Universität Leipzig, Institut für Theoretische Physik

Prof. Dr. Gerd Rudolph

Exercises in Advanced Quantum Mechanics

Due Thursday, November 20, 2014

11. (Mandatory) We consider the Hilbert space $L^2(\mathbb{R}^3) \otimes L^2(\mathbb{R}^3) \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$ of two particles of spin $\frac{1}{2}$. The operator of the dipole moment is given by

$$\hat{ec{d}}:=e\left(\hat{ec{x}}\otimes\mathbb{1}+\mathbb{1}\otimes\hat{ec{x}}
ight)\otimes\left(\mathbb{1}_{2}\otimes\mathbb{1}_{2}
ight).$$

- a) Use the infinitesimal criterion to show that \vec{d} is a vector operator with respect to both orbital angular momentum $\hat{\vec{L}}$ and total angular momentum $\hat{\vec{J}}$.
- **b)** Determine the irreducible tensor operator corresponding to \vec{d} and use the Wigner-Eckart theorem to prove the following selection rules for dipole radiation. The matrix elements $\langle \alpha' j' m'_j | \hat{\vec{d}} | \alpha j m_j \rangle$ vanish unless

$$|j'-j| \le 1$$
, $|m'_j - m_j| \le 1$.

and the matrix elements $\langle \alpha' \, l' \, m'_l | \, \hat{\vec{d}} | \alpha \, l \, m_l \rangle$ vanish unless

 $|l'-l| \le 1$, $|m'_l-m_l| \le 1$.

c) (optional) Can the selection rule for *l* be sharpened by means of the parity operator?

12. We consider a representation of the group of rotations on the Hilbert space of a quantum mechanical system. Let $\hat{\vec{J}}$ be the corresponding operator of angular momentum and let $\{|\alpha j m\rangle\}$ be an orthonormal basis of common eigenvectors of $\hat{\vec{J}}^2$ and \hat{J}_3 , where α refers to the quantum numbers of certain further observables which complement $\hat{\vec{J}}^2$ and \hat{J}_3 to a complete system of commuting observables. Let \vec{K} be a vector operator with respect to this representation. Use the Wigner-Eckart theorem to show that the matrix elements of the components \hat{K}_i of \vec{K} can be expressed in terms of the matrix elements of $\hat{\vec{J}}_i$ and of the projection $\hat{\vec{K}} \cdot \hat{\vec{J}}$ as follows:

$$\langle \alpha \, j \, m | \hat{K}_i | \alpha \, j \, m' \rangle = \frac{1}{\hbar^2 j (j+1)} \, \langle \alpha \, j \, m | \hat{J}_i | \alpha \, j \, m' \rangle \, \langle \alpha \, j \, m | \vec{K} \cdot \vec{J} | \alpha \, j \, m \rangle \,.$$

Hint. Start with showing that $\langle \alpha j m | \hat{K}_i | \alpha j m' \rangle = \langle \alpha j m | \hat{J}_i | \alpha j m' \rangle \frac{\langle \alpha j \| \hat{K}^1 \| \alpha j \rangle}{\langle \alpha j \| \hat{J}^1 \| \alpha j \rangle}$, where $\langle \alpha j \| \hat{K}^1 \| \alpha j \rangle$ and $\langle \alpha j \| \hat{J}^1 \| \alpha j \rangle$ denote the reduced matrix elements of the irreducible tensor operators \hat{K}_M^1 and \hat{J}_M^1 associated with $\hat{\vec{K}}$ and \hat{J} , respectively. Then, check that $\hat{\vec{K}} \cdot \hat{\vec{J}} = \sum_{M=-1}^{1} (-1)^M \hat{K}_M^1 \hat{J}_{-M}^1$ and use this to rewrite the reduced matrix elements $\langle \alpha j m | \hat{\vec{K}} \cdot \hat{\vec{J}} | \alpha j \rangle$ in terms of the matrix elements $\langle \alpha j m | \hat{\vec{K}} \cdot \hat{\vec{J}} | \alpha j m \rangle$ and $\langle \alpha j m | \hat{\vec{J}}^2 | \alpha j m \rangle$, respectively.

13. Prove the Kramers Rule: if the Hamiltonian \hat{H} of a system of particles with spin $\frac{1}{2}$ is invariant under time reversal and if the number of particles is odd, then all eigenvalues of \hat{H} have even multiplicity.