Exercises in Advanced Quantum Mechanics

Due Thursday, October 23, 2014

1. Let \mathcal{H} and \mathcal{H}^{\prime} be Hilbert spaces, let \hat{A} and \hat{C} be bounded linear operators on \mathcal{H} and let \hat{B}, \hat{D} be bounded linear operators on \mathcal{H}^{\prime}. Verify the following formulae.
a) $(\hat{A} \otimes \hat{B})(\hat{C} \otimes \hat{D})=\hat{A} \hat{C} \otimes \hat{B} \hat{D}$.
b) $(\hat{A} \otimes \hat{B})^{\dagger}=\hat{A}^{\dagger} \otimes \hat{B}^{\dagger}$.
c) If $\hat{A} \geq 0$ and $\hat{B} \geq 0$, then $\hat{A} \otimes \hat{B} \geq 0$
d) If \hat{A} and \hat{B} are bounded, then $\hat{A} \otimes \hat{B}$ is bounded and satisfies $\|\hat{A} \otimes B\|=\|\hat{A}\|\|\hat{B}\|$.
e) If \hat{A} and \hat{B} are trace class operators, then $\hat{A} \otimes \hat{B}$ is a trace class operator and one has $\operatorname{tr}(\hat{A} \otimes \hat{B})=\operatorname{tr}(\hat{A}) \operatorname{tr}(\hat{B})$.

Hint. A bounded linear operator A on \mathcal{H} is of trace class if the series $\sum_{n}\left\langle\varphi_{n} \mid A \varphi_{n}\right\rangle$ converges absolutely for some orthonormal basis $\left\{\varphi_{n}\right\}$ in \mathcal{H}. In this case, the series converges for every orthonormal basis and the limit does not depend on the basis. The trace $\operatorname{tr}(A)$ is defined by this limit.
2. (Mandatory) Consider a system consisting of two particles of spin $\frac{1}{2}$. Let $\hat{S}^{(i)}, i=1,2$, denote the spin operators of the single particles, given by

$$
\hat{S}_{x}^{(i)}=\frac{\hbar}{2}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad \hat{S}_{y}^{(i)}=\frac{\hbar}{2}\left[\begin{array}{cc}
0 & -\mathrm{i} \\
\mathrm{i} & 0
\end{array}\right], \quad \hat{S}_{z}^{(i)}=\frac{\hbar}{2}\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

and let

For arbitrary vectors $\vec{a}, \vec{b} \in \mathbb{R}^{3}$, determine the expectation values of the observables

$$
\left(2 \vec{a} \cdot \hat{\vec{S}}^{(1)}\right) \otimes \mathbb{1}, \quad \mathbb{1} \otimes\left(2 \vec{b} \cdot \hat{\vec{S}}^{(2)}\right), \quad\left(2 \vec{a} \cdot \hat{\vec{S}}^{(1)}\right) \otimes\left(2 \vec{b} \cdot \hat{\vec{S}}^{(2)}\right)
$$

in the singlet state $|\phi\rangle=\frac{1}{\sqrt{2}}(|+\rangle \otimes|-\rangle \quad-\quad|-\rangle \otimes|+\rangle)$.

