[1] S. Schnabel, M. Bachmann, and W. Janke
Two-State Folding, Folding through Intermediates, and Metastability in a Minimalistic Hydrophobic-Polar Model for Proteins
Phys. Rev. Lett. 98, 048103(1-4) (2007).
[2] S. Mitternacht, S. Schnabel, M. Bachmann, W. Janke, and A. Irbäck
Differences in Solution Behavior among Four Semiconductor-Binding Peptides
J. Phys. Chem. B 111, 4355-4360 (2007).
[3] S. Schnabel, M. Bachmann, and W. Janke
Identification of Characteristic Protein Folding Channels in a Coarse-Grained Hydrophobic-Polar Peptide Model
J. Chem. Phys. 126, 105102(1-6) (2007).
[4] S. Schnabel, M. Bachmann, and W. Janke
Different Types of Protein Folding Identified with a Coarse-Grained Heteropolymer Model
in: Proceedings of the NIC Workshop 2008 From Computational Biophysics to Systems Biology, NIC Series vol. 40,
ed. by U. H. E. Hansmann, J. H. Meinke, S. Mohanty, W. Nadler, O. Zimmermann (NIC, Jülich, 2008), pp. 369-371.
[5] S. Schnabel, T. Vogel, M. Bachmann, and W. Janke
Surface Effects in the Crystallization Process of Elastic Flexible Polymers
Chem. Phys. Lett. 476, 201-204 (2009).
[6] S. Schnabel, M. Bachmann, and W. Janke
Elastic Lennard-Jones Polymers Meet Clusters: Differences and Similarities
J. Chem. Phys. 131, 124904(1-9) (2009).
[7] S. Schnabel, W. Janke, and M. Bachmann
Advanced Multicanonical Monte Carlo Methods for Efficient Simulations of Nucleation Processes of Polymers
J. Comput. Phys. 230, 4454-4465 (2011).
[8] S. Schnabel, D. T. Seaton, D. P. Landau, and M. Bachmann
Microcanonical Entropy Inflection Points: Key to Systematic Understanding of Transitions in Finite Systems
Phys. Rev. E 84, 011127(1-4) (2011).
[9] S. Schnabel and D. P. Landau
Fictitious excitations in the classical Heisenberg antiferromagnet on the kagome lattice
Phys. Rev. B 86, 014413 (2012).
[10] D. T. Seaton, S. Schnabel, M. Bachmann, and D. P. Landau
Effects of Stiffness on Short, Semiflexible Homopolymer Chains
Int. J. Mod. Phys. C 23 1240004(1-7) (2012).
[11] D. T. Seaton, S. Schnabel, D. P. Landau, and M. Bachmann
From Flexible to Stiff: Systematic Analysis of Structural Phases for Single Semiflexible Polymers
Phys. Rev. Lett. 110, 028103(1-5) (2013).
[12] J. C. S. Rocha, S. Schnabel, D. P. Landau, and M. Bachmann
Identifying Transitions in Finite Systems by Means of Partition Function Zeros and Microcanonical Inflection-Point Analysis: A Comparison for Elastic Flexible Polymers
Phys. Rev. E 90, 022601(1-10) (2014).
[13] J. C. S. Rocha, S. Schnabel, D. P. Landau, and M. Bachmann
Leading Fisher Partition Function Zeros as Indicators of Structural Transitions in Macromolecules
Phys. Proc. 57, 94-98 (2014).
[14] Zheng Zhu, Andrew J. Ochoa, Stefan Schnabel, Firas Hamze, and Helmut G. Katzgraber
Best-case performance of quantum annealers on native spin-glass benchmarks: How chaos can affect success probabilities
Phys. Rev. A, 93, 012317(1-8) (2016).