Bonus exercises in Advanced Quantum Mechanics

Due Thursday, February 5, 2015
36. (1 bonus point) We consider a one-dimensional harmonic oscillator of mass m and frequency ω driven by a weak periodic force $F(t)=F_{0} \cos (\Omega t)$ which is turned on at time $t=0$. Determine the first order perturbative correction to the expectation value of the displacement $\langle\psi(t)| \hat{x}|\psi(t)\rangle$ under the assumption that for $t<0$ the system was in a stationary state.
37. (1 bonus point) We consider the Dirac equation.
a) In the spinor representation of the Lorentz group, a rotation in the $x^{\mu}-x^{\nu}$ plane of Minkowski space about an angle ϕ is given by

$$
S^{\mu \nu}(\phi)=\exp \left(-\frac{i}{2} \phi \sigma^{\mu \nu}\right) .
$$

Calculate $S^{\mu \nu}(\phi)$ for the cases $\mu, \nu=k, l=1,2,3$ (spatial rotations in the $x^{k}-x^{l}$ plane) and $\mu=0, \nu=k=1,2,3$ (Lorentz boosts in der $x^{0}-x^{k}$ plane).
b) Show that the helicity operator $\hat{s}(\vec{p})=\frac{\hat{\hat{s}} \cdot \hat{\vec{p}}}{|\vec{p}|}$ commutes with the Dirac Hamiltonian $\hat{H}=c \vec{\alpha} \cdot \hat{\vec{p}}+m c^{2} \gamma^{0}$ and that one has

$$
\hat{s}(\vec{p})^{2}=\frac{\hbar^{2}}{4} .
$$

c) Determine how the operator of charge conjugation acts on an electron with negative energy and spin up relative to the rest system. Give a physical interpretation of your result.

