Exercises in Advanced Quantum Mechanics

Due Thursday, January 22, 2015
32. We consider a system of two identical particles of mass m and spin $\frac{1}{2}$ moving in a harmonic oscillator potential and interacting by a force proportional to their distance:

$$
H=-\frac{\hbar^{2}}{2 m}\left(\Delta_{1}+\Delta_{2}\right)+\frac{m \omega^{2}}{2}\left(\vec{x}_{1}^{2}+\vec{x}_{2}^{2}\right)+\frac{m \sigma^{2}}{2}\left(\vec{x}_{1}-\vec{x}_{2}\right)^{2} .
$$

a) Solve the Hartree-Fock equations for this system.
b) Determine the exact eigenvalues and eigenvectors and compare your result with that of part a). Hint. Transform the system to normal coordinates
33. (Mandatory) We consider a one-dimensional harmonic oscillator of mass m and frequency ω in the ground state. At time $t=0$, a constant external force F is turned on. Determine the exact transition probabilities to each of the new excited states for $t>0$.

