Exercises in Advanced Quantum Mechanics

Due Thursday, November 6, 2014

6. We consider a system of two particles of $\operatorname{spin} \frac{1}{2}$ in the pure state

$$
|\varphi\rangle=\frac{1}{2 \sqrt{2}}(|+\rangle \otimes|+\rangle+|-\rangle \otimes|-\rangle)+\frac{3}{2 \sqrt{2}}(|+\rangle \otimes|-\rangle+|-\rangle \otimes|+\rangle)
$$

a) Determine the reduced density operators $\rho^{(1)}$ and $\rho^{(2)}$, as well as their eigenvalues and eigenvectors.
b) Finde the Gram-Schmidt decomposition of $|\varphi\rangle$. Is $|\varphi\rangle$ entangled? Is it maximally entangled?
c) Find two distinct purifications of $|\varphi\rangle$.
7. (Mandatory) We consider the tensor product $\mathcal{H}_{X} \otimes \mathcal{H}_{A} \otimes \mathcal{H}_{B}$ of two-dimensional Hilbert spaces. Let

$$
\varphi_{i j}^{ \pm}=\frac{1}{\sqrt{2}}(|+\rangle \otimes|+\rangle \pm|-\rangle \otimes|-\rangle), \quad \psi_{i j}^{ \pm}=\frac{1}{\sqrt{2}}(|+\rangle \otimes|-\rangle \pm|-\rangle \otimes|+\rangle)
$$

be the Bell basis in $\mathcal{H}_{i} \otimes \mathcal{H}_{j}, i, j=X, A, B$. Let $\phi_{X} \in \mathcal{H}_{X}$ be given and assume that the system $\mathcal{H}_{X} \otimes \mathcal{H}_{A} \otimes \mathcal{H}_{B}$ is prepared in the state $\phi_{X} \otimes \varphi_{A B}^{+}$. Assume that we carry out a Bell state measurement on the system $\mathcal{H}_{X} \otimes \mathcal{H}_{A}$. Finde the state of the system B after this measurement for each of the possible results.

