Exercises in Advanced Quantum Mechanics

Due Thursday, January 29, 2015

34. We consider a hydrogen atom in a weak homogeneous time-periodic electric field of strength $\vec{E} = \vec{E}_0 \cos \omega t$ with $\hbar \omega$ larger than the binding energy. Assume that the system is contained in a cubic box of side length L and that emitted electrons are described by standing plane waves $\psi_{\vec{k}}$ with wave vector \vec{k} in this box.

a) Show that the density of states for the emitted electrons per energy and per solid angle is given by

$$\rho(E) = 2\left(\frac{L}{2\pi}\right)^3 \frac{mk}{\hbar^2}$$

b) Show that, up to a constant energy shift, the Hamiltonian is given by $H = H_0 + H_1$ with

$$H_0 = \frac{\vec{p}^2}{2m} - \frac{e^2}{4\pi\varepsilon_0 r}, \qquad H_1 = V e^{i\omega t} + V^{\dagger} e^{-i\omega t},$$

where

Where
$$V = \frac{e}{2im\omega} \vec{E}_0 \cdot \vec{p}$$
.
Hint. Start from $H = \frac{1}{2m} (\vec{p} - \frac{e}{m} \vec{A})^2 - \frac{e^2}{4\pi\varepsilon_0 r}$ with \vec{A} determined from \vec{E} .

c) Determine the transition probability per time and per solid angle from the ground state to the state $\psi_{\vec{k}}$ in first order perturbation theory by means of Fermi's Golden Rule.

35. (Mandatory) Consider the one-particle Hilbert space \mathcal{H} of the positive energy solutions of the free Klein-Gordon equation, given in the momentum representation by $L^2(\Gamma_+, \frac{\mathrm{d}^3 k}{2k^0})$.

a) Show that in position representation, the scalar product on \mathcal{H} is given by

$$(\phi,\psi)_{\Sigma} = \mathrm{i} \int_{\Sigma} d^3x \left(\bar{\phi}(x) \partial_0 \psi(x) - \partial_0 \bar{\phi}(x) \psi(x) \right) , \qquad \phi, \psi \in \mathcal{H}$$

where Σ denotes the hyperplane in Minkowski space defined by $x^0 = 0$.

b) Show that the representation of the proper orthochronous Lorentz group on \mathcal{H} defined by

$$(D(\Lambda)\phi)(x) := \phi(\Lambda^{-1}x), \qquad \Lambda \in L_{+}^{\uparrow}$$

is unitary.