Exercises in Advanced Quantum Mechanics

Due Thursday, November 13, 2014
8. (Mandatory) Show that $\hat{\vec{x}}, \hat{\vec{p}}, \hat{\vec{L}}$ are vector operators, that is, that they obey the transformation law

$$
\hat{D}(R) \hat{A}_{i} \hat{D}(R)^{\dagger}=\left(R^{-1}\right)_{i j} \hat{A}_{j}, \quad \hat{A}_{i}=\hat{x}_{i}, \hat{p}_{i}, \hat{L}_{i}
$$

Here, $R \mapsto D(R)$ is the representation of the rotation group on the Hilbert space defined in the lecture.
9. Define the quantum mechanical analogue of a classical special Galilei transformation $\vec{x} \mapsto \vec{x}^{\prime}=\vec{x}-\vec{v} t$ by

$$
\hat{G}(\vec{v})|\vec{p}\rangle:=|\vec{p}-m \vec{v}\rangle .
$$

Determine the corresponding transformation law for the wave function in the momentum and the position representation. Find the tranformation laws for the position operator and the momentum operator.
10. Let $\hat{\vec{A}}=\left(\hat{A}_{1}, \hat{A}_{2}, \hat{A}_{3}\right)$ be a vector operator. Show that the operators

$$
\hat{T}_{1}^{1}=-\frac{1}{\sqrt{2}}\left(\hat{A}_{1}+i \hat{A}_{2}\right), \quad \hat{T}_{0}^{1}=\hat{A}_{3}, \quad \hat{T}_{-1}^{1}=\frac{1}{\sqrt{2}}\left(\hat{A}_{1}-i \hat{A}_{2}\right)
$$

form an irreducible tensor operator of rank one.

