We formalize this by introducing already in the tree
approximation a mass p? for AO and choosing normalization conditions
such that the A -propagator has a pole at p®: blindly putting a mass
for A breaks superSJmnetry, but the hope is that theorem 13.3 controls
the break1ng Let us be explicit; we first add to the tree approxima-
tion (13.37) a breaking term:
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n . q0) M
I1t\r‘ee T *A
LI S IVEY.
Az 2 JAVARA
(17.3)
A=n- %-u@zéz , u=1u"+ 0k
n=C+ 0y + 0y + %~@2M + % 8% + eo“évU + %—Tzex + %ezéx + L %% |

The reason for this peculiar choice will become clear by considering
the Ward-identities which hold for (17.3):

Wrh =0, WM =0, (17.4)
o o

wgrn =0,

j.e. n being a shifted superfield with R-weight zero makes " invariant
under shifted Ward-identity operators:

n . - 5 8 = .t
W, =W, 1de6Xn 5 (x = o,d,R)
(17.5)
R S irdss A S
W, = 1fdsaxAk A 1fdsaxAk i
Furthermore at n = 0 we have
0T = - U v 32 S 17.6)
o~ 2 8n ? (17.
n=0
WRF =0,
(17.7)
= F”l
n=0
and in the tree approximation
Wr, = ulfdxp A (x) (17.8)
o tree oo 0 ’ '

The external field n controls the covariance of the breaking in the
course of renormalization, this is the guiding principle for its in-
troduction (cf. section 13.2). Indeed, the Ward-identities (17.4) per-
mit a generalization to all orders. We introduce as Feff:
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n_oph M(s-1) 2 252
Terr = Ttree ¥ 78 (deAo * IdSAo)
3 n
+ iZO a;b; + anA + apd,
p
+ E ; an1( ni * rni) + Tin (17.9)
where
. ) 4
b = g [deAkAk}4 k =0,1,2
! _ 4
by =g [JdSAA, + fd§f\1A2]4 ,
1 (17.10)
1 2 ar 72
by = 33 [deAOAl + deAoA1]4 ,
1 o
o =7 (deAO + deAO)

and Fni are all possible monomials in the components of ¥ AO, A1 and n
which are independent from Ai’ A" and are I-invariant with UV-dimension
d < 4, IR-dimension > 4 (cf. table). They are classified according to
their R-weight n:

W,T . =nT . . (17.11)

R* ni ni

Tﬁi denotes the parity conjugate of L it has R-weight -n. [, ~are

Tinear terms in the quantized fields Ak; they may have IR-dimension < 4.

Table 17.1. UvV-, IR-dimensions d,r

X 0 86 s-1 s A Vo F A

d -1 -1/2 +1/2 1 1 1 3/2 2 1 1
r -1 -1/2 +1/2 1 0 2 3/2 2 2 1 0

Theorems 13.3 and 13.5 guarantee now supersymmetry and R-invariance
(17.4), indeed strict invariance since all soft terms can be absorbed
(no IR-anomaly for susy, no clash with normalization conditions for
R-invariance). The parameters a, (i =0,..., 4), 3 3 of Pagr and

*
Radiative corrections do not depend on AZ’ since the interaction
B involves only AO and Al'
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f, u occurring in the Ward-identity operators (17.5) (cf. (3.41)) are
fixed by the normalization conditions (3.45) - (3.49) taken at an
Euclidean point u?, %2 < 0, together with

2 2)

Ty 7(p° = ¢ =0 (17.12)
AOAO

which fixes the pole of the Ao—propagator to be at uz.
The n-dependent Ward-identities (17.4) imply to all orders (17.6)

and (17.7) and thus describe a theory with soft breaking of supersym-

metry:

r

iu =
-5 de@Ot@ "6—7—{‘

NI
6=0 (17.13)

= uyur
o

(Uv-, IR-dimension of Ua :d=1r=05/2). uis a function of the para-
meters of the explicitly broken theory and is a formal power series

in h:

UM, Ea9) = pok Fug(m,g,g) + Erﬁnun(uz,u,m,ﬁ,g) : (17.14)
n>¢

Its one-loop value Uy does not depend on p? [IV.5]
Up = ..o gzgz/m2 (17.15)

(the dots stand for a numerical coefficient).

In order to make out of (17.13) a strict Ward-identity, i.e. one
with vanishing right-hand-side, one puts

u(p,n,még,g) =0 (17.16)

*
and solves for p. The solution y (w,m,£,g) of (17.16) is inserted in
. *
I thus obtaining a generating functional T fulfilling the Ward-inden-
tity for spontaneously broken supersymmetry

* %k * %

r =0 (17.17)
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(the superscript * denotes the replacement y -~ u*). In this way one
remains in a strictly perturbative framework, although the expansion

has drastically changed in performing the replacement p - p*. In fact
it is governed by small mass behaviour [V.3,4] of Feynman diagrams (or
Green's functions) since the mass of the A0~f1e1d has become h-depen-
dent and has to be taken into account when the fi-expansion is performed.
Since for p = 0 I exists - it only leads to an IR-anomaly - there ex-
ists [IV.8, V.3,4] a formal expansion of T in p with In p dependent
coefficients:

() =rlo) + [ W (Tny), (17.18)
m>1

where each term is itself a formal power series in h. The function
u (17.14) has a similar expansion

2 .
u(p) = u° + fugp + ngz ﬁ”(un(o) + £21“mun’m(]n ). (17.19)

Therefore (17.16) can be solved iteratively in a formal power series
of the form

W eamg,g) = B8]+ L, Y2 W (1 ) (17.20)
n

with b = (-uy/%) given by (17.15).

Substituting (17.20) into (17.18) one obtains the functional F*:

A R §3 B2 0" (n ) (17.21)
n

which fulfills the Ward-identities (17.17) in the sense of formal power
series in vh 1n h. The peculiar form of the lowest order term in (17.21)
comes from (17.15) (p®-independence of ul) and the fact that

Ir(u) = I'(o) + O(uz) (in the tree approximation).

One might wonder whether the replacement p - p* does in fact not
completely destroy the relation between number of Toops in a Feynman
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diagram and powers of h. Let us check that this is not the case by count-
ing h's in a connected diagram. An ordinary propagator contributes

h, a vertex of the tree interaction h'l, for the entire diagram there

is an overall factor h since Z = exp i/h ZC and we start from the Gell-
Mann-Low formula. Suppose in the diagram considered there is a Aoﬁo—

line with n insertions of A0~mass counter-terms, then the h-dependent
Ao-mass will contribute

momentum. k

1
*2 £, 1-
* % X% % :fdkm()ﬂ'(p -ﬁ) ﬂ'
A 1 2...n A (k™-u )
0 e R | (17.22)

(n > 1)* with 1n p2h-dependent coefficient (we are only counting
powers). Hence e.g. in the diagram of figure 17.1 with power x 1in H
carried by the insertion we have a total h-power: n(x-1) + 2.

7 N
/ \
PR WVENE VNSV S—"
1 2...n
FIGURE 17.1

Starting from the explicitly broken theory where AO has mass y,

its mass counter-terms are the value of Télg at p2 =0, s = 1. Due

to the on-shell normalization we have 00
R R R AR S MU oh%) (17.23)
0"o
2 _
j.e. atp =0, s =1
(1)
FAO-O N O RTLI I (7.24)

Thus the counter-term carries h-power x = 2 if we replace p® by p*?:
We do not lose the connection between h-powers and number of loops in
a diagram.

*In the case n = 0 the h in the denominator does not contribute to
the overall h-power of the diagram.
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Similarly if there occurs a fA -counter-term in the explicitly
broken theory it is at least multiplied by hl/z in the transition to
the spontaneously broken version and again the powers in Hh do not de-

Crease.

Another check whether p* is indeed a physical mass is provided
by the renormalization group equation. IT p* satisfies such an equa-
tion it is a physical quantity. We shall now present this check [v.27].

Let us recall from section 12 that an insertion A is called sym-
metric if

NN
WXAT

1
o
.
>
i
Q
.
Qe
=

(17.25)

analogously a (functional) differential operator Vv is called symmetric
if

I
(]

[wQ,v] = (17.26)
The insertions Aj (i =0,...,4), An and 9 of equation (17.10) are

a basis for the symmetric insertions of UV-dimension d < 4 in the tree
approximation. Their IR-dimension is r > 4, hence there is no conver-
gence problem. They can be extended to a basis of symmetric insertions
at every order in Hh:

>
It

By + oh) , a=0,...,4,n

(17.27)

® =0, ,

@ remains trivially symmetric since it is linear in the fields. The
standard construction proceeds analogously to the above construction
of an invariant T": one couples Aa in the tree approximation to an ex-
ternal field Ny with appropriate dimension and quantum numbers and re-
normalizes the theory containing these external fields such that (17.25)
holds. A

For differential operators (17.26) provides the instruction how
to obtain them: starting from a differential operator xax(x = M,u,g,m
are the parameters of the model, the variation of which will interest
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us) we may render it symmetric by adding suitable derivatives with re-
spect to £ and p® to it:

. 2
xax = ABA + bkgag +CyH 3p2 (17.28)

with the conditions

2 -
(ASA + bkgag + oM aug) f=0

(17.29)

2 ,
(Aax + bkgag +Cy a“g) u=20

(Recall from (3.41) and (17.3), (17.5) that W depends on f and u for

%X = o,0).

Quite analogously we may symmetrize the counting operators

. S sp S .
N, = Jash, oy + [dSA, ol k = 0,1,2
(17.30)
- S_
Nn = den 5n
by adding suitable functions
N = N +bga +c pza
0 0 0°"g o" “ud
N = N_+bEs, +c uza 2 (17.31)
n no ong ntopt ‘
N2 s N2
which are determined from
(1-b£d, - cpd,) f=0
0°%g ~ To" Ty
{0+b&d, +¢ pza yu=20
0°°g © "o yf
(17.32)
2 -
( 0+ bngag + cnu 8“2) f.=0
(-1 + b &3, + ¢ uza 2y u=20
n’g nou
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1t is to be noted that the system (17.29), (17.32) is soluble for b,cC
in the tree approximation where f = 4£/g and u = p® hence it is soluble
to all orders in h. The 7 symmetric differential operators (17.28),
(17.30) applied to the generating functional il yield via the action
principle, section 11, symmetric insertions which can be expanded in
the basis (17.27). Eliminating the 5 insertions Za between the 7 equa-
tions so obtained, one gets 2 partial differential equations:

2
~ - ~ ~ ~ N
(May + ogdq + oM - % w N = VNI =08
2 (17.33)
~ -~ ~ S oman
(43, + Bgdq + By g v N ynNn)T o
Inserting (17.28) and (17.31) into (17.33) the equations become
2 g n
(M3y + agag + oM+ OgEBL + O e g ueN - vnNn)F = 0%, >
(17.34)
2
‘ 2 _ n _
(w3, + B3y + B3y, + BgEBy + B M 3, g YNy - ynwn)r = ab
with the conditions
, : 2 _
(MBM + cgag + Ummam + cggag + c“u sz + vo) f=0 ,
(17.35)

1]
O

2
(MSM + ogag + ommam + oggag +.0uu auz + vo) u

and other similar ones where o,v are replaced by B,y and M is replaced
by n.

The coefficients of the partial differential equations can be de-

termined by use of the normalization conditions (3.45) - (3.49) at uz

and (17.12) at p® and since those are all M-independent we find

o=v=0, (for all indices) (17.36)

M =0 , 9,f=0 , 3u=0 . (17.37)
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These equations state that at s = 1 the Green's functions are indepen-
dent of the auxiliary mass M, the same being true for f and u (the
functions occurring as shifts in the Ward-identity operators). With

P = wd, + Bdo + B, M3y, + ngag we also have

99
9- 3 n
@- )N -y N)IT'=0, (17.38)
o KK nn
@+, F=0,
(17.39)
(@+Yn)u=0.

These are the renormalization group equations, which govern the w-de-
pendence of the respective quantities.

