Veröffentlichungen


[1] S. Schnabel, M. Bachmann, and W. Janke
Two-State Folding, Folding through Intermediates, and Metastability in a Minimalistic Hydrophobic-Polar Model for Proteins
Phys. Rev. Lett. 98, 048103(1-4) (2007).
[2] S. Mitternacht, S. Schnabel, M. Bachmann, W. Janke, and A. Irbäck
Differences in Solution Behavior among Four Semiconductor-Binding Peptides
J. Phys. Chem. B 111, 4355-4360 (2007).
[3] S. Schnabel, M. Bachmann, and W. Janke
Identification of Characteristic Protein Folding Channels in a Coarse-Grained Hydrophobic-Polar Peptide Model
J. Chem. Phys. 126, 105102(1-6) (2007).
[4] S. Schnabel, M. Bachmann, and W. Janke
Different Types of Protein Folding Identified with a Coarse-Grained Heteropolymer Model
in: Proceedings of the NIC Workshop 2008 From Computational Biophysics to Systems Biology, NIC Series vol. 40,
ed. by U. H. E. Hansmann, J. H. Meinke, S. Mohanty, W. Nadler, O. Zimmermann (NIC, Jülich, 2008), pp. 369-371.
[5] S. Schnabel, T. Vogel, M. Bachmann, and W. Janke
Surface Effects in the Crystallization Process of Elastic Flexible Polymers
Chem. Phys. Lett. 476, 201-204 (2009).
[6] S. Schnabel, M. Bachmann, and W. Janke
Elastic Lennard-Jones Polymers Meet Clusters: Differences and Similarities
J. Chem. Phys. 131, 124904(1-9) (2009).
[7] S. Schnabel, W. Janke, and M. Bachmann
Advanced Multicanonical Monte Carlo Methods for Efficient Simulations of Nucleation Processes of Polymers
J. Comput. Phys. 230, 4454-4465 (2011).
[8] S. Schnabel, D. T. Seaton, D. P. Landau, and M. Bachmann
Microcanonical Entropy Inflection Points: Key to Systematic Understanding of Transitions in Finite Systems
Phys. Rev. E 84, 011127(1-4) (2011).
[9] S. Schnabel and D. P. Landau
Fictitious excitations in the classical Heisenberg antiferromagnet on the kagome lattice
Phys. Rev. B 86, 014413(1-10) (2012).
[10] S. Schnabel and D. P. Landau
Spin waves in the classical Heisenberg antiferromagnet on the kagome lattice
J. Phys.: Conf. Series 402, 012022(1-9) (2012).
[11] D. T. Seaton, S. Schnabel, M. Bachmann, and D. P. Landau
Effects of Stiffness on Short, Semiflexible Homopolymer Chains
Int. J. Mod. Phys. C 23 1240004(1-7) (2012).
[12] D. T. Seaton, S. Schnabel, D. P. Landau, and M. Bachmann
From Flexible to Stiff: Systematic Analysis of Structural Phases for Single Semiflexible Polymers
Phys. Rev. Lett. 110, 028103(1-5) (2013).
[13] J. C. S. Rocha, S. Schnabel, D. P. Landau, and M. Bachmann
Identifying Transitions in Finite Systems by Means of Partition Function Zeros and Microcanonical Inflection-Point Analysis: A Comparison for Elastic Flexible Polymers
Phys. Rev. E 90, 022601(1-10) (2014).
[14] J. C. S. Rocha, S. Schnabel, D. P. Landau, and M. Bachmann
Leading Fisher Partition Function Zeros as Indicators of Structural Transitions in Macromolecules
Phys. Proc. 57, 94-98 (2014).
[15] Zheng Zhu, Andrew J. Ochoa, Stefan Schnabel, Firas Hamze, and Helmut G. Katzgraber
Best-case performance of quantum annealers on native spin-glass benchmarks: How chaos can affect success probabilities
Phys. Rev. A, 93, 012317(1-8) (2016).
[16] S. Schnabel and W. Janke
Dynamic greedy algorithms for the Edwards-Anderson model
Comput. Phys. Commun, 220, 74-80 (2017).
[17] S. Schnabel and W. Janke
Distribution of metastable states of Ising spin glasses
Phys. Rev. B, 97, 174204(1-10) (2018).
[18] S. Schnabel and W. Janke
Distribution of metastable states of spin glasses
J. Phys.: Conf. Ser., 1252, 012001(1-6) (2019).
[19] S. Schnabel and W. Janke
Counting metastable states of Ising spin glasses on hypercubic lattices
Eur. Phys. J. B, 93, 53(1-7) (2020).
[20] S. Schnabel and W. Janke
Accelerating polymer simulation by means of tree data-structures and a parsimonious Metropolis algorithm
Comput. Phys. Commun, 256, 107414(1-10) (2020).
[21] S. Schnabel and W. Janke
Wang-Landau simulations with non-flat distributions
Comput. Phys. Commun, 267, 108071(1-5) (2021).
[22] S. Schnabel and W. Janke
Fast simulation of a large polymer with untruncated interaction near the collapse
J. Phys. Conf. Ser., 2241, 012005(1-8) (2022).
[23] S. Schnabel and W. Janke
Monte Carlo Simulation of Long Hard-Sphere Polymer Chains in Two to Five Dimensions
Macromol. Theory. Simul., 2200080 (2023).
[24] F. Müller, H. Christiansen, S. Schnabel and W. Janke
Fast, hierarchical, and adaptive algorithm for Metropolis Monte Carlo simulations of long-range interacting systems
Phys.Rev. X, 13, 031006(1-17) (2023).