Exercises in Advanced Quantum Mechanics

Due Thursday, October 30, 2014

3. (Mandatory) We consider a system of two particles of spin $\frac{1}{2}$, each described by the two-dimensional one-particle Hilbert space \mathcal{H}. Let $| \pm\rangle \in \mathcal{H}$ denote the eigenvectors of the spin operator \hat{S}_{3}.
a) Show that the vectors

$$
\begin{equation*}
\varphi^{ \pm}=\frac{1}{\sqrt{2}}(|+\rangle \otimes|+\rangle \pm|-\rangle \otimes|-\rangle), \quad \psi^{ \pm}=\frac{1}{\sqrt{2}}(|+\rangle \otimes|-\rangle \pm|-\rangle \otimes|+\rangle) \tag{1}
\end{equation*}
$$

form an orthonormal basis of maximally entangled vectors (Bell basis) in $\mathcal{H} \otimes \mathcal{H}$.
b) Find out how the spin operators $\hat{\vec{S}} \otimes \mathbb{1}$ and $\mathbb{1} \otimes \hat{\vec{S}}$ act on these vectors.
c) Show that $\hat{S}_{1} \otimes \hat{S}_{1}$ and $\hat{S}_{3} \otimes \hat{S}_{3}$ commute. Give a physical interpretation of these two observables.
4. Let \hat{A}_{i} and $\hat{B}_{i}, i=1,2$, be observables having pure eigenvalue spectrum with eigenvalues between -1 and 1 and satisfying $\left[A_{i}, B_{j}\right]=0$ for $i, j=1,2$.
a) Show that in every state $\hat{\rho}$, the Bell correlation has the upper bound

$$
\begin{equation*}
\operatorname{tr}\left(\hat{\rho}\left(\hat{A}_{1}\left(\hat{B}_{1}+\hat{B}_{2}\right)+\hat{A}_{2}\left(\hat{B}_{1}-\hat{B}_{2}\right)\right)\right) \leq 2 \sqrt{2} . \tag{2}
\end{equation*}
$$

Hint. Show that the operators

$$
\hat{A}=\frac{1}{2}\left(\hat{A}_{1}+i \hat{A}_{2}\right), \quad \hat{B}=\frac{1}{2 \sqrt{2}}\left(\left(\hat{B}_{1}+\hat{B}_{2}\right)+i\left(\hat{B}_{1}-\hat{B}_{2}\right)\right)
$$

satisfy $\hat{A}^{\dagger} \hat{A}+\hat{A} \hat{A}^{\dagger} \leq \mathbf{1}$ and $\hat{B}^{\dagger} \hat{B}+\hat{B} \hat{B}^{\dagger} \leq \mathbf{1}$. Use this and the obvious inequality $(A-B)^{\dagger}(A-B)+(A-B)(A-B)^{\dagger} \geq 0$ to prove

$$
\hat{A}_{1}\left(\hat{B}_{1}+\hat{B}_{2}\right)+\hat{A}_{2}\left(\hat{B}_{1}-\hat{B}_{2}\right) \leq 2 \sqrt{2} \mathbb{1}
$$

b) Consider a system of two particles of spin $\frac{1}{2}$. Let

$$
\hat{A}_{i}=\sigma_{i} \otimes \mathbb{1}, \quad \hat{B}_{1}=\frac{1}{\sqrt{2}} \mathbb{1} \otimes\left(\sigma_{1}+\sigma_{2}\right), \quad \hat{B}_{2}=\frac{1}{\sqrt{2}} \mathbb{1} \otimes\left(\sigma_{1}-\sigma_{2}\right)
$$

and let $\hat{\rho}$ be the density operator corresponding to the pure state

$$
|\psi\rangle=\frac{1}{\sqrt{2}}(|+\rangle \otimes|-\rangle+|-\rangle \otimes|+\rangle) .
$$

Show that in this case one has equality in Formula (2).
5. We consider a system of two particles, described by the Hilbert spaces $\mathcal{H}^{(1)}$ and $\mathcal{H}^{(2)}$. Let $\hat{A}_{1}^{(1)}, \hat{A}_{2}^{(1)}$ and $\hat{B}_{1}^{(2)}, \hat{B}_{2}^{(2)}$ be commuting observables on $\mathcal{H}^{(1)}$ and $\mathcal{H}^{(2)}$, respectively, having pure eigenvalue spectrum with eigenvalues between -1 and 1 . Define

$$
\hat{A}_{i}:=\hat{A}_{i}^{(1)} \otimes \mathbb{1}, \quad \hat{B}_{i}:=\mathbb{1} \otimes \hat{B}_{i}^{(2)}, \quad i=1,2 .
$$

Show that for a separable state $\hat{\rho}$ of the coupled system $\mathcal{H}^{(1)} \otimes \mathcal{H}^{(2)}$, the Bell correlation has the upper bound

$$
\operatorname{tr}\left(\hat{\rho}\left(\hat{A}_{1}\left(\hat{B}_{1}+\hat{B}_{2}\right)+\hat{A}_{2}\left(\hat{B}_{1}-\hat{B}_{2}\right)\right)\right) \leq 2 .
$$

(This means that separable states do not violate the Bell inequality.)