Thus far we have considered the explicitly broken theory; in order
to go over to the spontaneously broken one we have to put n = 0 and
to perform the replacement y - p* (17.16), (17.20). From (17.39) we
obtain as renormalization group equations for u, using (17.16)

o
"

@Du(u,u,m,i,g)]“

=p* 3

Dru(p*(n,m,&,9),%,m,&,9) (17.40)

au
-Q*U*(%,m,g;g) [—3_5]“:“*

The first term vanishes due to (17.16) to which one has applied a dif-
ferential operator, hence

D*u*(n,m,£,9) = 0, (17.41)
since du/3p is non-vanishing a p = p*.

Recall

* * *

2 wa, + Bgag + BRI+ egag .
(17.41) expresses the fact that the generated mass p* does not depend
on the scale of the normalization mass w and confirms p* as being a
physical parameter.
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Similarly one obtains the renormalization group equation for r
from (17.38)

2
(@ -1 yNIr(oemeg)] =0,
0 p=p*
* E*\a AT YT ) I 17.42
@ 'OYk'k) - y ’S'gp=U*‘ > (17.42)
* 2 * *
@ - z Yka)T =0
0

One can also show that the ﬁerturbative solution (17.20) is com-
patible with the exact solution of (17.41), [V.2].

This concludes our discussion of the vertex functions and global
invariances of the 0'Raifeartaigh model.

SECTION 18: THE OFF-SHELL INFRARED PROBLEM IN SYM

18.1. Statement of the problem. Tree_approximation

peginguginiediiuii g ipuipp g Mpappeph I PO A g

As the example in section 9 (fig. 9.2, p. 141) shows there arises an
off-shell infrared problem in supersymmetric gauge theories as soon

as one works with the superfield formalism. If existence of each indi-
vidual diagram is desired - which was the basis for deriving the action
principle - it seems to be unavoidable to use an auxiliary mass as an
infrared cut-off. We shall therefore abandon part of the symmetries

i.e. break them and try to study the breaking independent features.
Since the infrared problem is caused by the pure gauge field terms in
the vector-superfield propagator the hope is that gauge invariant quan-
tities exist infraredwise. BRS invariance defines which objects are
candidates for being physical and thus should not be viclated. We there-
fore propose to break supersymmetry explicitly, but softly by mass terms
for the dangerous gauge sector, then to construct the candidates for
physical quantities and to show that they indeed exist in particular

by being independent of the infrared regulators introduced [v.5,6].
There is of course an immediate difficulty, namely that the regularizing
mass terms have to be introduced in a manner which is compatible with
the BRS invariance. But here the general solution of the STavnov ident-
ity, cf. section 5.3, will help us. We have seen that the replacement
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(cf. 5.115) in T of & by ¢

R T 2ok T 1) (18.1)

which is a kind of generalized wave function renormalization, left in-
variant the Slavnov identity. It maintains this property even if we
permit ¢ to develop a ©-dependent part - which breaks of course super-
symmetry:

R ulolHf (18.2)
The 0-independent new Cq is now an ordinary wave function renormaliza-
tion in which we are not interested for the moment, hence we put ¢y = 1
in the following. Looking into (18.1) it is clear that ®=(1 + %-ﬁ@aézm
means D = D + 2 u2C (in T'). Let us check what that means in the tree
approximation, in particular for the (C,D) bilinear terms. [ is the

gauge invariant part (cf. (5.93)) hence
F.(C,D) = 24 [dx [D + 2 yoc +oc)? (18.3)
pir{C:0) = 7g7 H : :

In the (a,B) gauge formulation we may add the same gauge fixing term
(B-dependent term) as previously (see egs. (15.3, 15.7)). Thus the com--
plete bilinear part of I' in the fields C;D and B and in the ¢l -fields
reads

FbT--I(C,D,B,C_‘_,C_) = Fbi](C’D)
' (18.4)

2 aif (0 + o],

+ Trfdx[-f(D-OC) + % f
where f, f_, b+ are the components of the superfields B, c_, c, which

are coupled to C and D:

f = Re[Bl ]
0% -comp.

f = Re[c_ ] (18.5)
‘@2~compon.

b+'= Im[c*leo—comp ]

The resulting free propators are now massive, with mass u?:
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> = K(a-g?) , <TeD> = K[ (o+gd)k? - 20p%) ],
ooy = Kla(kZ-2u2)% - &4 L <TCH = 2K(k —ué) :

T = 2K(KE-p?) (k-2p%) T = 0, (18.6)
<Tf b> = -K(K?-u?)

with K= - %h- [k2~p2 + ia]_z

Having tamed now the infrared divergences off-shell by breaking
supersymmetry softly and not violating BRS we have to control the break-
ing, in particular its covariance, by a manageable tool. As in the
0'Raifeartaigh model we introduce an external vectorsuperfield whose
highest component is shifted:

w=u+%f&§, (18.7)

u is a gauge singlet superfield of dimension zerc and R-weight zero.
With the field u' included in the Ward identity operator the supersym-
metry Ward identity reads

— . 2 8T
W =W - 21y [dx == =0 (18.8)
Su
A
where Uy is the éze-component of u and the homogeneous Ward identity
operator 1is
h . S
W, = - é Jdz8 o 5o (18.9)

(here @ stands for all superfields of the theory).

In order to establish the non-physical character of the IR cut-off
u? and of the supersymmetry breaking (18.8) we shall extend the BRS-
doublet trick explained in sections 5.5 and 15. Namely we shall show
that it is possible to treat y? as a gauge parameter and the superfield
u as a gauge object as well. We therefore allow p® and u to vary like
gauge parameters under BRS:
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(18.10)

AU =V ’5V:0,

where v2 is an anticommuting parameter and v an anticommuting super-
field of dimension and R-weight zero, to both of which @n charge 1 is
assigned. The shifted field u' (18.7) transforms as

AU = v o= v+ %_vzezéz . (18.11)

We shall thus impoﬁe the Slavnov identity - we shall work in the (o,B)-
gauge, see (15.2, 15.3) -

6 GF
ar ST 8T 8T &I
+ de{Tr[ - + -(-S“E"S‘E:} + W-&—A-}
8T 8T &8I 8T
+ dSTY‘B + — | b = =
[d54 [ c_ So 6c+] 8Y S8A |
+ 2 28 T+ Jdlv 3L =0, (18.12)

K Py

where Pk represents all gauge parameters, p® included, and z, their
BRS variations.

Because of the shift (18.11) and in order to preserve the compa-
tibility of the supersymmetry Ward identity with the Slavnov identity
we also have to modify (18.8) as

e =W o2ifax(u? L+ L= o (18.13)
a o4 o
6uA va
The functionals obeying this Ward identity depend on the shifted super-

fields u',v'.

The Slavnov identity (18.12) assures the gauge independence of
the physical quantities. In particular:

32Z

42 Zonys(@) = 0, (18.14)

S 4

37 Zpnys(@) = 0 (18.15)
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for thys (q) the generating functional of the Green's functions of

gauge invariant operators Q with sources q, (see 5.164). Moreover (18.15)
implies that Z
Ward identity

phy (def1ned at v = 0) obeys the exact supersymmetry

h y 5
Wy, thys(Q) = i z Jdz8 a.. 5 2

- Z s (@) = O (18.16)

Our task is to show the existence of a vertex functional T satisfying
the Slavnov identity (18.12) and a set of normalization conditions fix-
ing T in'such a way that the free action posesses the required p®-mass
terms as in (18.3, 18.4).

we do this now in the tree approximation, i.e. we look for the
general classical T satisfying the Slavnov and Ward identities (18.12,
18.13). In this way we shall obtain the most general parametrization
of the theory. We shall see in pafticular that a supplementary set of
gauge parameters shows up.

The discussion of section 5.5 summarized in section 15.1 is pract-
ically unchanged. First the (a,B)-gauge condition (15.3)
r i oDDB + §~DDDD -?- xDDc_ (18.17)

leads again via the Slavnov identity (18.12) to the ghost equation
(15.22):

§ 1 a= 81n _ 1 _=a=
gr = 3—— +  DDDD 8—]r = - 5 xDDB . (18.18)
As a consequence, again, (see (15.7))
F(®,c+,A,o,o,Y,C_,B,p],z],u,V) =
= F(o,c,,An,0,Y,pq,2q5U,V)

+ Trfdv[BDDo + B0D + BB + 3 x(c_B + C_8)] (18.19)

with n = (DDc_ + bbc ) .

oo}r—-

The Slavnov identity takes then the form (c.f. (15.24))
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=

A(T) = 3(T)

i

8

O

9

=t
i

8T 8T ST &

-+

|

-]
|

+ terms (6,E+,?,A)

+

— §T
% zkapkr + [dvv T (18.20)

and the linearized Slavnov operator (c.f. (15.25)) reads

_ 8T8 , 8T 8
CBT = Trfdv [ R 6n]
ST & 8T & §T § §T §
+de[Tr-§—“8E“;+TT~—C—;-(-SE+—(—S—Y——SK+E~ET{—]
+ terms (o,c,,Y,A)
S
+gzkapk+fdw-®~ . (18.21)

The identities (15.26 - 15.28) remain valid.

The (py, z,, u, v)-independent action T: (15.8) is still a solution
of the Slavnov identity (18.20). From this special solution we deduce
the general solution (see (15.12))

T(O)(® ¢ ,A,n,0,Y,p,,2,,U,V) =

3 +$ 3 3 3 3 k$ k’ 3

= 79(8,c.,A,n,0,7) + E‘zk {TrIanGk(¢,u‘,p)
k
+ de[hE(p)Tr(oc+) + hﬁ(p)YA] +c.c.}

+ TrfdVv'nF(o,u’,p) (18.22)

by performing in 79 the substitutions (sée (15.1, 15.14))
s

oD
i

(F,u',p) =

i

(ut,p) + ] wgﬂ (u',p)sy
c,(u',p) + c (u',p)syy s
1 k52 weo wk 1(11,

(18.23)
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~ 8 “1,4
n= —xTFdeT\T (q)’u"ap) ~ H
82 Iq>= F(o,u',p)

~ ~ - 1

C+= tc(p)c+ o = —t:ﬁa-y o,

~ _ ”~ _ 1 '
A = tA(p)A Y = W Y (1823 cont. d)

and by adding (zk,v')-dependent terms. The functions appearing in the
latter are determined by the Slavnov identity, with the result (see
(15.14))

6, (6,u',p) = -0, FH(Eup)], ,
Pk o=F (o,u',p)

h(p) = -a, Tnt(p) , My

Py (p) = apk1ntA(p) ; (18.24)

F(o,u',p) = *QJ?”I(é,u‘,p) R

o=F (o,u',p)

We have used rigid invariance (15.4) - hence the tensorial structure

of the function ¥ in (18.23) - and supersymmetry (18.13) - which im-
plies that T depends on the shifted superfields u' and v'. We notice
that the only sensible change as compared with section 15 is the u-de-
pendence of the function F: its coefficignts Cx are arbitrary functions
of u' and Py - The arbitrary functions tc and tA defined in (18.23) do
not depend on u due to the chirality of the superfields c, and A.

In order to fix the action we must still impose normalization con-
ditions - which are a generalization of the conditions (5.180 - 5.183):

!
1) Tp.p, = 7q7 Sij
i
2) T - -4 f,
F A ik
9i%+3%k
3) T bA -4 65 (8.25)
Mi%%
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4) ruc D A = 48y (18.25 cont.'d)
Ni%4j
w
5)  SYT g a1 = CAlkel)tag, k2 2
nc,(C)
6) SUr = -4(k-1)te ,, k> 2
k- wk> © 2
k uCnDcﬁ(C) 1 wk
7) ST 0, m>»2, k>1

The conditions on the matter field vertices will be given in the next
subsection for the specific model considered there.

