Exercises in Advanced Quantum Mechanics

Due Thursday, November 27, 2014
14. (Mandatory) We consider a charged particle in a spherically symmetric potential V and a homogeneous electric field of magnitude E in z-direction. The Hamiltonian is given by

$$
\hat{H}=\frac{\hat{\vec{p}}^{2}}{2 m}+V(r)-q z E .
$$

a) Determine the symmetry group of the system and show that there exists a common eigenbasis of \hat{H} and \hat{L}_{3}.
b) Show that

$$
\left[\hat{L}_{ \pm}, H\right]= \pm \hbar q E \hat{x}_{ \pm}
$$

where $\hat{L}_{ \pm}=\hat{L}_{1} \pm \mathrm{i} \hat{L}_{2}$ and $\hat{x}_{ \pm}=\hat{x}_{1} \pm \mathrm{i} \hat{x}_{2}$. Use this to argue why the electric field breaks the degeneracy of the energy levels with respect to the quantum number m of \hat{L}_{z} which is present in the case $E=0$ (Stark effect).
15. In quantum mechanics, for an autonomous system, the analogue of a classical Galilei transformation

$$
\vec{x}^{\prime}=\vec{x}-t \vec{v}, \quad t^{\prime}=t
$$

is defined by

$$
\psi^{\prime}(\vec{x}, t)=(\hat{G}(\vec{v}, t) \psi)(\vec{x}, t)
$$

with

$$
\hat{G}(\vec{v}, t)=e^{-\frac{i}{\hbar} \hat{H} t} \hat{G}(\vec{v}) e^{\frac{i}{\hbar} \hat{H} t}, \quad \hat{G}(\vec{v})|\vec{p}\rangle:=|\vec{p}-m \vec{v}\rangle .
$$

Using results from Exercise 9, show that for a spinless free particle, the following holds.
a) $\psi^{\prime}(\vec{x}, t)=e^{-\frac{i}{\hbar} m \vec{v}\left(\vec{x}+\frac{1}{2} \vec{v} t\right)} \psi(\vec{x}+\vec{v} t, t)$.
b) The Galilei transformation leaves invariant the Schrödinger equation, i.e.,

$$
\mathrm{i} \hbar \frac{\partial}{\partial t} \psi(\vec{x}, t)=-\frac{\hbar^{2}}{2 m} \Delta \psi(\vec{x}, t)
$$

implies

$$
\mathrm{i} \hbar \frac{\partial}{\partial t^{\prime}} \psi^{\prime}\left(\vec{x}^{\prime}, t^{\prime}\right)=-\frac{\hbar^{2}}{2 m} \Delta^{\prime} \psi^{\prime}\left(\vec{x}^{\prime}, t^{\prime}\right) .
$$

16. For a system of N identical particles, the operators of symmetrization and antisymmetrization are defined by

$$
\hat{\mathcal{S}}:=\frac{1}{N!} \sum_{\pi \in S_{N}} \hat{\pi}, \quad \hat{\mathcal{A}}:=\frac{1}{N!} \sum_{\pi \in S_{N}} \epsilon(\pi) \hat{\pi}
$$

where S_{N} denotes the group of permutations of N elements and $\epsilon(\pi)$ denotes the sign of the permutation π, i.e.,

$$
\epsilon(\pi)= \begin{cases}1 & \pi \text { is even } \\ -1 & \pi \text { is odd }\end{cases}
$$

Show that $\hat{\mathcal{S}}$ and $\hat{\mathcal{A}}$ are orthoprojectors and that they satisfy $\hat{\mathcal{S}} \hat{\mathcal{A}}=\hat{\mathcal{A}} \hat{\mathcal{S}}=0$.

