Universität Leipzig, Institut für Theoretische Physik

Prof. Dr. Gerd Rudolph

Exercises in Advanced Quantum Mechanics

Due Thursday, October 23, 2014

1. Let \mathcal{H} and \mathcal{H}' be Hilbert spaces, let \hat{A} and \hat{C} be bounded linear operators on \mathcal{H} and let \hat{B} , \hat{D} be bounded linear operators on \mathcal{H}' . Verify the following formulae.

- a) $(\hat{A} \otimes \hat{B})(\hat{C} \otimes \hat{D}) = \hat{A}\hat{C} \otimes \hat{B}\hat{D}.$
- b) $(\hat{A} \otimes \hat{B})^{\dagger} = \hat{A}^{\dagger} \otimes \hat{B}^{\dagger}.$
- c) If $\hat{A} \ge 0$ and $\hat{B} \ge 0$, then $\hat{A} \otimes \hat{B} \ge 0$
- d) If \hat{A} and \hat{B} are bounded, then $\hat{A} \otimes \hat{B}$ is bounded and satisfies $\|\hat{A} \otimes B\| = \|\hat{A}\| \|\hat{B}\|$.
- e) If \hat{A} and \hat{B} are trace class operators, then $\hat{A} \otimes \hat{B}$ is a trace class operator and one has $\operatorname{tr}(\hat{A} \otimes \hat{B}) = \operatorname{tr}(\hat{A}) \operatorname{tr}(\hat{B})$.

Hint. A bounded linear operator A on \mathcal{H} is of trace class if the series $\sum_{n} \langle \varphi_n | A \varphi_n \rangle$ converges absolutely for some orthonormal basis $\{\varphi_n\}$ in \mathcal{H} . In this case, the series converges for every orthonormal basis and the limit does not depend on the basis. The trace tr(A) is defined by this limit.

2. (Mandatory) Consider a system consisting of two particles of spin $\frac{1}{2}$. Let $\hat{S}^{(i)}$, i = 1, 2, denote the spin operators of the single particles, given by

$$\hat{S}_x^{(i)} = \frac{\hbar}{2} \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix}, \qquad \hat{S}_y^{(i)} = \frac{\hbar}{2} \begin{bmatrix} 0 & -\mathbf{i}\\ \mathbf{i} & 0 \end{bmatrix}, \qquad \hat{S}_z^{(i)} = \frac{\hbar}{2} \begin{bmatrix} 1 & 0\\ 0 & -1 \end{bmatrix}$$

and let

$$|+\rangle = \begin{bmatrix} 1\\ 0 \end{bmatrix}, \qquad |-\rangle = \begin{bmatrix} 0\\ 1 \end{bmatrix}$$

For arbitrary vectors $\vec{a}, \vec{b} \in \mathbb{R}^3$, determine the expectation values of the observables

$$(2\vec{a}\cdot\hat{\vec{S}}^{(1)})\otimes\mathbb{1}\,,\qquad \mathbb{1}\otimes(2\vec{b}\cdot\hat{\vec{S}}^{(2)})\,,\qquad (2\vec{a}\cdot\hat{\vec{S}}^{(1)})\otimes(2\vec{b}\cdot\hat{\vec{S}}^{(2)})$$

in the singlet state $|\phi\rangle = \frac{1}{\sqrt{2}} \Big(|+\rangle \otimes |-\rangle - |-\rangle \otimes |+\rangle \Big).$