The conditions 4), 6) and 7) which involve the external field u
are new. Condition 4) fixes the amplitude of u, condition 6) the coup-
lings linear in u' and condition 7) the coupling non-linear in u' -
arbitrarily set to zero since they are irrelevant in what concerns the
control of the soft breaking of supersymmetry (18.13). To the contrary
the linear terms in u', since they survive at u = o, must be taken into
account. In particular the infinite set of parameters €k defined by
condition 6) belongs to the parametrization of the theory and is on
the same footing as the awk‘s defined by condition 5). They will be
included in the set of gauge parameters together with their BRS varia-
tions Yok = Seuk- Thus the complete set of gauge parameters p, and their
BRS variations Z, is

2 2
(pk) = (a, awk’ emk’ y )s (Zk) = (X, xwk’ 'ywk’ vo) . (18.26)

We must still check that the normalization conditions (18.25) in-
deed fix the action with the desired mass terms. We first observe that

they determine the functions C1s Cupe tC and tA:
t(p) = tlp) =1, (18.27)
c(u',p) = (1-u)! (18.28)

whereas ¢ (u',p) is the solution of the system of equations

t "1 . [ - 1
-k[cl(u )] T+ fmk(cw'k" k'zk) = ay * eyl (18.29)
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These results are found as in section 5 (see (5.179, 5.138 - 5.140))
with the u-field dependence taken into account.

Eq. (18.28) - which follows from the 3rd and 4th normalization
condition - implies

¢, =1+ 1% atu=o0. (18.30)
Hence
= (1 + %~p26252)® + 0(u) + 0(@2) (18.31)

yields just the bilinear action (18.3, 18.4) leading to the propagators
(18.6) with mass p?.

We finally notice that no normalization conditions are required
for defining o and p?: a is defined by the gauge condition (18.17) and
u? by the softly broken supersymmetry Ward identity (18.13).

18.2 Higher orders: Solution_of the_cohomology.

o o 3 e e -y a2 o 2~ - - . " o e e

As for all models already discussed in this book we define the present
theory by a set of Ward (or Slavnov) identities expressing the imposed
symmetries and by a set of normalization conditions fixing the parameters
left free once the Ward identities are fulfilled. We saw in the last
section that a unique theory resulted in the tree approximation, and

we have now to extend this result to the higher orders of the perturba-
tion series. We successively achieved this in section 15 for the asymp-
totic theory (mass effects neglected) provided the chiral anomaly was
absent. Our aim now is to prove exact Ward and Slavnov identities in-
stead of the approximate identities of section 15. We shall restrict
ourselves to models of gauge superfields @1 interacting with massless
chiral matter superfields Aa [(V.5,6]. They are given in the classical
approximation by the action 70 (18.22), with

. _ 2 a==?
rg = Tyy(®) + TrfdvnQg(e,c,) - Trfdsoct - TrfdSoc]

_ 3 -
+ [dVReA + h.\ JdSR_AA.

deAaAbAc + hbe

- [dSYEA - [ d3AC, ¥ (18.32)
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O - i1 :
(o = ®1T » €, = c+1T , Tab = generators of the gauge group in the matter

field representation; see section 15.1 for the notation).

f(o) was fixed by the normalization conditions (18.25) to which
we add now those for the matter field vertices:

8) T = -4 h , Tezgz =-4nh s
FaAbAc abc FaAbAc abc
9) FF ?b = 16 5ab , (18.33)
a
10) T = 4T S
Yac+1Ab AcC+1Yb

where A and F are the 60— and ez—components of the chiral superfield A.

Before proceeding further let us remark that the classical poten-
tial, a function of the © = 0 component A of the superfield A, is bound-
ed from below by zero, a minimum zero defining a supersymmetric vacuum.
Depending on the group and the representation T there can be a degen-
erate set of such vacua. The vacua corresponding to non-zero values
of A lead to a spontaneous break-down of gauge invariance, some gauge
and/or matter supermultiplets becoming massive. We shall concentrate
in the following on the phase defined by the A = o vacuum, and let aside
the problem of its stability with respect to the other phases, a quest-
jon which would push us beyond the scope of perturbation theory.

Let us give now the list of the requirements being imposed on the
vertex functional T and defining the theory:

(1) Gauge condition (18.17) and ghost equation (18.18).
(2) Rigid invariance (15.4).

(3) Conformal R~invariance‘(15.l7) (exact), which is obeyed by the
classical action (18.32) due to the absence of matter mass terms.

(4) Softly broken supersymmetry (18.13).
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(5) Slavnov identity (18.12).

(6) Normalization conditions (18.25, 18.33).

The normalization conditions are now given at some Euclidean nor-
malization point nz of momentum space. Moreover, for the conditions
1) in (18.25) and 8) in (18.33) the gauge parameters must be fixed at
some normalization value (pg, Uys Aouk? eOwk). The reason is that the
corresponding invariant counter terms Ay and A8’(see (D.8) in Appen-
dix D) do not allow for gauge parameter dependent coefficients. We shall
come back to this point at the end of the subsection 18.3.

Since we have massless as well as massive fields due to the IR
cut-off mass p? we have to define carefully the subtraction procedure.
We shall use the Lowenstein—Zimmekmann procedure (momentum space sub-
tractions with auxiliary mass) described in Chapter III and work in
component fields, the supersymmetry being explicitly broken by the cut-
off u2. An inspection of the propagators (all the massive ones are 1isted
in egs. (18.6)) leads to the assignments of Table 18.1 for the IR~ and
UV-dimensions r and d of each field (if a dimension is given for a super-
field, the dimensions of its components are computed by assigning di-
mension -1/2 (IR and UV) to the ©-variables). The number m appearing
in the table is arbitrary and does not contribute to the degrees of
divergence due to om charge conservation.

Since the requirements (1) to (3) do not hide subtleties we dwell
directly with the last three ones. We proceed by induction, assuming
the existence of a unique solution to them up to and including order
n-1 in f. We assume in particular (requirements (4), (5)):

I .
W = h Aa(é,c+,A,n,o,Y,p,z,u,v)

+ o(R™Y) (18.34)

4(r) = h" a(e,c ,An,0,Y,p,2,u,V)

+ O(F™L) (18.35)
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Uv-dimensions d and IR-dimensions r

® - (®)og
C = (@
A

Relc,)

Im(c,) - Im(c+)@=0

b+ = Im(c+)@=0

d r d r

0 0 0 2-m  2-m
0 2 o 3-2m  3-2m
1 1 Y 2-m  Z2-m
m m | u 0 0
m m v m fm
m m+2 p = {a,e,u,uz} 0 0
1-m  1-m z = {x,y,x,vg} m m

1 1 0,8 -1/2 -1/2

where A,,D are local functionals of their arguments: the breakings
beginning at order n by assumption, we have retained the trivial graph
contributions only. The UV- and IR-dimensions of B and A are bounded
as follows (see Table 18.1)

A, + d < 9/2

A :d < d+m

r>5/2
(18.36)
r > Z2+m

These bounds are dictated by the dimensions of the functional operators
wa and 4 according to the action principle (11.5 - 11.15).

From the algebraic properties of the functional operators W and
4 (see (13.22) and (15.26)-(15.29)) follow the consistency. conditions
(see (13.27) and (15.33))
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waA& + NQA = quB + WBAQ = waAé + WéA& =0 (18.37)
44 = 0 (18.38)
W - 88 =0 o, W - 35, = 0 (18.39)

with the nilpotent operator 4 defined in eqs. (15.30). The conditions
(18.39) follow from the identity

WB(y) —/BYWY =0 (18.40)

which is easily derived for any functional y and for W = wa or Wd by
using the definitions (15.24, 15.25) with the operator Vs, being added.

We are going to show that the general solution of the consistency
conditions has the form

(18.41)

>
1]

A +ra Wa=W.a=0

where A is a local functional of the fields and its UV- and IR-dimen-
sions fulfill the bound d < 4, r 2 4. ais the supersymmetry-invariant
chiral anomaly (15.62) and r its coefficient, computed in section 15.4
at the one-loop approximation (eq. (15.85)). If the anomaly is absent,
A can be absorbed as a counterterm in the Lagrangian (see egs. (13.11 -
13.13) and (15.35 - 15.37)). This procedure leads to a corrected vertex
functional fulfilling the Ward and S]avnov identities (18.33, 18.34)

at the order n:

WI = oth™hy L s(r) = o(h™h (18.42)
which is what we have to show.

We now turn to the proof of (18.41). The general solution of con-
dition (18.37) is given by Theorem 13.3, egs. (13.28 - 13.31):
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A = waA y A& = wdA (18.43)
where A' is a local functional of the fields, with dimensions bounded

by
At id<d4 , r>2. (18.44)

We note that A' may have terms with IR-dimensions less than 4, which
cannot be absorbed into the Lagrangian without spoiling IR~convergence.
More precisely, A' is rigid and R-invariant due to the requirements

(1) to (3) and can have IR-dimensions r = 2 and r > 4. The dimension

2 contributions are of the form

b, = Jax(u (x)  ax) k>0 (18.45)
where Ue is the 0 = 0 component of the superfield u and Q is a poly-
nomial in the components of u,®, A and A, except the ©= 0 components
of u and ®. Q has dimensions d = r = 2 and is rigid as well as R-in-
variant. But it is always possible to find an insertion By (d = r = 4)
and a supersymmetric insertion 8, both rigid and R-invariant, such that
bo =Dy + A , wOLA = W&A =0 . (18.46)
Let indeed 6 be the superfield polynomial having Q as its @ = O compo-
nent. Recalling the definition of u' (18.7) we see that the solution
to eq. (18.46) is given by

R 1 k+lx
by = - Ty S Qs
(18.47)
1 Lkl
A = g(k+1)p2 de(u ) * Q

As a consequence of (18.46) A" in (18.43) can be chosen with IR dimen-
sion r > 4. We thus can absorb it as a counterterm, in such a way that
the supersymmetry Ward identities are now fulfilled: '

B 1 oo arentl (18.48)
W = o(h"™h) , Rr = o(RTT)
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and the Slavnov identity reads
A(T) = hnA(é,c+,A,n,o,Y,pk,zk,u‘,v'y + 0(Hn+l) , (18.49)

where the new 4 is rigid, R and supersymmetry invariant. It fulfills
the consistency condition '

44 =0, (18.50)

and has dimensions bounded according to (18.36), i.e. d <4 +m,
r> 2+ m

The cohomology problem (18.50) was solved in section 15 in the
absence of the external superfields u' and v'. We are brought back to
that case by Lemma 15.1 (page 202) and the following lemma:

Lemma 18.1 Llet 60 be the linearization of 4 defined according to eq.
(15.41) and A an integrated local functional which is polynomial in
its arguments.

Then the general solution of

6OA(®,C+,A,n,c,Y,pk,zk,u',v‘) =0 (18.51)

is of the form
A= %Oﬁ(Q,ch,A,n,o,Y,pk,zk,u' V)
+ B(@,c+,A,n,0,Y,pk,zk) (18.52)
with
60A =0 (18.53)

where A and A are integrated local functionals.
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The proof is very similar to the one given at the beginning of appendix
C for the elimination of the gauge parameters p,, z,.

The result of these considerations is that the general solution
of (18.50) is

A= ’68(®5C+,A,W,O,Y,Pkazk,u' svl)
(18.54)
+ rafe,c,)

where A is a rigid, R and supersymmetry invariant insertion with dimen-
sions

A:rd<4 , r>2 (18.55)

a is the supersymmetric chiral anomaly (15.62). We shall assume for

the following that its coefficient r (15.85) is vanishing due to a suit-
able choice for the representation for the matter fields. Under this
assumption the Slavnov identity (18.49) takes the form

A(T) = t83 + o(h™1) | (18.56)

As noted above A may still contain infrared anomalies, i.e. terms of
infrared dimension r < 4 which theréfore cannot be absorbed, and it
remains to show that they are in fact absent. This will be done in the
following subsection.

