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Introduction

Proteins are highly specialised macromolecules performing essential functions in a biological
system, such as controlling transport processes, stabilisation of the cell structure, enzymatic
catalysation of chemical reactions, etc. Chemically, proteins are build up as sequences of
N ∼ 50, . . . , 3000 amino acid residues linked by peptide bonds. All proteins are composed
of 20 different types of amino acids. The particular consecutiveness of amino acids in a pro-
tein, also referred to as primary structure, is encoded in the DNA of the organism [1]. This
sequence is responsible for the formation of a stable and unique native conformation. The
three-dimensional structure itself, also called the tertiary structure, determines the biological
function of a protein. Anfinsen’s refolding experiments [2] showed that the native confor-
mation is not a result of the synthetisation process of the protein. Rather, it is an intrinsic
property of the amino acid sequence. Therefore, a certain sequence of amino acids must
uniquely lead to the three-dimensional, biologically relevant structure of the associated pro-
tein. I.e. physical forces, e.g. complex electrostatic and Van-der-Waals interactions between
atoms, molecules, and the surrounding solvent, are primarily responsible for the native fold.

Since 2001, the whole human genome is sequenced [3]. According to the hitherto con-
siderations, this information is sufficient for gaining an outstanding deep understanding of
the human body, at least in principle. The consequences are of essential significance, e.g.,
for drug designing. Unfortunately, the connection of the primary structure and the tertiary
structure is not yet understood. Since proteins are very complex macromolecules consisting of
hundreds to thousands of atoms, the free-energy landscape of a protein is expected to be very
rugged, with many local minima and, for stability and uniqueness, a deep, funnel-like global
energy minimum [4]. The folding process of a protein into this minimum takes milliseconds to
seconds and raises many questions. Currently, even with enormous computer power it is only
possible to cover time scales of the order of nanoseconds in Molecular Dynamics simulations
including all atoms of a protein.

Although it is known that characteristic atomic interactions are very important for protein
folds, e.g., the formation of hydrogen bonds which are responsible for secondary structures
(helices, sheets, hairpins), coarse-grained models can play an important role in understanding
qualitative properties of complex heteropolymers. One of these coarse-grained models, the
AB model [5, 6], is mainly studied within this work. However, it is slightly modified from stiff
to flexible bonds for technical reasons when applying Molecular Dynamics simulations. The
model and the mentioned alteration are motivated and described in chapter 1. Furthermore,
the potential is differentiated to derive the forces which act in the system, which is necessary
to apply Molecular Dynamics simulation techniques.

There are two big classes of computer simulations, which are extensively employed to study
protein folding: Monte Carlo and Molecular Dynamics simulations. Both have assets and
drawbacks. However, it is not clear whether the results of these different types of simulations
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2 INTRODUCTION

are really comparable, since the dynamics of the employed algorithms is significantly different.
One of the main goals of the work at hand is to thoroughly compare the outcome of Monte
Carlo and Molecular Dynamics simulations.

Unlike Monte Carlo, Molecular Dynamics in its simplest form leaves the total energy of a
system constant. Thus, the simulation would be carried out in the microcanonical ensemble.
For the comparison with Monte Carlo, the concept of temperature has to be introduced,
which leads to a simulation in the canonical ensemble, with given volume V , number of
particles N , and temperature T (the so-called NVT ensemble). For this purpose, thermostat
algorithms are applied to the classic simulation. Chapter 2 first explains the basic principles
of Molecular Dynamics at finite temperature. Afterwards, two common thermostats, the
Andersen thermostat [7] and the Nosé-Hoover-Chain thermostat [8, 9, 10] are explained and
applied to simple model systems for testing purposes.

Over the years, a variety of sophisticated improvements of the simplest Monte Carlo
method, the Metropolis algorithm [11], has been developed. This work utilises the so-called
parallel tempering approach [12], which is briefly introduced in chapter 3. Furthermore,
important concepts in the analysis of statistical data are treated therein. Finally, quantities
are defined, which are important when investigating the AB protein model.

