Exercises in Advanced Quantum Mechanics

Due Thursday, November 20, 2014

11. (Mandatory) We consider the Hilbert space $L^{2}\left(\mathbb{R}^{3}\right) \otimes L^{2}\left(\mathbb{R}^{3}\right) \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{2}$ of two particles of $\operatorname{spin} \frac{1}{2}$. The operator of the dipole moment is given by

$$
\hat{\vec{d}}:=e(\hat{\vec{x}} \otimes \mathbb{1}+\mathbb{1} \otimes \hat{\vec{x}}) \otimes\left(\mathbb{1}_{2} \otimes \mathbb{1}_{2}\right) .
$$

a) Use the infinitesimal criterion to show that $\hat{\vec{d}}$ is a vector operator with respect to both orbital angular momentum $\hat{\vec{L}}$ and total angular momentum $\hat{\vec{J}}$.
b) Determine the irreducible tensor operator corresponding to $\hat{\vec{d}}$ and use the WignerEckart theorem to prove the following selection rules for dipole radiation. The matrix elements $\left\langle\alpha^{\prime} j^{\prime} m_{j}^{\prime}\right| \hat{\vec{d}}\left|\alpha j m_{j}\right\rangle$ vanish unless

$$
\left|j^{\prime}-j\right| \leq 1, \quad\left|m_{j}^{\prime}-m_{j}\right| \leq 1
$$

and the matrix elements $\left\langle\alpha^{\prime} l^{\prime} m_{l}^{\prime}\right| \hat{\vec{d}}\left|\alpha l m_{l}\right\rangle$ vanish unless

$$
\left|l^{\prime}-l\right| \leq 1, \quad\left|m_{l}^{\prime}-m_{l}\right| \leq 1
$$

c) (optional) Can the selection rule for l be sharpened by means of the parity operator?
12. We consider a representation of the group of rotations on the Hilbert space of a quantum mechanical system. Let $\hat{\vec{J}}$ be the corresponding operator of angular momentum and let $\{|\alpha j m\rangle\}$ be an orthonormal basis of common eigenvectors of $\hat{\vec{J}}^{2}$ and \hat{J}_{3}, where α refers to the quantum numbers of certain further observables which complement $\hat{\vec{J}}^{2}$ and \hat{J}_{3} to a complete system of commuting observables. Let $\hat{\vec{K}}$ be a vector operator with respect to this representation. Use the Wigner-Eckart theorem to show that the matrix elements of the components \hat{K}_{i} of $\hat{\vec{K}}$ can be expressed in terms of the matrix elements of \hat{J}_{i} and of the projection $\hat{\vec{K}} \cdot \hat{\vec{J}}$ as follows:

$$
\langle\alpha j m| \hat{K}_{i}\left|\alpha j m^{\prime}\right\rangle=\frac{1}{\hbar^{2} j(j+1)}\langle\alpha j m| \hat{J}_{i}\left|\alpha j m^{\prime}\right\rangle\langle\alpha j m| \hat{\vec{K}} \cdot \hat{\vec{J}}|\alpha j m\rangle
$$

Hint. Start with showing that $\langle\alpha j m| \hat{K}_{i}\left|\alpha j m^{\prime}\right\rangle=\langle\alpha j m| \hat{J}_{i}\left|\alpha j m^{\prime}\right\rangle \frac{\left\langle\alpha j\left\|\hat{K}^{1}\right\| \alpha j\right\rangle}{\left\langle\alpha j\left\|\hat{J}^{\hat{1}}\right\| \alpha j\right\rangle}$, where $\left\langle\alpha j\left\|\hat{K}^{1}\right\| \alpha j\right\rangle$ and $\left\langle\alpha j\left\|\hat{J}^{1}\right\| \alpha j\right\rangle$ denote the reduced matrix elements of the irreducible tensor operators \hat{K}_{M}^{1} and \hat{J}_{M}^{1} associated with $\hat{\vec{K}}$ and $\hat{\vec{J}}$, respectively. Then, check that $\hat{\vec{K}} \cdot \hat{\vec{J}}=\sum_{M=-1}^{1}(-1)^{M} \hat{K}_{M}^{1} \hat{J}_{-M}^{1}$ and use this to rewrite the reduced matrix elements $\left\langle\alpha j\left\|\hat{K}^{1}\right\| \alpha j\right\rangle$ and $\left\langle\alpha j\left\|\hat{J}^{1}\right\| \alpha j\right\rangle$ in terms of the matrix elements $\langle\alpha j m| \hat{\vec{K}} \cdot \hat{\vec{J}}|\alpha j m\rangle$ and $\langle\alpha j m| \hat{\vec{J}}^{2}|\alpha j m\rangle$, respectively.
13. Prove the Kramers Rule: if the Hamiltonian \hat{H} of a system of particles with spin $\frac{1}{2}$ is invariant under time reversal and if the number of particles is odd, then all eigenvalues of \hat{H} have even multiplicity.