A RAD -SRI ipedephpuipeap R SRR R B St ekt

L et o ] -

In order to show the absence of IR-anomalies in the Slavnov identity
(18.56) we first give the 1ist of all possible terms of A with IR di-
mension r < 4, rigid R and supersymmetry invariance being taken into
account. They are of the form

i, - Jaxf(x)Q (x) + ... k=01, (18.57)

where the dots stand for contributions with r > 4 rendering the expres-
sion supersymmetric (see (18.44 - 18.46)). In the following we write
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only Qi and drop always integral and trace symbol, we also do not write
the complex conjugate terms. The component notation is self-explaining.
The 1ist contains 13 terms:

1) MM, 2) ext. field (u) x spinor x spinor ,
_ i (18.58A)
z) Mo, 4) uxi,
H Ho
5) nedy s 6) v“v , 7) vpxc X
8) vud% o, 9 ok 10) ik (18.588)
11) v uyy 12) u yu-y ,
) WUy XX ) XX
13) AR . (18.58C)
We have to show that in
N R
4(r) = h 40 ) cih] (18.59)
i=1

the coefficients C; vanish. They are found by testing appropriately

(18.59) at zero momentum. We divide the sum into three groups:

behaviour of vertex functions implied by IR power counting and/or due
to R invariance.

By IR-power counting we mean the low momentum behaviour [II1.18]:

r (p) = 0(p®) (modulo logarithms) (18.60)
P1-- -9,

n
withw =4 -] r(g;) , ifw20
1 .

and

Ng[Q]'F (p) = O(pw‘) (modulo logarithms) (18.61)

n
with w' = o - ) r(g;) , ifw 20.
I

This behaviour follows from the subtraction procedure described in Chap-
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ter III. The IR dimensions r(¢i) of the various fields ¢, are Tisted
in Table 18.1 (see page 288).

Group B: coefficients cg to cy,, which vanish as a consequence of an
improved small momentum behaviour of vertex functions deduced from a
repeated use of the anomalous Slavnov identity (18.59) and IR power

counting.

: coefficient C13» which requires an argument based on the Callan-

prapeipeipung g

Symanzik equation.

We shall restrict ourselves to the case k = 0 (see 18.57). The dimen-
sions of Ue being zero as well as its R-weight the generalization to
k > 0 is straightforward.

cp: AMR) = F R - FoM+ (18.62)

(A+,¢+,F+ are the components of C,, we write only the bilinear terms).
Then, up to a numerical factor

n-FMM + Tf n Iy #

€y~ T Tng t T Tgm + T
1 F+nc DM F+n MM F+ fi UM

M

N FF+nDrCM (18.63)

A1l but the third term vanish due to R invariance which forbids TDM’
Tiwe Tv. R and e On the other hand all terms but the last one vanish
by IR pgwer counting (18.60). Hence ¢y = 0.

We may already note at this stage that the only terms not vanishing
by IR power counting are those involving vertex functions with fields
of non-canonical IR dimensions, i.é. the fields C and b+ accarding to
Table 18.1. We shall make implicit use of this fact by not writing
the contributions which vanish at p = 0.

Cyt The variation of Q2 involves neither C nor b+, furthermore no
vertex function with C or b+ occurs - due to the spin, hence Cy = 0.
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C3s €4t 4 00M) = Fox + - s \
(18.64)
M) = M+ ...,
Blu M) = vox
Cy ~ g r
3 F nn Cxx’
+1D XX (18.65)
cyp ~ T Iy
4 vanD M
Both vanish due to R invariance.
Group B
One finds in the same way
5~ Ty Tep ¢ ~ 55~ (Tan oy ) >
4o pp +Mp Yy
J
Co ~ me (T, _Tp =) Cq~T - T ,
7 apu 2,y Cxx 8 vxan CVU
Cq~T, = T. - Cin~ I = Th= (18.66)
9 Uy Oxx 10 v xng Cxx
Caq~ T = Tp, = Conp~ T = Th = .
11 Cu 127 v C
YyXMp X o Xy

However neither R nor straightforward application of IR power counting

make these expressions vanish. We therefore test the Slavnov identity
(18.59) first with respect to C and a_, second with respect to C, %

and vX and third with respect to C,

2

r,.T = 0(p")
a,mp CC

T, . Tee = 0(p)
vxan cC

Ty jng'ce = OP)

x and ¢ . The result is

(18.67)

Here we have not only used IR power counting, but also that at order

#" the r.h.s. of (18.59) is a ¢-variation. This implies for some

potentially dangerous terms that they contain derivatives. Those are

4 (Cav)

1

CDa++ ces

6 (Cx8X)

M

Cu, 8% + ..

x) = Cv.ay + ..
s ﬁ(CuXEX) vxgx +

(18.68)
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respectively. Now from I . ~ u4 + 0(h) follows

ro o= o0(p?) , o(p) , T

.- - = 0(p) - 18.69
a,n TVxXnD 0,57 (p) ( )

This improved small momentum behaviour implies the vanishing of all
coefficients (18.66).

Group ¢

The last surviving coefficient is €13 denoted hereafter by c. Since
neither R invariance nor small momentum behaviour imply that it vanishes,
we shall investigate its dependence on the parameters of the theory.

We shall show in particular that ¢ does not depend on the parameters
carrying dimension. The dimension of ¢ being [mass]}® it must then

vanish. Parameters having dimension are the IR cut-off u? - a gauge
parameter - and the normalization parameters w? and pé. The dependence
on the former is governed by the Slavnov identity, the dependence on

the latter by renormalization group equations.

Let us first write the Slavnov identity proved thus far:
A(r) = FW[cfdx(AR + ...) + o(h™h)]

- h”[g zkapkcfdx AR + cBfdx AR + ...] + O(A™) (18.70)

A test with respect to z,, A, A yields

TAA +conj. + 0. T

N n+1
P AR = 1 35, € * oh"™) (18.71)

3. T
zk AY K

F

Due to IR power counting (18.60) the 1.h.s. vanishes at zero momenta,
hence

- 2
Bpkc =0 P = W 052 58 0 (18.72)

i.e. ¢ is gauge independent, in particular p?-independent.

To study the dependence on x® (normalization point) and pf (value
of y? specified in the normalization conditions for the coupling con-
stants) we observe that the differential operators A3, for A = u?, ug
are symmetric, i.e. (see appendix D)
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A8,4(T) =‘Bf [xaxr1 | (18.73)

and define rigid, R, supersymmetry and BRS invariant insertions of di-
mensions d < 4, r > 4. A basis of symmetric operators defining such
insertions is given by (D.6). Therefore both xak can be expanded in
this basis, but only up to the order n-1 at which the Slavnov identity
(18.70) holds. We then obtain the renormalization group equations -

at vanishing Grassmann parameters z, -

A A A
P P S X/ N A

O I A T Yé by )+ v, M+ 0(uv) ] = och™h)
wk “wk wk “wk

(x = #%, ug) : (18.74)

The coefficients B and y are of order H since the classical action
does not depend on A. The coupling constants are collectively denoted

by gi.

Before using (18.74) for controlling the A-dependence of the coef-
ficient ¢, we must deal with a problem concerning the very existence
of its 1.h.s. Its last term

_ .6 8
J(UI“ = IdV[U *6-0*,' + VvV M(SVI]
§ § 2.8 2 8
= de[U -S-U + V 'gv] + 8de [p -S—LTD- + Vv —S—V—D‘] (1875)

contains pieces - the last two - which could have an IR dimension r < 4
and would thus not be defined. Let us attempt to get out of this dif-
ficulty by assuming for the moment that JLT has in fact the right
dimension r > 4 up to and including order n-1: (we use the N® notation

§
of section 10)

H

fdx +— Nﬁ - insertion + 0(hn)

(18.76)

]

[dx ST Nz - insertion + 0(h") .
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This assumption is to be added to the set of induction hypotheses (18.33,
18.34) and we shall have to chek it for the next order after we have
proceeded with the Slavnov identity.

From (18.76) follows that the 1.h.s. of (18.74) is an Ni-insertion
at the order n since yﬁ is of order }, and thus exists at this order
(and is zero at lower orders):

¢,T = A™NaTQ]er + 0™y
- hQ + o(h™y (18.77)

where Q has dimensions d < 4, r > 4.

The action of CA on the Slavnov identity (18.70) and of the Tin-
earized Slavnov operator'Ef on the renormalization group equ. (18.77)
yield the two equations - use is made of the already proven gauge in-
dependence of ¢ which implies 4c =0 -

Cs(r) = h”xakcffdx(AA s+ 0™y
(18.78)

Bc,r = h"b0 o™l |

Now, CX being a symmetric operator the two 1.h.s. are equal. Thus, since
both r.h.s. are b variations and ¥c = 0, we can integrate:

xaxcfdx(AIT\ +...)=Q-0Q (18.79)

inv -~
Here Qinv is invariant under all symmetries including BRS and thus has
an IR dimension r > 4 (see Appendix D). Q has also r > 4 as we have
shown whereas, for AR, r = 2. Hence both sides of (18.79) vanish.
The conclusion is twofold. First

2

BAC =0 , Xx= ug, " (18.80)

which ends the proof of ¢ = 0, hence of the Slavnov identity at order n:

A(T) = 0(A"™) (18.81)
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The second consequence of (18.79) is that Q = Qinv’ with dimensions

d<4,r> 4. Qinv can be expanded in the basis defined by the symmetric
operators (D.6) applied to the classical action. We then insert this
expansion in the r.h.s. of the renormalization group equ. (18.77) and,
taking into account the factor f", we absorb the r.h.s. in the 1.h.s.

by a redefinition of the coefficients B and y at order ﬁn. We finally

obtain the renormalization group equation at the next order in R
¢,r = o(h™1y). (18.82)

We have still to verify the assumption (18.76) at the next order.
Let us define two operators D and D'

1}

o
Dr [BPE - ZICIX -SU‘—]T

AT + BQ + QM)
D .

(18.83)
D'T

i
H

(3,2 - 2[dx E%B]r AT+ B0+ o(B™)

which commute with the infinitesimal rigid, R and supersymmetry trans-
formations, in particular with the supersymmetry Ward identity operators
WG} Wa(18J3L The insertion Aand A" in the r.h.s. of (18.83) are Nj
from the assumption (18.76) whereas the correction terms Q, Q' of or-
der n may have an IR dimension lower than four. DI and D'T being rigid,
R and supersymmetry invariant, arguments completely analogous to those
establishing the supersymmetry Ward identity (18.48) show that there
exist at order n correction terms to A and A', of dimensions d < 4,

r > 4, such that the corrected insertions are rigid, R and supersym-

metry invariant. Hence Q and Q' possess these same symmetries.