Chapter 4 covers the detailed examination of the model system with both Monte Carlo
and Molecular Dynamics simulations. After the adjustment of the Monte Carlo method and
an analysis of the statistical properties, several investigations are carried out concerning the
general thermodynamic behaviour of the model system and the impact of certain parame-
ters. Afterwards, similar computer experiments are performed with Molecular Dynamics by
applying a preliminarily adjusted thermostat. The initial question of the comparableness of
Monte Carlo and Molecular Dynamics is investigated concerning thermodynamic quantities.
Furthermore, general statements about dynamics and time scales of the two classes of simu-
lations with respect to the considered systems are made. Finally, the structural behaviour of
the model in Molecular Dynamics is examined by studying free-energy landscapes.

From experiment it is known that three successive bonds in polymers are likely to have
certain alignments. In particular, there are preferred values for the torsion angle formed by
such three bonds. It is possible to introduce an additional potential term in the considered
model to take these experiences into account. It turns out that while the integration of this
additional potential does not yield any problem in the Monte Carlo simulation, it implies
serious difficulties in Molecular Dynamics. An in-depth description of torsion and the imple-
mentation to the already applied simulation methods can be found in chapter 5. Afterwards,
the extended system is studied with Monte Carlo methods. Again, the most important as-
pect is the comparability of the results from Monte Carlo and Molecular Dynamics, which
concludes the considerations.

In the concluding summary, the most important findings of the work are presented. Fi-
nally, interesting starting points for further investigations are pointed out.



Chapter 1

The “AB” Heteropolymer Model

In this chapter, the mainly considered coarse-grained protein “AB” model shall be intro-
duced. Since all forthcoming considerations like the applied simulation techniques or the
measured quantities strongly depend on the type of examined system, this introduction is
brought forward to the beginning of the thesis. After describing the involved potential energy
contributions, the technical details like the cartesian transcription of the energy terms and
the calculation of the forces for the Molecular Dynamics simulations are approached.

1.1 Introduction

The investigation of protein folding has been a challenging topic of research for decades.
Up to now, real proteins are far too complex to involve every aspect in a whole folding
simulation, although the computer power is growing exponentially. Therefore, researchers
have always considered simplified models which are suitable for the available computer power
and implied some major properties of proteins. One of these simplified models is the HP-
model, which was first described by Dill [13]. It features a chain of two types of monomers,
where the H type depicts a hydrophobic amino acid and the P type is a hydrophilic amino
acid. The chain is simulated on a lattice. The hydrophobic and hydrophilic effect is simply
induced by energetically favouring configurations, where non-bonded H monomers are residing
on neighbouring lattice sites. Therefore it can be expected (and is observed) that for low
temperatures a core of H monomers evolves, which is surrounded by P monomers. In nature,
hydrophobic amino acids will also form a dense core and the hydrophilic amino acids will
provide a shell. However, this effect is not intrinsically induced, but by the presence of the
surrounding medium: water.

The introduction of the AB model by Stillinger [5, 6] made it possible to examine the
properties of systems similar to the HP-model, which are not restricted to a lattice. Again,
the system consists of a chain of two types of monomers: hydrophobic (A) and hydrophilic
(B). Next neighbours along the chain are considered to be chemically bound and have a fixed
distance (unit length for simplicity). In the original papers, the model was discussed in two
dimensions. But without any alteration, it could be adapted to three dimensions [14, 15].
The adaption of the model which is utilised within this work, is described in detail in the
following.

3



4 CHAPTER 1. THE “AB” HETEROPOLYMER MODEL

b1
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b2

ϑ1
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ELJ ELJ
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Figure 1.1: Sketch of a heteropolymer in two dimensions. The two types of monomers of the AB
model are drawn with hollow and solid circles. The chemical bonds are the thick solid lines. The
correct measurement of the bond angles is denoted. The symbols of the monomer positions (ri), bond
vectors (bi) and bond angles (ϑi) are given. Furthermore, the action of the Lennard-Jones potential
contribution described in the text is indicated for two cases.

1.2 Detailed Description

As already mentioned, in the AB model a chain of two types of monomers – A and B – is
considered. The number of monomers is denoted with N in the following. In Table 1.I some
sequences are given, which have been already investigated in several references and were thus
chosen to do the studies in this work.

