Zusatzaufgaben Theoretische Elektrodynamik

Abgabe am 18.07.2013 vor der Vorlesung

39. Bestimmen Sie die allgemeine Lösung der Maxwell-Gleichungen im Innern eines quaderförmigen Hohlraums im Vakuum mit den Seitenlängen L_1 , L_2 , L_3 und mit ideal leitenden geerdeten Wänden (Hohlraumresonator).

Hinweis: Lösen Sie die Wellengleichung für $\vec{E}(\vec{r},t)$ durch Separation der Variablen und Auswertung der Randbedingungen. Stellen Sie das Ergebnis als Überlagerung monochromatischer ebener Wellen dar und bestimmen Sie daraus $\vec{B}(\vec{r},t)$.

41. Wir betrachten Reflexion und Brechung ebener monochromatischer Wellen an einer ebenen Grenzfläche zweier Medien mit den Brechungsindizes n und n'. Bezeichne α bzw. β den Winkel zwischen der Grenzflächennormalen und der Ausbreitungsrichtung der einfallenden bzw. transmittierten Welle und \vec{E}_0 , \vec{E}'_0 bzw. \vec{E}''_0 die Amplitude der einfallenden, der transmittierten bzw. der reflektierten Welle. Zeigen Sie, daß für die Projektionen auf die Grenzflächennormale

$$\frac{|(\vec{E}_0'')_{\perp}|}{|(\vec{E}_0)_{\perp}|} = \frac{\cos\alpha - \frac{n'}{n}\cos\beta}{\cos\alpha + \frac{n'}{n}\cos\beta}, \qquad \qquad \frac{|(\vec{E}_0')_{\perp}|}{|(\vec{E}_0)_{\perp}|} = \frac{2\cos\alpha}{\cos\alpha + \frac{n'}{n}\cos\beta}$$

und für die Projektionen auf die Grenzfläche

$$\frac{|(\vec{E}_0'')_{\parallel}|}{|(\vec{E}_0)_{\parallel}|} = \frac{\frac{n'}{n}\cos\alpha - \cos\beta}{\frac{n'}{n}\cos\alpha + \cos\beta}, \qquad \qquad \frac{|(\vec{E}_0')_{\parallel}|}{|(\vec{E}_0)_{\parallel}|} = \frac{2\cos\alpha}{\frac{n'}{n}\cos\alpha + \cos\beta}$$

gilt (Fresnel-Formeln).

41. Wir betrachten eine Ladung q, die sich mit konstanter Winkelgeschwindigkeit ω auf einer Kreisbahn mit dem Radius R bewegt. Berechnen Sie die mittlere Strahlungsleistung in Dipolnäherung.

Hinweis: Benutzen Sie die aus der Vorlesung bekannte Formel

$$\vec{B}(\vec{r},t)^2 = \left(\frac{\mu_0}{4\pi c r}\right)^2 \left(\ddot{\vec{p}}(t_r)^2 - \left(\ddot{\vec{p}}(t_r) \cdot \frac{\vec{r}}{r}\right)^2\right), \qquad t_r = t - \frac{r}{c}$$

wobei \vec{p} das Dipolmoment bezeichnet und der Koordinatenursprung im Kreismittelpunkt liegt.