It is easy to check by inspection that all possible contributions
to Q' (Q' has on charge -1) which have a UV dimension d < 4 have in
fact an IR dimension r > 4. Q' is thus an N3~1nsertion, which proves
the second part of the assumption (18.76) at order n:

[dx E%E I = Nj-insertion + o(h™ly (18.84)
Turning now to the first of equs. (18.83), we note that Q having on
charge zero can have terms with r < 4. These possible IR anomalies

are in fact just the same as those encountered when dealing with the
Slavnov identity: they are listed in (18.58). Calling them Qi’ we may
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write

n 13 n+l
Dr = AT + R ) X (Qy + .o) o(h"™ ") (18.85)
i=1
where A is an Nﬁ-insertion. We have to show that all X vanish. Now,
from the validity of the Slavnov identity at order n we deduce

o(h™1) = p'a(r) = or - Bz[o'r]. (18.86)

The coefficients X; are evaluated by tests performed on this equality,
in the same way as we did in the last subsection for the Slavnov identity
(coefficients Ci)‘ We find that xliand X13 vanish due to IR power count-
ing (18.60, 18.61) and R invariance arguments. Note that x,., unlike

€13 falls in this class! For showing the vanishing of Xg 1o Xy, we rely
as for the corresponding c's on the improved small momentum behaviour
of certain vertex functions (c.f. (18.66 - 18.69)):

1) T =0 ,
(1) 2,y (p")
[} _ 0 t — -
(@) [orr]y ¢ =0, (3) [0 r}anp‘- 0(p) (18.87)
(@ [0l g =00 (5) [D'r]nDuX;( = 0(p) ,

The tests to be performed on (18.86) in order to show the last four
are CC, Cvp, CxX» Cuxi, respectively. The first was already shown
(18.69). Without going into the details let us simply mention that

(1) is used for the coefficient xg, (2) and (3) for Xg s (4) for X7 and
Xg> (5) for Xgs Xqgs X11 and X1p-

This ends the proof of the induction hypotheses (18.34, 18.35 and
18.76) at the next order, hence of the Ward and Slavnov identities at
all orders. '

It is clear at this point that we are still free to add Poincaré,
rigid, R, supersymmetric and BRS invariant counterterms to the action
without altering the Ward and Slavnov identities. The list of such
symmetric counterterms A, is given -in Appendix D, eq.(D.8). Thus we
will add the counterterms
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Y £yl (18.88)

3 i
where the ti are gauge independent. They are fixed by the normalization
conditions (18.25, 18.33) in order to fulfill the last of our six re-
quirementsl We note that the Ai’ except Al and AB’ involve arbitrary
functions of the gauge parameters Pit this is why the corresponding
normalization conditions have to -be imposed atall values of Py - they
determine these functions. In contrast to this, the coefficients of

vl and v8 are fixed by conditions at a normalization value Pok of Py -

In the course of the proof we were led to the renormalization
group equ. (18.74) now valid at all orders, too. By summing the two
equations (for A = »* and ug) we get, setting the external fields u
and v as well as the Grassmann parameters 2, equal to zero, the Callan-
Symanzik equation

T Yo g

2 2
(W8 2 + pS3 » + § B.3
" Oy § V9

2 §
My Y, K+ v X T (18.89)

a e _
* ZYwkaawk * zkaaewk]F = 0.

One may note that the coefficients B; are independent of the gauge
parameters since no gauge parameter dependent factor appears in the
symmetric operators ag.’ i.e. the operators vl and v8 of Appendix D,
eq. (D.6). They may however depend on w2 and ué.

18.4. Discussion of the result. Ogen questions

peii g AP bR ipuphgiegappnd) wip=p PP

In the present section we have devé1oped'a scheme for dealing with
the off-shell infrared problems in supersymmetric gauge theories. The
main idea was to use an infrared cut-off p® which is a gauge type para-
meter. Gauge independent quantities exist then infraredwise by con-
struction. In the case of massless matter fields we have shown that
the scheme yields IR-anomaly free Ward and Slavnov identities for
Green's functions of elementary fields. These are a necessary pre-
requisite for a study of the only physical guantities in a massless
theory: the Green's functions of gauge independent operators. Unfor-
tunately the absence of IR-anomalies for the Tatter ones requires

a proof case by case which we do.not enter here. If IR-anomalies
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are absent our method shows that. supersymmetry can be maintained since
the explicit breaking by the IR-regulator occurs in the pure gauge
sector. On the level of elementary fields the only physical trace left
from supersymmetry is the fact that the massless matter fields remain
massless i.e. the mass degeneracy in the multiplet is preserved.

What about generalizations to other models? The weak point of
the above method is the use of an exact R-symmetry. It was needed for
the elimination of some IR-anomaly candidates in the Slavnov identity.
Theories of massive matter f1e1d§ A without A® self-interaction are
also covered by our treatment, since n(A) = -1 leads to an exact R-
symmetry. There the mass degeneracy within the multiplets remains to
be checked. The same comments apply for massive theories with an
0'Raifeartaigh type R-symmetry (cf. section 3.3). The completely
general case definitely requires a generalization of our method.
This should then also permit to deal with other phases of the theory:
when supersymmetry and/or gauge symmetry is spontaneously broken.
Radiative mass generation (cf. section 17) and splitting is to be
expected. One would have to show that all physical masses are inde-
pendent of the gauge parameters including the IR-cut-off T



APPENDIX A NOTATIONS, CONVENTIONS AND USEFUL FORMULAE

A.l1 o-matrices, spinor calculus, covariant derivatives

The metric tensor guv has diagonal elements (+1,-1,-1,-1). The g-matri-
ces are defined by

M= (1,0), = (1,-0), B = HOP (A.1)
where ¢ = (01,02,03) are the Pauli matrices
01 0-1 10

o= (o o= Gos 032 (o) - (A.2)

In addition the matrices o and oV are given by

oM, 5V - g“véas - itV B

.0

ol o

SHGo V. HVE, s mHVy G

0" os = 9 8 3 i(oh ") 5 (A.3)

The summation convention is

_ A0 = = =&
en = 0 Ny on = @an (A.4)
where lowering and raising of indices are effected through
o _ _af ‘ B
0" = ¢ @B Oa = EaBe (A.5)
with e , = -¢ 812 = -¢., = 1 (the same for dotted indices)
aB Ba’ 12 ’

Differentiation with respect to the anticommuting parameters
is defined by

©_,0,
o’ a

3 GOL o
They have the complex conjugation property

8 _B.s® 2 _gb.gB . (A.6)

*

E"E o) = - —¢ d for ¢ a Bose field
30 30
*

=)

[o 5]

QL

+ v for ¢ a Fermi field . (A.7)

i

35t
2304-
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Covariant derivatives with respect to the supersymmetry transformations
(1.20) are

Du = éma - 1o§&é“a

30 H
5. = &+ io%H.s . (A.8)
& 7 g8 ol |

They obey the anticommutation relations

- _ . “ n _ - _..
{D,.0s} = 210,82, {D,.D }=0= {Dd,DB} (A.9)
As a consequence one can show
T TR
[D,,0D] = 4ioge3, D
(A.10)
- - _ . a lJ
(04,00 = -4iD%.5
a __1s Y anA
00,0, = - 7 D400 - % DDD,
) (A.11)
5.0 5 = -1ppp-1Looo
& o 2 o 2 o
[oD,Bd) = - 160 - 8158“08“
=+ 160 + 8100“5% (A.12)
DDDD = Bopd (A.13)
DDOD -  {0D,00} = 8D (A.14)

Integration in superspace is defined by

[dve = [dxDDDD® for any superfield ¢

fdS = [dxDD® for a chiral superfield ¢ (Do = 0)

[d5% = [dxDD® for an anti-chiral superfield (D® = 0).  (A.15)

Functional differentiation in superspace is defined by
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ggg%) = §,(1,2) for a general superfield

2$ %) = 65(1,2) for a chiral superfield

gg%;) = 85(1,2) for an anti-chiral superfield (A.16)
where.
1) 6,(1,2) = 35 68,80,8%(x = xp)

and decD(l)Sv(l,Z) = 9(2)

1.2 4
2) 65(1,2) = -7 97,8 (x1 - x2)
chiral |
representation

and  [dS(1)e(1)8,(1,2) = 2(2)

= 12 4
anti-chiral
representation
and fdg(l)é(l)és(l,Z) = §(2) (A.17)

with @ij =0, - @j, Oij =0, - ej and arguments (1), (2) refer to

superspace points.

A.2 Field Transformations

Discrete Transformations

- - - - -

= (xox) = xb = (x5, - X)
P _ ., 0=
9, —> 0, =+ i(o @)a
< P ... 0
0, — O = - i{6o )d (A.18)

on coordinates, and by
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1+8
P Ho
—» 3 = (-1 3
aH H (-1) u
D — 0P =+ i6%.5%
a o ot
P 00
ﬁd —> D& = iD O (A.19)

on derivatives. If the ©'s and D's are contracted, one can simplify by
the rule

o <« 6 D, <« D¢ (A.20)
The g-matrices obey

OHs® = (-1) HOSH

_ 8,8 (A.21)
ooguvgo = (-1) uo voguv

On fields parity acts by

Po(x,0,8)P1 = gé(xp,ep,ép) (A.22)

with ¢ being the intrinsic parity of the field ¢ in question. The list
of intrinsic parities reads as follows

field [ ) [ A l c, | c_ [ 0 I g

C |~1 l +1 l +1 l -1 ’ -1 l +1

For charged chiral fields we have in addtion

Ai «— A Yi — Y (A.23)
Charge conjugation is given by
6 »-0o A - A As A
T (A.24)
t + t +
T T T
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If charged matter is present ¢ - >®T may enforce presence of a similarity
transformation S in the representation space of the T's such that

3> -s"15s (A.25)
Then
A >AS E - s iA
-7 - +
Yo shy ¥ »9s ¥ -YS ¥ -5y (A.26)
+ - + - - + - +

Priheb il iuriapripipeL AphhptSpuian” SpRIn SR ]

The generators of the superconformal algebra can be represented as
linear superspace differential operators acting on a superfield ©.
That is the infinitesimal varijation GX of the superfield ¢ under
generator X is defined by

[X,0] = -i5%0 (A.27)

For a general superfield ¢ in the real representation the superconformal
infinitesimal transformations are

P
8o =
" 9t
Mo = [xa -x3 -+eo +ld5 Ll
uv v oW T Z v 30 T 2 Puv 3d
D A 1.3 1=3
60 = [d+ x93, +50% - 5080

[ A 293@ 293@1‘
K, _ D, , oM o X
6p¢ = [Zxﬂé + 2x 6“v qux_ak

+ ><Zau + zeapéaR + 1n@oué + ezézau}cb

o = in+ol +352]e (A.28)

30 30
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Q, .13 . s .

8,0 = [ =5 + 1o 68“]a¢

Qp = 7 - 3_ - ipgH

850 = [ -5 - 160 ap]&¢

850 = [ - x o"s + 208" - i6%D
o H

- 2i(d - el o

o

&?@ =[ - x 0 + 25sR + 8%
a H
+ 2i(d + %)é]d® (A.28 cont.'d)

where d is the scale dimension of the superfield (in the tree approxima-
tion this equals the canonical dimension) whereas n, defined in SR, is
the y5-(chira1) or R-weight. The reality property implies that if n is
the R-weight of &, the R-weight of the complex conjugate field @ is -n;
hence n = 0 for a real superfield ("vector" superfield).

For a chiral superfield ¢ in the chiral representation and for
its complex conjugate anti-chiral superfield & in the anti-chiral re-
presentation the superconformal infinitesimal transformations become

o = 30 &% = 33

u H M W

Mo ) M= _
suv¢ = [xpsv X3y Guv = [xuav xvau

1 3 i z- 3 -
) @OU\) -a“é“:](b 5 QOUV 8@]

D, A 1.9 D: R G JR
§°0 = [d+ x 3, +5 0 56]¢ 8" = [d + x 3, - 70 aéJ b
GﬁQ = [pr(d + xxak) - xzau 6&5 = [2x (d + xxax) - xzau

Voo = 9 Vz= 31 =
+ X000, §§]© x"60,0,, 55] $

R, _ . 2 3 R _ .r2 =9 7=

§'e = i[- Sd+@ 8@]¢ 8§ = if 5d+0 aé] & (A.29)



Q, _ 9 Qz _ U 5
50‘%3@0‘ ¢ ‘6a®—21(0®)@8H¢:
QU = _2i(aqH . .3 _ 3
810 = -2i(ec*) g0 @ 858 = - =% 8
38
Se _ 1.y MeQ g4 Sz _ . (o H<Qy 3
5@@-{ x o"'§ 4ido 5.8 = xum@)&@
.23
- 216 -a—é]O‘(D
S, _ . (<Q.¥ Sz _ 1. o QM L 4448
6&¢ = XU(6 o )&® 6d¢ [- x 8%" + 41dd
- 2i6% 2. 1.3 (A.29 cont.'d)
30 ‘o

Note that due to the chirality of the fields the R-weight of ¢ is
n = -2/3 and the R-weight of & is n = + 2/3 d.

Supersymmetry transformations of component fields.