Figure 1.1 visualises such a chain in two dimensions for the purpose of clarity, but the
scheme can be adapted to three dimensions without alteration. The position of each monomer
i ∈ {1, . . . , N} is written as ri in the following. The whole structural information about a
configuration is given, if all position vectors ri are known. A certain structure is denoted with
X = (r1, . . . , rN ).

Two successive monomers are considered to be chemically bound. In nature, these bonds
are peptide bonds. Since each monomer in the model stands for a whole amino acid, the
whole peptide bond is described by one bond vector between two successive monomers. The
N −1 bond vectors are bi = ri+1−ri. The length of these bonds will be simply referred to as
bi. In the original work all bond lengths bi are fixed to unit length. In the work at hand, this
is not the case. The reason for this modification will be explained later. To point out this
difference, the total potential is denoted with VABFB below, where ABFB means “AB model
with Flexible Bonds”.

The angle between two successive bond vectors is referred to as bond angle, and the symbol
is ϑi = ∠(bi,bi+1). Straightforward, the number of bond vectors is N − 2.

The total potential energy of the model consists of several contributions, which will be
explained in detail in the following:

VABFB(X) = Vbond(X) + Vbend(X) + VLJ(X) . (1.1)
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Flexible Bonds

The main difference between the classical AB model and the considered one in this work is,
as already mentioned, the introduction of flexible bonds:

Vbond(X) = αr

N−1∑

k=1

(bk − r0)
2 , (1.2)

where αr denotes the strength of the bond and r0 the equilibrium bond length. In analogy to
the original model the choice for the latter is r0 = 1. The reason for this modification is that
one of the goals of this project is to simulate the AB model with both Monte Carlo simulations
(see chapter 3) and Molecular Dynamics (see chapter 2). In Monte Carlo simulations, the
introduction of constraints – like fixed bond lengths – is not a big problem. This is explained
in more detail in section 4.1. In Molecular Dynamics, the motion of the particles of a system is
guided by the Newtonian forces, i.e. by the potential energy gradient. In cartesian coordinates
(see section 1.4), the gradient of Vbend + VLJ of some monomer ri will not be tangential with
respect to a spherical shell around ri−1, i.e., the bond lengths will change in each step. The
only analytical method to prevent this is to use a different type of coordinate system, where
the bond lengths are intrinsically fixed, but this is extremely complicated. A short discussion
of this issue can be found in section 5.3.2.

However, it is possible to introduce constraints in Molecular Dynamics simulations. It
is inevitable to use an iterative algorithm after each MD time step to, e.g., keep the bond
lengths fixed. The two most popular methods are the Shake [18] and the slightly improved
Rattle [19] algorithm. As already stated, both require an iterative loop after each MD step
and do thus not only seriously complicate the whole MD implementation, but also provoke
an extensive slow-down.

Therefore, it was decided to replace the stiff bonds from the original model by strong,
but flexible bonds. The impact of this alteration especially for large αr (i.e. for rather strong
bonds) is studied in more detail in the next section.

Table 1.I: Sequences, as they were already used in several references [15, 16, 17].

No. Sequence #A

20.1 BAAAAAABAAAABAABAABB 14

20.2 BAABAAAABABAABAAAAAB 14

20.3 AAAABBAAAABAABAAABBA 14

20.4 AAAABAABABAABBAAABAA 14

20.5 BAABBAAABBBABABAABAB 10

20.6 AAABBABBABABBABABABA 10

34 ABBABBABABBABBABABBABABBABBABABBAB 13

55 BABABBABABBABBABABBABABBABBABABBABBABABBABABBABBABABBAB 21



6 CHAPTER 1. THE “AB” HETEROPOLYMER MODEL

AB

BB

AA

rij
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J

21.81.61.41.21
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Figure 1.2: The Lennard-Jones potential is plot-
ted for the three types of interaction as given in
(1.5). If two monomers are of equal type, the in-
teraction is attractive except for the steric repul-
sion for very small distances. Unequal monomers
act completely repulsive.

Figure 1.3: Minimal energy structure of the 55mer
as listed in Table 1.I. Dark spheres depict A
monomers, while B monomers are visualised by
light spheres. The evident property of the AB
model is that A monomers form a dense core,
while B monomers provide a shell. This is compa-
rable to hydrophobic and hydrophilic amino acids
in real proteins.

