Universität Leipzig, Institut für Theoretische Physik

Exercises in Advanced Quantum Mechanics

Due Thursday, November 6, 2014

6. We consider a system of two particles of spin $\frac{1}{2}$ in the pure state

$$|\varphi\rangle = \frac{1}{2\sqrt{2}} \left(\left| + \right\rangle \otimes \left| + \right\rangle + \left| - \right\rangle \otimes \left| - \right\rangle \right) + \frac{3}{2\sqrt{2}} \left(\left| + \right\rangle \otimes \left| - \right\rangle + \left| - \right\rangle \otimes \left| + \right\rangle \right)$$

- a) Determine the reduced density operators $\rho^{(1)}$ and $\rho^{(2)}$, as well as their eigenvalues and eigenvectors.
- **b)** Finde the Gram-Schmidt decomposition of $|\varphi\rangle$. Is $|\varphi\rangle$ entangled? Is it maximally entangled?
- c) Find two distinct purifications of $|\varphi\rangle$.

7. (Mandatory) We consider the tensor product $\mathcal{H}_X \otimes \mathcal{H}_A \otimes \mathcal{H}_B$ of two-dimensional Hilbert spaces. Let

$$\varphi_{ij}^{\pm} = \frac{1}{\sqrt{2}} \left(\left| + \right\rangle \otimes \left| + \right\rangle \pm \left| - \right\rangle \otimes \left| - \right\rangle \right), \qquad \psi_{ij}^{\pm} = \frac{1}{\sqrt{2}} \left(\left| + \right\rangle \otimes \left| - \right\rangle \pm \left| - \right\rangle \otimes \left| + \right\rangle \right)$$

be the Bell basis in $\mathcal{H}_i \otimes \mathcal{H}_j$, i, j = X, A, B. Let $\phi_X \in \mathcal{H}_X$ be given and assume that the system $\mathcal{H}_X \otimes \mathcal{H}_A \otimes \mathcal{H}_B$ is prepared in the state $\phi_X \otimes \varphi_{AB}^+$. Assume that we carry out a Bell state measurement on the system $\mathcal{H}_X \otimes \mathcal{H}_A$. Finde the state of the system B after this measurement for each of the possible results.