Chiral field Anti-chiral field
A=A (x,0) = A+ 6y + 0F A= Ay(x,0) = A+ 80 + 6°F
SA = U, s A =0
éawg = ‘ZEQBF 6u®d & 2102&8UA
§,f =0 s,F = -1o§dau@&
S&A = 0 S&I'\ = L.D&
80y = 210} 53 A Ssb = 2e44F
8;F = 1auw°‘o§& 8F =0 (A.30)
Real field
o(x,0,0) = C + 0y + 6 + %—OZM % %—ézﬂ + @o“évu + %—ézex
+ %—ezéi + %-@ZGZD



i

Xa 8¢ = Xg
-eaBM ‘deé = EdéM
oby (v +18 C) 8sXg, = -og&(v -13,C)
0 S&M =0
A -i(a"s %) B M = Xeti(3 xo").
uta a a u a
1, s i, v : ., 1 i - Bay o
Vi (O'HK)OL - ?(O cua\)x)a (S&Vu =7 (XOP)& + 7 OOL&O}J 8\))(8
) - 1 Wy, 5.5, = e.x(D-iav) - L gHY
= 2€a8(0+18v) + 5 OQBVW ddAB = E&B(D i3v) 5 odva
Ty Ty - ity M
mmauM G&Aa moadapM
-i(o¥3 X) 5.0 = i(8 acM)e (A.31)
oo o U o
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APPENDIX B GENERATING FUNCTIONALS

The Green's functions

G(zy...,2,) = <T(&(zq) ....0(z))> (B.1)

are defined via the Gell-Mann-Low formula (7.1). In order to deal with
them collectively one introduces a generating functional:

%~fdz®(z)d(z)
Z7z172() =<Te >

1

. n
?ﬁ-(%) fdzl...dznd(zl)...J(zn)<T(®(zl)...®(zn)

(B.2)
)>

"
It ~18

n=0

from which they are obtained by differentiation. The specific choice
of (B.2) is guided by the fact that‘T(exp‘%-fdz®J) is the S-matrix if
o is a free field interacting with the classical source J, hence satis-
fies the desired axioms. The source functions J are (commuting or anti-
commuting) test functions, whereas the G's are tempered distributions.
The latter are calculated by use of Wick's theorem in the diagrammatic

expansion including a subtraction procedure as explained in sections
7-9.

If there are local operators Qi(zi) in the theory considered we
know how to calculate diagrams containing them once their subtraction
degrees are given (cf. section 10). The generating functional for their
Green's functions is then in analogy to (B.1) (B.2) given by

j
7= 2(din) = <T eﬁ IdZ(Q(?)J(Z) + ﬂ(Z)Q(Z))> (B.3)

and thus the Green's functions by

m,n .
G (zl,...,zm, zi,...,zﬁ)

= <TQ(21)...Q(zm)®(zi) ®(26)>
. ‘ (B.4)
- (_ih)m+n gmn Z(J,n)
Gn(zl).. 6n(zm)6J(zi) 6J(Zé) J=1=0

(n denotes the sources for the operators Q).
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Although the Green's functions are the basic objects of the theory
since the physical axioms are formulated in terms of them, one needs
for the purpose of renormalization (i.e. of making well-defined the
theory) other quantities as well. These are the connected Green's func-
tions and, ultimately, the one-particle-irreducible Green's functions.

The generating functinal of connected Green's functions, ZC(J,n),
is defined by
5
Z(d,n) = e © (8.5)

and one can show (cf. for instance [R.1]) that the contribution of con-
nected diagrams to a Green's function is.given by the derivatives of ZC:

<TQ(zq)...Q(z_)o(zqy)...0(2)>
o 1) ( m) 1) n ‘|[conn.diagrams
" 7 (3,n) (8.6)

Gn(zl)...Sn(zm)éd(zi)...éd(zﬁ)

- (_m)mm—l

The generating functional of vertex functions F(@C,n) is obtained
from ZC(J,n) by Legendre transformation. First of all one defines a

field @C(z,d,n) - "classical” field - by
8
@C(Z,J,n) ='8‘:]m ZC(J,n) (B.7)
@C(Z,O,O) = 0 (B.8)

where (B.8) expresses the condition that the vacuum expectation value
of the quantum field ¢ should vanish. Assuming now that (B.7) can be
solved with respect to J, for instance in the sense of a formal series,
then T is given by the equation

r(e.,n) = Z.(d,n) - [dz J(z)o (z) (B.9)
with the understanding of J as solution of (B.7):

J = d(z,0.,n) (8.10)
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and
J{z,0,0) = 0 (B.11)

Calculating 8I'/82 . for J = J(Z’¢C’n) one finds

8J 8z 6d
8T <
T 2 v o e © - J(Z,0_,1)
80, J=J(z,®c:n) 80 8 % ‘ ‘
ST = -J(2,0,.n) (8-12)
C

J=(z,9..n)
(by use of (B.7)). Analogously
= —C (B.13)

where the arguments ¢, J in the functionals have to be appropriately
understood on both sides of the equation.

As far as the (diagrammatic) interpretation is concerned, one can
show that I' generates one-particle-irreducible (diagrams) Green's func-
tions i.e. diagrams which remain connected when one line is cut, with
external lines amputated {R.1].

m+n
m,n 6

. , T(Cbcm)
zl,...,zm,zl...,zn) =
. om-1

én(zy).--on(zp)eec(21) .60 (2p) (5 14)
1

= (&) <T Q(zy)...Q(z )o(zy)...0(z})>
f 1 m 1 1 PI-diagrams

An instructive example is provided by the 2-point functions. Let
us differentiate (B.7) with respect to @C(z',d,n) for the solution
J = 3(z,6..n) (B.10):
s9(z") sz, 8 s%1,

= -[dz" . y

6®C(zv §J(z")8d(z) ) (z')é@c(z“) §d(z )¥8d(z)

c
(B.15)
At J = n = o, = 0 this means that I'(z',z") is the inverse (up to a

8(z',z) = [dz"

factor) of the 2-point Green's function, since the latter is connected
(for vanishing tadpoles (B.11)):

fdeZ(zl,z)Tz(z,Zz) = 1h8(zy,2,) - (B.16)
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In fact it is this relation which is exploited for calculating the
propagators already for the free theory. In order to explain this, we
first point out the connection between the functional I' and the clas-
sical action of a theory. Let us cohsider a one-particle-irreducible
diagram with m closed loops, I internal lines and V vertices and count
the powers of f associated with it. We find

SN L (B.17)

(the last factor arises from the relative h between Z and ZC; cf. also
(B.14)). But

I-V+1=m (B.18)

is just the Euler formula i.e. the powers of h count the number of loops.
Zero Toop number means tree diagrams and thus we may identify r<o) with
the classical action. This is, of course, the origin for the name "clas-
sical" field o And this identification is also the basis for our re-
cipe with which we have calculated propagators in chapter II. Solving

the equation (B.12) with F=P(0)
of J permits to calculate the 2-point function i.e. the propagator,

as seen from (B.7), by differentiating with respect to J. In this way,
one can effectively avoid to handle true quantum fields ¢ directly,
although this procedure is just equivalent to'canonical quantization.
Let us note that we usually omit the 1ndex,c for the fields 0.

= classical action, for P in terms

Up to now we have never made explicit the different types of fields
involved, but all collectively denoted by ¢, their sources by J and
simitarly for operators Qi and theif sources n. In table B.1 we display
all superfields, insertions and sources occurring in SYM and indicate
how they are Legendre transformed.

The Legendre transformation is given by

Z. =T+ Trfdvie + de(Tr(£+c; +E.c.) + JpA + JgB)

A B

- - . S (B.19)
+ [dS(Tr(c &, + cE
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and the relations (suitable arguments understood):

4 8T

C:C :g
SE, ¥ 8¢, ¥
6Zc Lz 8T .
8¢, + 8c, +

(B.20)

The Slavnov identity reads in terms of T (in the (a,B)-gauge formulation)

4(T) §r &T

]

TrfdV =

ST er 8r , oF ar
dS{Tr B + Tr —= ==
] r 8¢ " 8o 8¢, 6Y Sh }

the ghost equation of motion

In terms of Z one finds

87 = - Trfava L+ Jas{TrE, 55—+ TrE_ g5 - 9, 3y 12
B

fires S -8 58
- Ja3{TrE, 22—+ TrE_ S+ 3y 12 = 0
Jastret, 83, % 6Y}
and for the ghost equation of motion
gg:-%ﬁﬁno—g—%
B2 = %DDED%
TABLE B.1

field ¢ A c, c, c_ c_ B
source gy BL B B &L Jg
composite operator Q c.c, E+A A§+

<1

external field o o} Y

8r &r &I 6T
TR fds{Tr B + Tr = N t S

(8.21)

(B.22)

(B.23)

(B.24)
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APPENDIC C ,QGhCOHOMOLOGY

As an intermediate step in the course of solving the BRS consis-
tency condition (section 15.2) we have to solve the %0-cohomology equa-
tion

b a(0,c,,An,0,Y,py,2y) = 0 (€.1)

for a classical insertion A which has dimension 4 and @Il -charge 1, is
supersymmetric, rigid- and R-invariant. %b is the nilpotent variational
operator defined in (15.41, 15.42). Any insertion of the form 4 = GOB
solves (C.1) since ﬁo is nilpotent, but solutions which are not 6O—var-
jations also exist, as we shall see. We shall use as in section 15 the
notation & for equality up to 60variations.

We begin with the gauge parameter (pk, zk)—dependence of a. Let
us decompose 60 in

b, = %0 + d
- (C.2)
d = Zkak s ak = a/apk
2 _ 52 ~
d- =0 60 =0 , dpk =2 -

- A C.3
e B 1) () (c.3)

A is thus a sum of n-forms wnin p-space. The number of parameters p
being finite for any order in the fields and inh, the relevant p-space
has finite dimension, the summation in (C.3) is finite and the A's are
polynomials in p. As a consequence the cohomology for such n-forms is
trivial:

dw, = 0=>3D_ + w = dd (C.4)

Writing (C.3) as
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we conclude from (C.1):

N
nzo (dwn + %Own) =0 . (C.6)

At the highest degree in z this gives dwN = o and, using (C.4),

wy = dwN—l = ﬁowN—l - 6OwN-l (C.7)

The last term being a (N-1)-form, we have

P Nil . Nil
A= © + w' w!
0 N-1 o N opsg M (€.8)

Pursuing the argument down to the lowest order in z we get

ALA , 9,A =0 (C.9)
We have thus eliminated the gauge parameters:

AR A(@,c+,A,n,c,Y) R 0 . (C.10)

N.B. This argument would not work for the 4-cohomology. The reason is
that the operator $-d, contrary to %0 = $,-d, may increase the order
in z since the classical action (15.12) depends on Py and z,, whereas
jts bilinear terms do not.

We are now left with field dependence only. The following 2 lemmas
will be useful:

Lemma C.1

Let X% be a homogeneous polynomial of degree n (n > q) in

o, ¢, ¢ , of dimension o and ¢li-charge q. Then

+’ +5

4 X3 =0 (C.11)
implies the existence of a function Xq_1 and of a number x such that

X9 = 6oxq'1 + x(c)% s

O 8 o (C.12)
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where (c+)q denotes some polynomial of order q in the ¢ll-fields c ..

For the proof, we first note that

b, 2 jx=-x (C.13)

for any function X(@,c+) of dimension 0. In particular, due to the hy-
potheses (C.11),

.8 ya.__ . 9% 49
%o aE.X T (C.14)
+1 1
Therefore
3¢9 3 q
¢, —— = -9,
1a¢>-x ®1{’ aE.X
! +1 (C.15)
= -4 (0 -——a~—xq)+(c -c) 2
0 i 9¢ . + +'1 3¢ .
+13 +1
Writing
q .
X -x(0)+0(c+) (C.16)

where X(o) denotes a polynomial of degree q in 6+, i.e. of degree o
in C,» we find by inserting (C.16) into (C.15)

'y 5—%17 X(o) * 4t -52: X(o) = = Bol®; —a-g: x%) + 0(c,) (C.17)
i.e.