Bending Potential

The AB model implies a potential in dependence of the bond angles ϑi:

Vbend(R) =
1

4

N−2∑

k=1

(1 − cos ϑk) . (1.3)

With respect to a single bond angle, the domain is Vbond ∈ [0, 1/2]. The energetically most
preferable state is ϑ = 0, i.e. the two bonds are parallel. Thus, the bending potential favours
the elongated chain.

Lennard-Jones Interaction

The character of the AB model mainly originates from a Lennard-Jones-like interaction:

VLJ(R) = 4
N−2∑

k=1

N∑

l=k+2

(
1

r12
kl

− C(σk, σl)

r6
kl

)

, (1.4)

C(σk, σl) =







+1, if σk = σl = A,

+1/2, if σk = σl = B,

−1/2, if σk 6= σl .

(1.5)

It acts between any two monomers which are not bound, i.e. which are not next neighbours
in the chain (in Fig. 1.1 only the A-A interactions are drawn). The function C(σk, σl) alters
the potential with respect to the types of the two monomers.

Figure 1.2 shows the three cases of interaction. The potential is attractive for monomers
of equal type and repulsive otherwise. However, the fact that two A monomers attract each
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other more than two B monomers is the cause for the arising low energy structures. The A
monomers form a dense core, while the B monomers arrange like an outer shell. Exemplary,
Fig. 1.3 shows the structure with the lowest potential energy that has been found during a
parallel tempering simulation (see chapter 3) of the sequence with 55 monomers from Table
1.I.

For a deeper analysis of the arising low energy structures it is expedient to evaluate the
minima of VLJ, and the distances where they are found:

0
!
=

∂

∂r
4
(
r−12 − Cr−6

)
∣
∣
∣
∣
r=rmin

= 4
(
−12r−13

min + 6Cr−7
min

)
,

⇒ rmin =

(
2

C

) 1
6

, (1.6)

VLJ(rmin) = 4

(
C2

4
− C2

2

)

= −C2 . (1.7)

For a A-A interaction, the minimum is thus VLJ(rmin) = −1 at rmin = 2
1
6 ≈ 1.12. For a B-B

interaction, the minimum is VLJ(rmin) = −0.25 at rmin = 4
1
6 ≈ 1.26.

1.3 Influence of Flexible Bonds

As explained, the flexible bonds are introduced to get around technical problems that con-
straints induce in a Molecular Dynamics simulation. Therefore, the impact of Vbond in general
has to be taken as artificial. Thus, it is interesting, what the particular effect of the flexible
bonds is, compared to the case with fixed bonds. The hope is that for strong bonds (large
αr), the behaviour of the whole system is similar to the fixed bond case.

Although the flexible bonds are realized by introducing a harmonic bond potential, the
particular case is different from the one-dimensional harmonic oscillator as calculated in sec-
tion 2.3: Vbond denotes a three-dimensional harmonic oscillator. Therefore, the contribution
of one bond to the heat capacity is not CV = kB like for the one-dimensional case (compare
(2.37)). By assuming independent bonds, it is enough to treat one bond:

Zbond =

∞∫

−∞

dbx

∞∫

−∞

dby

∞∫

−∞

dbz exp

[

−βαr

(

r0 −
√

b2
x + b2

y + b2
z

)2
]

=

2π∫

0

dϕ

π∫

0

dϑ sin ϑ

︸ ︷︷ ︸

4π

∞∫

0

dr r2 exp
[

−βαr (r0 − r)2
]

=
π

α2
rβ

2

[

2αrβr0 exp
[
−αrβr2

0

]
+
√

παrβ(1 + 2αrβr2
0)(1 + erf

[√

αrβr2
0

]

)

]

, (1.8)

CV,bond = kBβ2 ∂2

∂β2
ln Zbond

= kB
h(x)

[
10
√

x + 4x3/2 + h(x) (3 + 4x(3 + x))
]

2 [2
√

x + h(x) (1 + 2x)]
2 ,

x = αrβr2
0 , h(x) = ex√π(1 + erf

[√
x
]
) . (1.9)
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Figure 1.4: Analytic result of the specific heat
contribution of Vbond according to (1.9) for differ-
ent bond strength αr, r0 = kB = 1. The asymp-
totic behaviour for rather strong bonds can be
seen (CV → kB/2).