(m+a)X () = (-0 32: x9) + 0(c,) (C.18)
Thus

yd =‘602(0) +X(q) * O(ci) (C.19)

where X(l) is of degree 1 in C,o hence degree g-1 1in E+. Reasoning as
before, one finds

o 3
X(l) = éox(l) +Xipy ¥ 0(cl) - (C.20)

This process continues until the last step and finally
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Q._45% c.21
X OX + X(q) ( )
where X(q) is of degree q in C,- Now
4, 2 X(q) = O (C.22)
ac+i
due to the absence of E+'s in X(q): Hence (C.14) applied to X(q) -
which is ﬁo-invariant - implies
3®1 (q)
i.e.
X, \ = x(c)? (C.24)
(a) +

(C.21) and (C.24) are the result (C.12) we wanted to prove.

Lemma C.?2

Let Qg(z), ﬁﬁ(z) and Hq(z) be local, rigidly invariant functionals
of degree n in ¢, C,s E+ with dimensions 1/2, 3/2 and 2, R-weights
1, -1 and o, and arbitrary oll-charge q. Then the general solution of
the cohomologies

q _ q_ q _ .
%OAa =0 &OFG =0 AaoH =0 (C.25)
s g -1 q a-1 = q
Ay = 6bAa , Fy = éoFu + xTr[DDDa®(c+) ]6n-1,q
q _ g-1 == q (C.26)
HY = 60H + xTr[DDDD@(c+) ]sn_l’q )
Proof

a) The general form of Ag is dictated by its dimension and R-weight
requirements:

q_ q g-1
Ay = Tr[Da¢X +Dc.Y ] (C.27)
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x9 and Yq'1 are homogeneous polynomials of degree n-1 ino, ¢

o G
Applying 4% we find
- q _ 4 yo-1 WELE
0 = Tr[D,c (X7 - 4Y77) + D2 4X ] (C.28)
Since the two terms are independent, there follows
x4 = 40! (C.29)

from the first term - a solution which makes disappear the second term.
With this

Ad - 83t SR PR va-1) (C.30)

b) For ﬁg (dimension 3/2 and R-weight -1) we write its general form as

q . boe X9 55c x9° + 96D _oxd
Fy = Tr[DaDD® X{ + D DBc,X;7" + DOD_oX3

q g-1 = q. g-1
+ Ducbx4 + Dac+)(5 + DDOL<I>X6 + DDac+X7

Aayd sz ya-1
+ D _Dexg + D DC X ]

8 9
(€.31)
The condition (C.25) implies

q _ _ g-1 q _ g-1

X] = %Oxz . X = BXe

xd = 4 x93} X3 = -gx3! (C.32)

6 o "7 ’ 8 0"9 :

q _

{Ox3 =0

The last equation is solved according to Lemma C.1 by (the dimension
of X9 being o and its degree n-1)

-1
X3 = B x4+ x(c,)% 6 4 (C.33)

>4

Then from (C.32, C.33) follows
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q . q-1 o q
Fo= 8Fy + xTr[DDDa®(c+) ] 8n-1,q

with

41 - 7r[-p 0Bex3™! + 66D _ox97!
o o 2 o

: , (C.34)
q_l - q_l _ - q..]_
+ DX+ fo o7 D, 09Xg ]

¢) The case of K9 (dimension 2) is treated in the same manner. Since
the detailed proof is rather lengthy due to the high dimension involved
and the vanishing R weight, we shall not present it explicitly.

Let us now return to the cohomology problem (C.1), with Ao depending
only on the fields due to the result (C.10). We begin by writing the
most general insertion A(@,c+,A,n,c,Y) of dimension 4, ¢M~-charge 1,
R-weight o, supersymmetric and rigidly invariant (see Table 1 on page
62 for the dimensions, o®l-charges and R-weights):

A(0,¢,,A,1,0,Y) xTrfdsoc,? + x'Tr[dS5¢, >

AAA C. .|

~ 2
+ TrfdvnF(e,c,) + JasIyYe,"A + 1 0 iR aRpRe C4s

2

+ [dS[y'Ac 7V + lébciAaAbAcc+i]

+ deﬁE(@,c+)A

+8'(9,c,) (C.35)

The matrices F = Firi, G = GiTi have dimension o and ¢ll-charge 2 and 1,
respectively, and transform appropriately under the rigid group. X,

x', y and y' are arbitrary coefficients; the coefficients ]abci and
]‘abci are subject to the conditions (15.55) due to rigid invariance
(15.20). Let us compute the variation of A under &O with the help of
(15.42) and impose the 6O-invariance condition (C.10). Considering first
the dependence on n and o we obtain
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0 = Trfdvn[-xc+3 v x'c3

. - %OF] + n,o-indep. terms (C.36)

hence

_ 3 = 3
6OF(®,C+) = -xc,” + x'c, (C.37
The condition for the r.h.s. to be a 60—variatﬁon as indicated by the
1.h.s. is readily seen to be x' = x. Indeed, a necessary condition for
a function of 9@, C,» E+ to be the 4%—variation of a function with the

same arqguments is that it vanishes for c, = E+ = constant matrix since

L

4,0 =c, - ¢, and 60 c, =8,¢c, = 0. Then (C.37) is solved by

+ +
F = -x(c 26 - ¢ dc + OC 2) + F! (C.38)
+ + +
with
$ F(e,c,) =0 (C.39)

The general solution of the last equation is given by the Lemma C.1l:

. _p P 2
Fto= 60F(¢,c+) + tc+ (C.40)
where F is some function of &ll-charge 1 and t a constant. Inserting

these results in (C.35) and noting that

Trfdvngof(é,c+) - 60Trfdvn? + n,0-indep. terms

(C.41)
Trdenc+2 = - @OTrdecc+2 + n,0-indep. terms
we get
A(0,¢,,A,n,0,Y) & xK(9,c,,n,0) + A"(0,¢.,A,Y) (C.42)

with
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K = Trfd505+3 +C.C. - Trfdvn(c+2® - c+®6+ + ¢E+2)
hK = - —l‘? Trfdv DﬁDD@(c’@z- c.ac 2, oC 2)
o° ~  bdg + +7 74 + (C.43)
2 L(e,c,)

ﬁo~1nvar1ance of A yields now

xL(@,c+) + 60A"(®,c+,A,Y) =0 .

(C.44)
However L cannot be the variation of a function of o, C,» A and Y since
it does not vanish for c, = E+ = constant. Hence x = o and

AR A(¢,c+,A,Y) s (C.45)

where A has the form (C.35) with the o and n terms dropped.

Let us go on with the terms dependiné on A and Y. We first observe
that the cubic terms are identically %O—invariant, hence we get no fur-
abci and 1 abci beyond those
implied by rigid invariance (15.55). For the bilinear terms we obtain
from ﬁo~1nvar1ance the condition

ther restriction on their coefficients 1

. 2y =2 5
JavA [Le ¢, © + L ¢, + B.G(o,c,)]A

(C.46)
+ Y,A - indep. terms = O
hence
A"__;/_"NZ__)_/_'_”—‘Z
8= TS " Te Sy - (c.47)

Again, as for (C.37), the condition that the r.h.s. be a ﬁo~var1ation
leads to y' = -y. The equation can then be integrated:

~

G=-9 (6c, - c,9) + &

4 G'(0,c.) =0 . (C.48)

Using again the Lemma C.1 for G' we get

G' = 4Oé(¢) + 2C. ,

N (C.49)
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where G(@) has ®ll-charge o and z is a constant. Thus the terms of (C.35)
bilinear in A, A read

JdVA [%E (EE+ - §+5) + %OQ(Q) + ZE+}A

= - %= [avA(ec, - )N + A [JAVAG(2)A + 162[dSYc A]

(C.50)

Collecting the results (C.45, C.50) we obtain

A(@,C+,A,n,o,Y) g

ylfasve 2a - (SR, HY - I jdvﬁ(az+"- g,0)A)

* ]abci deAaAbAccﬂ' * ]ébci fdgAaAbAcE+1

+ A"(e,c ) %OA"‘= 0 . (C.51)

We are finally left with terms depending only on ¢, s E+:

A"(,c,) = [dVH(®,c,), §.A" = 0, (C.52)

where H has dimension 2, R-weight o, ®lI-charge 1 and is rigid-invariant.
6o-invar1ance of A™ implies that the &O~var1ation of H is a total deriv-
ative

st = 0% - 0,62 (C.53)
where F; and Ga are local functionals of @, c_ of dimension 3/2 and
®ll-charge 2 (here and in the following the superscript indicates the
¢ll-charge). The solution of eq. (C.53) proceeds by repeated application
of 60, projection with derivatives D (Dy) and "integration” - with
respect to %O and D (Bg). Application of 4, to (C.53) yields first

.

0, 2 & 20, _
D 60Fa - DdﬁoG =0 . (C.54)

The general solution of (C.54) is given by
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2 3 - 36 .3
4F2 = DOAD - (0D + 2BD) ;8™ + xX]
ﬁoeza - ppB3% - (BD + zoﬁ)auAg + yye (C.55)

where A and B are dimension 1/2 local functionals of ¢, Chs %5 Y are
arbitrary coefficients and

3 _ e me SRR

X = Tr[DaDc+(c+Dc+ - Dc+c+)]

3 _ (C.56)
Yy = Tr[D&Dc+(c+Dc+ - Dc+c+ﬂ

are the general solutions of the equations

3 -0 . B.¥*-o0 (C.57)
o o

for X (resp. Y) with dimension 3/2 and R-weights -1 (resp. +1) (o and
H have R-weight o).

Go-variation of (C.55) yields the equations

<2 03 - 3% _
606,A% - (DD + 200) ; 88> = O
(C.58)
34 = Q0L 3
DDﬁOB - (DD + 20D) &OAQ = 0
which are solved by
3 4
60Aa = DaE
; (C.59)
& 4
{JOBC.! - “D&E
the Tocal functional EY having dimension 0.
Applying now 60 to (C.59) we get
4 = 4
DaﬁoE =0 s D&%OE =0 (C.60)

hence
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4B =0 (C.61)
0 :

The cohomology (C.61) is solved by Lemma C.1, egs. (C.11, C.12): there
exists a local functional E* such that (one has Tr(c+)4 = 0)

4 - 6053 (C.62)

Egs. (C.59) become

3 3,
60(Au - DQE y =0
(C.63)
3= 3,
'BO(Béc + DdE ) =0

This cohomology is solved by Lemma C.2, egs. (C.25, C.26): there exist
local functionals A%, B2 such that

a3 - p g3+ 4A%
Q o [ 2Ns)

(C.64)
3 =.3 2
Inserting this into eqs. (C.55) yields
2 _ ARl sy p2G 2
tFy = ﬁO[DDAa (DD + 2bD) B + xXa]
. . ’ (C.65)
4,62 = 4 [008%% - (D + 200)%%R% + y¥**]

We have used here the fact that X® and Y*® as defined by (C.56) can be
expressed as

3442 oD fels 67 - B G
X, = %Oxu ;XS = Tr[p De(c,be, be,c,) ]
(C.66)
R ¥ - Tr[D.Do(c Dc, - Dc c, )]
o o'd & ) + 4 $o4l
The cohomology (C.65) is solved by Lemma C.2, too
F2 - 50 A° - (DD + 20D) ,B%% + xx?
o e o Q
(C.67)
+ 60F; + aTr(ﬁfDQEi)a
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6% - pos?% - (60 + 200)%%A2 + yy2e
" 6091& + gTr(DDDO)c, %) © (C.67 cont.'d)

where Fl and G1 are local functionals of dimension 3/2; o and B8 arbitrary
coefficients.

We now insert this result into eq. (C.55). Observing that

avl _ R = 20 _
%X, = %Ou ;o DY = 4.U
- __ L (C.68)
U=Tr [- (DDDeDe + DoDDDS)c, + DD@DD®C+] .
we thus obtain
4 H=4 [DOLF1 - 5,6 4 X0 - yu]
0 0 a & ,
+ Tr[DBB00(ac,? - 82,7)] (C.69)

The last line being a 6O-variation as indicated by the remainder of the
equation, this implies B = a. Then

Tr[0BBDa(c, %, %) ] = 8, Tr[DBODe(ac,-E,0) ]
(C.69) becomes a cohomology problem, solved by
1 & a6 o “a -
H = D% - B;6 ® 4+ x0 - yU + oTr[DODDO(0c, -C @) ]
+ &Oﬁ + yTr(DDDDeC ) (C.70)

due to Lemma C.2, A being a local functional of ®,c+,E+ and y an
arbitrary constant.

The superspace integral (C.52) finally reads

a*(e,c,) 2 xX3 - yXg (C.71)
with
Xy = [dvU = Tr[dsDDD#DODoC (C.72)

To obtain (C.71) we have used the identity

Trfdv DDDD®(oc,-c @) = —ébTrde DDDoD®P (C.73)

The results (C.10, C.51, C.71) put together yield the expression (15.54)
of section 15: this is the general solution of the cohomology (C.1).
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APPENDIX D SYMMETRIC INSERTIONS AND DIFFERENTIAL OPERATORS

In this appendix we extend the discussion of section 12 incorporat-
ing all gauge parameters. Like in section 12 a BRS invariant different-
ial operator V is defined as an operator "commuting" with -4:

W (T) = var (D.1)

where 4 and ‘BT are the Slavnov operators (18.19, 18.20). VI is further
assumed to obey the homogeneous gauge condition and ghost equation:

5
Sgw=0 , gw=0, (D.2)

where § is the operator (18.17). If T fulfills the Slavnov identity,
then

EFVF =0 . (D.3)
The insertion A defined by
VI = AT ’ (D.4)

via the action principle is thus a BRS invariant insertion:

H
O

Bf[A'F]
(D.5)

It

Sqary=0, glaTl=o0.

The following differential operators Vi define a basis for the rigid,
R, supersymmetry and BRS invariant insertions of dimension d < 4 and
oll-charge O:

Vl = 39

vz = C(p)\,(+ + {’C(p).)("f_“) = {'Br‘, C(p)\){‘i—)}

Vg = dl(P)Wg + 5d1(P)ﬂé—) = {85, dl(p)xé“)} (D.6)
7, = e(p)or, + te(pwl) = B, e(prwl)
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a a R YPL:
d (P13, +bd (p)3, = B, a0, b, k22
wk wk wk
e e e
doy (P13 +'ﬁdwk(p)8ywk {Bf, dwkaymk} , k> 2
3 1
habc (D.6 cont.'d)

Fphey + $F(pIS) =(Bp, FoLTH)

= [N® - N - NC‘ - NE_ - Ng = Ng + 209 + zxax]r
- . S_ gz S_ .
= Tr[dVp® - [TrfdSc_ 5 Tr‘dec_(SE zuax]r
=[N +# Nz = N_-N=JT
C+ C+ ¢} g
= -Tr[dSoc, - TrfdSoc, (D.7)
= [Ny + Ng = Ny - Nv]F
= [dSYA + [dSYA
= Nu‘ + Nv'
- v 8
= [dVu'

= f\l) g— b q) = ‘D,C+,C_,B,A,Q,G,Y,U',V'

The coefficients c¢(p), d(p), e(p) in (D.6) are arbitrary functions of
the gauge parameters p, and fc(p) = szapkc(p), etc. The V. defined
in (D.6) will be called symmetric operators and the insertions A,
defined from them by (D.4) symmetric insertions. The latter are given

below in the tree approximation, together with some of their Towest

order terms:

1

1

i

2 - oo
- £y @ (@) - B%ETVTrde¢DDDD® ..

-4 [c(p)Trdecc+ + c.c;]‘= c(p)TrfdSoc,c, + .

—6[d1(p)TrIan®] = -dl(p)Trden(c+—6+) + .. (D.8)
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(o) i
by = Ble(p)Trfdvut SL ] = e(p)Trfdvun(c,~C,) +

>
w
]
(LY
|
[=%
€ o
by
Q7
w
—
Py
o
A
—_t
1]

-d® (p) BTrfdvsY, .. ..., +
wk (AP Y iy T

i

a - w .
-kdwk(p)Trjstiil...1kn.c R S S

741,71, i
k>2. (D.8 cont.'d)
s, = 4[d8 (p)a, 1(0)]
6 wk Yok
= ~kdak(p)Trdeus?1 § NiCh O oo 0y k> 2
w P i i, K
By = HTrfdv(u")™sY, b, ...,

111...1k i 11 1k
= O(Um_l) , m>2,k>1

g = [dSAAA. + c.c.

a

bg = B[F(p)JdSYA] + c.c. = f(p)T;bdeYac+iAb ..

The terms of lowest order in the fields displayed in the expressions

above show their one-to-one correspondence with the normalization
conditions (18.25, 18.33).

These insertions form a basis for the symmetric insertions of
UV-dimension up to four. One can check that their IR-dimension is in
fact not less than four. They generate thus all possible symmetric
counterterms left free at each order in h once the Ward- and Slavnov-
jdentities are fulfilled.

The careful reader may have noticed that no differential operator
related to the 7th insertion (D.8) has been given in (D.5). The reason
is that this insertion generates couplings of order greater than one
in u' and v', i.e. vanishing with u and v: such uninteresting couplings
were fixed arbitrarily by the 7th normalization condition (18.25).
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APPENDIX E SOLUTION OF SOME SUPERFIELD CONSTRAINTS

In this appendix we prove, firstly, that the constraints (16.3.41,
16.3.42)

have the general solution (16.3.43)

) B
b, = O 4 + 20°S g (£.3)

with vV = ngvua axial and SOLB chiral and, secondly, that the general
solution of the constraints (16.3.87)

bbs,, = 0 (E.4)
o a0
D Ba - E&B =0 (E.5)
is given by
- B 8
Bu = DDDQB +D S(aB) (E.5)

with B scalar and S(aB) chiral, symmetric in o,B.

I.e. for the superfields Aa’ Ba which are local functionals of the
elementary superfields we want to show the existence of solutions
V,S,B belonging to the same class.

Let us begin by reducing the first problem (E.1, E.4) to the
second one (E.4, E.5). The vanishing of the space-time integral (E.2)
implies that its integrand is a total derivative:

0% - 0,A% = s U* (E.7)
o & L

1 (0 e oLl o a0
7 {07, }o“q&u =5 {D%,07}u g,
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with UM being a real, local superfield functional.

That UY is indeed a superfield is a consequence of that apUu is a
superfield and that any superfield is uniquely determined by its 6 =0
component. Defining now

1
Ba = Aa ?-D Ua& (£.8)

we see that we are led to solve for a local superfield functional Ba
obeying the constraints (E.4, E.5).

Solving (E.4, E.5) is the same type of problem as solving the
supersymmetry consistency condition (13.27) and we shall therefore
briefly sketch the method [IV.4, II1.25].

If Ba is made up from purely chiral fields only, one Tists all
possible terms (dim Ba = 7/2, n(Bu) = -1, Q@H(Bu) = 0) and checks
that the desired decomposition (E.6) holds. If Ba'contains with chiral
fields also at least one antichiral or vector superfield then we write
Bu in the following way:

_ n
B,(2) = rZ‘ B, (2)
(E.9)
n - .
B, (2) = Jdzy...dz . 0p. 0,
g e T
. b y(T,7:) T 3 'S (y:)
0 Ml=a M 7T T
The notation is as follows:
9y = @k.(zi) is a superfield with internal
! index ki,~at‘superspace point 55
dzi is the appropriaté integration measure;
M= (Ml,..h,Mn), Mo = multiindex (pl...pp)
Ml = z|M| . M) = p
We have also chosen special variables
Zz = (X,@,@) s Z.i = (x-‘ ;@.‘561) y
T = @~®1 , T = 6—91 » Ty = 91-61 , Ty E @1—61, (E.10)

~<
s
it

. - X + 1000, - 10,06
x1 X 1@0@1 1@106
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Here Z4 is the argument of a vector superfield - if any is present -
chosen to be 9y Otherwise we may choose 9 chiral and ¢y anti-chiral
and (E.10) is modified accordingly

T, = 0,- @2 . (E.10")

The 0-structure of the representation (E.9) is necessary and sufficient
for Ba to be a superfield, and its locality is expressed by the kernel
being a polynomial of derivatives of space-time S&-functions.

Since the differential constraints (E.4, E.5) do not mix the B"
with different degrees n, we shall work at fixed degree and omit the
superscript n. Having in mind a proof by induction in the number of
space-time derivatives M| = d, we start with d = 0 and expand the

corresponding kernel ba(T’Ti) in its variable t:

B - B

b XQB + Téwa

T,T;) = Cu + T + ... (E.11)

u( i
where the coefficients C_, Xogs - are functions of the T, %i'
The constraints (E.4, E.5) yield at this order the equations

35 =0 , ao‘bu + a&BO‘ =0 (£.12)

(Da’ﬁ& reduce to 3 = 3/t, -3 = -8/T up to space-time derivatives).
A Tlittle algebra shows that they are solved by

3,b(t,75) + asééc(ae)(r,ri)

+ dse (T,Ti) (E.13)

with b = b and eaa = -8% . Moreover the t-expansion (see (E.11))

% 2 2-2

2 % .o . -
of emu has terms in 12, 2, T1%, 11° and 1°7° only.

Let us define the local superfield functionals B(O)(z), CE&%)(Z)
and E( )(z) using the representation (E.9) with the kernel QxM replaced

0

ad.
by b, €(4g) and e_, respectively for IM| = 0 and by zero for |M] > 1.
Then the substitution of the result (E.13) into (E.9) yields



(E.14)

where B& contains at least one space-time derivative in its kernel

and fulfills (E.4). Although the first two terms have just the form
(E.6) - hence are solutions of the constraints - the E-term does not:
it violates the constraints (E.5). In fact it vanishes, as we shall

see now by an excursion in the next order in the number of derivatives,
i.e. at the order d = 1.

Let us consider B& in the representation (E.9), the lowest order
term having now one derivative:
N
ch = fdzl...dzncpl...cpn kZl botll,k (T,T_i) .

-aMs(y, ) S(y;) + .- (E.15)

e

i=1
i#k

where the dots here and in the following'represent terms with more
than one derivative. The constraint (E.5) applied to (E.1l4) reads

2i0 % aME(0)% < 0% - 5B+

2 &
(E.16)
and we used the fact that E{®)% is an axial vector: glojo | _glo)d

a o o’
At order 1 it yields the eguation

. (0% &, _ Oy 4 A I& -
210“ 48q = 3Dy ikt adB "k k=1,...n (E.17)
33bg,, = O (£.18)

the last one following from (E.4), still valid for B&. The tT-expansion
of the r.h.s. of (E.17) contains -only terms in TO,T,% and Tt due to
(E.18). Recalling that no such terms are present in the expansion of
the 1.h.s. (see remark following (E.13)), we conclude that e . = 0,
hence

elo) _g . (£.19)
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We have thus shown that (E.6) holds at order d = O:

g = 560 89 + pPoact %

. \ (3 ) * (d>1) terms (E.20)

The proof can be iterated in exactly the same way, Teading to the
result (E.6) with S(ae) = GDC(QB). Recall that this holds for the
generic case of functionals not exclusively built up with chiral
fields. In the purely chiral case 3(@8) can be any product of chiral

fields and space-time derivatives of them, e.g.
- MY
S(ae) = OaﬁauAlavAZ (E.21)

But usually severe restrictions follow from the assignments of quantum
numbers and dimensions in the specific situations and they enforce
the solution in the above sense. '

Having now solved the problem (E.4, E.5) we can go back to (E.1,
E.2). Inserting the solution (E.6) into (E.8) yields

1 za
o o (o8) * 7 07U (£.22)
which can be brought to the form (E.3) by using the identity
5,[0%,0%]8 = - 3 0B - 3 660 (E.23)

and the definitions.
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