αr = 50; CV − CV,bond

αr = 50

fixed bonds

T

C
V

10.80.60.40.2

3.5

3

2.5

2

1.5

1

0.5

0

Figure 1.5: Specific heat of an AB model sys-
tem with sequence 20.4 from Table 1.I (also see
chapter 4). The simulation with fixed bonds is
visualised with the solid line and flexible bonds
(αr = 50) with the long-dashed line. The chain
dotted line shows the subtraction of the bond con-
tribution from the total specific heat for flexible
bonds. The comparison with the solid line (fix
bonds) shows only minor discrepancies.

The asymptotic behaviour for strong bonds, i.e. large αr, is interesting. Because β > 0 and
r0 > 0 this means: x = αrβr2

0 → ∞. It holds:

lim
x→∞

erf
[√

x
]

= 1 . (1.10)

Considering only the leading contribution in each term, the asymptotic behaviour can be
found:

h(x)
αr→∞−→ 2

√
πex

CV,bond
αr→∞−→ kB

2

h(x)
(
h(x)4x2

)

(h(x)2x)2
=

kB

2
. (1.11)

It is interesting that even for an infinitely large bond strength, the fact that the bonds are
systematically flexible can be clearly seen by an increase of the specific heat by kB/2. Figure
1.4 visualises the outcome of (1.9) and (1.11). The stronger the bonds are, the closer is the
specific heat to kB/2 (kB = 1 in this case). From Fig. 1.5 it can be seen that for large αr

the specific heat of the system with fixed bonds is reproduced acceptably, subtracting the
pure contribution of the bonds to the specific heat. Therefore it is reasonable to examine the
system with flexible bonds (with an adequate choice of αr, e.g. αr = 50) and compare the
data to results of simulations with conceptually rigid bonds. This topic is discussed in more
detail in section 4.1.3.

1.4 Cartesian Formulation of the Potential Terms

In the Molecular Dynamics simulation the only significant information is the set of instanta-
neous monomer positions and velocities. The potential energy depends on the steric config-
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uration R only. Thus all contributions of the potential energy and the corresponding forces
must be expressed in terms of the position vectors of the monomers ri.
First the harmonic bond potential (1.2) is treated:

Vbond(R) = αr

N−1∑

k=1

(bk − r0)
2 = αr

N−1∑

k=1

(√

bk · bk − r0

)2

= αr

N−1∑

k=1

(√

(rk+1 − rk) · (rk+1 − rk) − r0

)2
. (1.12)

The Lennard-Jones like potential term (1.4) can be written as:

VLJ(R) = 4
N−2∑

k=1

N∑

l=k+2

(
1

r12
kl

− C(σk, σl)

r6
kl

)

= 4
N−2∑

k=1

N∑

l=k+2

(

1
√

(rl − rk) · (rl − rk)
12 − C(σk, σl)

√

(rl − rk) · (rl − rk)
6

)

= 4
N−2∑

k=1

N∑

l=k+2

1

((rl − rk) · (rl − rk))
3

(
1

((rl − rk) · (rl − rk))
3 − C(σk, σl)

)

. (1.13)

For the bond angle potential term (1.3) the following property of the scalar product of two
vectors is used:

a · b = |a||b| cos (∠ (a,b)) . (1.14)

With this it is possible to rewrite the cos ϑ as the normalised scalar product of the two
successive bond vectors that enclose ϑ. The normalisation is necessary because, as mentioned
above, the bond length is not fixed to unit length in this work:

Vbend(R) =
1

4

N−2∑

k=1

(1 − cos ϑk) =
1

4

N−2∑

k=1

(

1 − bk · bk+1
√

(bk · bk)(bk+1 · bk+1)

)

=
1

4

N−2∑

k=1

(

1 − (rk+1 − rk) · (rk+2 − rk+1)
√

((rk+1 − rk) · (rk+1 − rk)) ((rk+2 − rk+1) · (rk+2 − rk+1))

)

.

(1.15)

1.5 Derivation of Forces

While a Monte Carlo Markov chain simulation is driven by the potential energy only, for
a Molecular Dynamics simulation the Newtonian forces have to be known (see chapter 2),
which are the negative gradients of the implied potential terms:

F = −∇U(rN ) . (1.16)

In the following, the forces of the previously introduced potential contributions shall be derived
in Cartesian coordinates. Some preparations will help with the explicit calculations later.
From section 1.4 it can be seen that all the potential terms are fully dependent on differences
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of position vectors of monomers. So while differentiating the potentials with respect to these
position vectors, terms of the following forms will be frequently faced:

∇a (b − a) · (b − a) = ∇a (b − a)2 = −2 (b − a) , (1.17)

∇b (b − a) · (b − a) = ∇b (b − a)2 = 2 (b − a) , (1.18)

∇a (b − a) · (d − c) = − (d − c) , (1.19)

∇b (b − a) · (d − c) = (d − c) , (1.20)

∇b (b − a) · (c − b) = (c − b) − (b − a) . (1.21)

While Vbond and VLJ are two-body potentials, it is easy to see that Vbend is a three-body
potential, since all bond angles incorporate the positions of three monomers. Therefore the
positions of the monomers i ∈ {3, . . . , N−2} arise in 3 terms of the whole sum, which leads to
the conclusion that also the corresponding force will consist of three more or less independent
terms. Analogously, it is expected that the bond potential and the Lennard-Jones potential
will have the least complicated derivatives and would be a good point to start. The different
terms of the force always arise from the fact that for different summands k of a potential, one
specific monomer i can appear in a different position within the actual potential term. Thus
the derivative has to be calculated with respect to every included monomer k + n.
First the bond potential contribution to the total force shall be derived:

−∇rk

[

αr

(√

(rk+1 − rk)
2 − r0

)2
]

= −αr2

(√

b2
k − r0

)
1

2
√

b2
k

(−2 (rk+1 − rk))

= 2αr

(√

b2
k − r0

)
1

√

b2
k

bk

= 2αrbk

(

1 − r0

bk

)

, (1.22)

−∇rk+1

[

αr

(√

(rk+1 − rk)
2 − r0

)2
]

= −αr2

(√

b2
k − r0

)
1

2
√

b2
k

(2 (rk+1 − rk))

= −2αr

(√

b2
k − r0

)
1

√

b2
k

bk

= −2αrbk

(

1 − r0

bk

)

. (1.23)

The expressions in (1.22) and (1.23) are similar except for the algebraic sign. This property
corresponds to the “Actio=Reactio” principle of the Newtonian mechanics with respect to
the two involved monomers for every bond. It can be used later to speed up the calculation
in the implementation. Actually only one kind of term has to be evaluated. Summing up
both equations with i = k and i = k + 1 respectively, the bond force acting on monomer i
can be calculated:

Fbond i = 2αr

(

bi

(

1 − r0

bi

)

︸ ︷︷ ︸

i≤N−1

−bi−1

(

1 − r0

bi−1

)

︸ ︷︷ ︸

i≥2

)

. (1.24)
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Now the Lennard-Jones part of the potential shall be tackled:

−∇rk

[

4
(

((rl − rk) · (rl − rk))
−6 − C(σk, σl) ((rl − rk) · (rl − rk))

−3
)]

= −4

(

−6
(

(rl − rk)
2
)−7

− C(σk, σl)

(

−3
(

(rl − rk)
2
)−4

))

(−2 (rl − rk))

= −4 (rl − rk)
6

(

(rl − rk)
2
)4






2
(

(rl − rk)
2
)3 − C(σk, σl)




 , (1.25)

−∇rl

[

4
(

((rl − rk) · (rl − rk))
−6 − C(σk, σl) ((rl − rk) · (rl − rk))

−3
)]

= −4

(

−6
(

(rl − rk)
2
)−7

− C(σk, σl)

(

−3
(

(rl − rk)
2
)−4

))

(2 (rl − rk))

= 4 (rl − rk)
6

(

(rl − rk)
2
)4






2
(

(rl − rk)
2
)3 − C(σk, σl)




 . (1.26)

Again the only difference between (1.25) and (1.26) is the algebraic sign and only one term
of the specific kind will have to be calculated for each pair of non-bonded monomers in the
implementation, although it is still important to correctly collect the contributions to the
Lennard-Jones force for each monomer coming out of (1.25) and (1.26). Calculating the force
acting on monomer i means that in (1.25) k is fixed to k = i. Thus the first sum in (1.13) is
reduced to one summand k = i, whereas the second sum over l remains. The opposite is the
case for (1.26), where l = i:

FLJ i = 4

( i−2∑

j=1

F̃LJ ji

︸ ︷︷ ︸

i≥3

−
N∑

j=i+2

F̃LJ ij

︸ ︷︷ ︸

i≤N−2

)

,

F̃LJ ij = (rj − ri)
6

(

(rj − ri)
2
)4






2
(

(rj − ri)
2
)3 − C(σj , σi)




 . (1.27)

Now the gradient of the three-body bending potential term is of interest:

−∇rk

[

1

4

(

1 − (rk+1 − rk) · (rk+2 − rk+1)
√

(rk+1 − rk)2(rk+2 − rk+1)2

)]

= −1

4





−(rk+2 − rk+1)
√

b2
kb

2
k+1

− bk · bk+1

2
√

b2
kb

2
k+1

3

(
−2 (rk+1 − rk)b

2
k+1

)






= −1

4

1

bk

(
bk · bk+1

bkbk+1

bk

bk
− bk+1

bk+1

)

= F̃bend 1 k , (1.28)
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−∇rk+2

[

1

4

(

1 − (rk+1 − rk) · (rk+2 − rk+1)
√

(rk+1 − rk)2(rk+2 − rk+1)2

)]

= −1

4






(rk+1 − rk)
√

b2
kb

2
k+1

− bk · bk+1

2
√

b2
kb

2
k+1

3

(
b2

k 2 (rk+2 − rk+1)
)






= −1

4

1

bk+1

(
bk

bk
− bk · bk+1

bkbk+1

bk+1

bk+1

)

= F̃bend 2 k , (1.29)

−∇rk+1

[

1

4

(

1 − (rk+1 − rk) · (rk+2 − rk+1)
√

(rk+1 − rk)2(rk+2 − rk+1)2

)]

= −1

4






bk+1 − bk
√

b2
kb

2
k+1

− bk · bk+1

2
√

b2
kb

2
k+1

3

(
2bkb

2
k+1 − 2bk+1b

2
k

)






= −
(

F̃bend 1 k + F̃bend 2 k

)

. (1.30)

It makes sense that the force on monomer k + 1 coming from the kth bond angle is equal to
the sum of the negative corresponding forces on monomer k and k + 2. (1.28) – (1.30) result
in the total bending force acting on monomer i:

Fbend i = F̃bend 1 i
︸ ︷︷ ︸

i≤N−2

−
(

F̃bend 1 (i−1) + F̃bend 2 (i−1)

)

︸ ︷︷ ︸

i∈[2,N−1]

+ F̃bend 2 (i−2)
︸ ︷︷ ︸

i≥3

, (1.31)

with the definitions for F̃bend 1 k and F̃bend 2 k from (1.28) and (1.29).



Chapter 2

Molecular Dynamics at Finite

Temperature

The basic idea behind Molecular Dynamics is to numerically integrate the Newtonian equa-
tions of motion. From that point of view Molecular Dynamics should be capable to visualise
the exact evolution in time of the considered system. However, in practice it is hard to
verify that the trajectory calculated with a Molecular Dynamics simulation is similar to the
behaviour the system would show in reality. This is due to numerical errors during the simu-
lation on the one hand and crucially linked to the utilised algorithm on the other. Therefore,
Molecular Dynamics at finite temperature is to be seen as another computer-aided method
of statistical mechanics.

To gain experience in Molecular Dynamics, it was expedient to test some of the common
algorithms and get familiar with its behaviour. For this purpose the one-dimensional harmonic
oscillator was chosen as a trial system. Although it is a very simple system and does not hold
any potential energy traps, it has the big advantage that it is possible to calculate the exact
solution for most of the dynamic and thermodynamic quantities. This makes it perfect for
checking the correctness of results from certain computer simulations. For a more thorough
investigation, several simulations were carried out with the quartic double well potential. It
is also possible to analytically calculate solutions for several dynamic and thermodynamic
characteristics for this system. Still rather simple it “provides” a potential energy barrier,
which is illuminative for testing algorithms.

The first section is a collection of detailed thoughts about a frequently used approach
to derive Molecular Dynamics algorithms. Afterwards some exemplary microcanonical sim-
ulations are performed with an algorithm that is obtained in this way - the Störmer-Verlet
algorithm. In the third part, thermodynamic quantities of the already mentioned testing
systems are calculated analytically. Thereafter two common approaches for thermostating –
the Andersen and the Nosé-Hoover algorithm – are described the and simulations are carried
out utilising it to obtain the canonical ensemble.

2.1 Liouville Operator and Trotter Factorisation

Before starting to discuss several simulation methods in detail, a brief introduction to Li-
ouville’s formulation of classical mechanics shall be given. In combination with the Trotter
identity this approach can be used as a general tool to derive algorithms for the solution of

13
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coupled differential equations of motion. There are several very good references, where this
topic is explained [20, 21, 22]. However, some detailed aspects shall be considered here.

2.1.1 Liouville Formalism

Let f(X(t)) be some general, well-behaved function without an explicit time dependency,
where X(t) is the phase space vector of a system at time t. Since f is only implicitly dependent
on t, the total derivative with respect to time can written as:

d

dt
f =

∂

∂t
f

︸︷︷︸

≡0

+
∂X

∂t
· ∂

∂X
f = Ẋ · ∂

∂X
f = ıLf . (2.1)

The “·” denotes a formal scalar product. In a molecular dynamics simulation the interesting
function f is the trajectory of the system X(t) itself. The definition of the Liouville operator
ıL can be extracted from (2.1):

ıL = Ẋ · ∂

∂X
. (2.2)

The ı is convention and has the effect of making L a Hermitian operator. For example the
Liouville operator of a one-dimensional system would have the following form:

X(t) =




r(t)

p(t)



 ⇒ ıL = ṙ
∂

∂r
+ ṗ

∂

∂p
. (2.3)

Generally it is possible to split ıL into two or more parts. For the further considerations ıL
is separated into one partition containing the position-dependent terms and one covering the
momenta:

ıL = ıLr + ıLp ,

ıLr = ṙ · ∂

∂r
=

N ′

∑

i=1

ṙi
∂

∂ri
=

N ′

∑

i=1

ıLri
, (2.4)

ıLp = ṗ · ∂

∂p
=

N ′

∑

i=1

ṗi
∂

∂pi
=

N ′

∑

i=1

ıLpi
.

In (2.4) N ′ is the number of degrees of freedom of the considered system (e.g., N ′ = dN for
a system with N particles in d dimensions).

2.1.2 Propagator

Since ıL does not explicitly depend on t, (2.1) can be formally integrated:

df

dt
= ıLf ⇒

∫

df
1

f
=

t∫

0

dt′ ıL ,

ln f(X(t)) + Cinitial = ıLt ⇒ f(X(t)) = eıLtf(X(0)) . (2.5)
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Because L depends on the derivatives of positions ṙ(t) and momenta ṗ(t), (2.5) is still to be
considered as a system of coupled differential equations. It is just an integrated form of the
Liouville equation (2.1). If (2.5) would be used to calculate the trajectory X(t) numerically
starting from the initial values X(0), a systematic error of O(t2) would arise from the fact
that ıL would be considered as temporally constant by just taking ṙ(0) and ṗ(0) into account:

∫

df
1

f
=

t∫

0

dt′ ıL(t′) =

t∫

0

dt′
(
ıLconst.(0) + O(t′)

)
,

ln f(X(t)) + Cinitial = ıLconst.(0)t + O(t2) ,

f(X(t)) = eıLconst.(0)tf(X(0)) + O(t2) . (2.6)

In (2.5) a propagator can be read off:

U(t) = eıLt . (2.7)

Analogically it is possible to define two fractional propagators Ur(t) and Up(t):

Ur(t) = eıLrt , Up(t) = eıLpt . (2.8)

The impact of Ur on an initial state X(0) shall be exemplarily derived for a one-dimensional
system. Therefore it is assumed that the derivatives ṙ and ṗ are formulated independently
from r and p respectively. In that case ∂/∂r and ṙ commutate and higher terms of the form
(ıLrδt)

n = (ṙ(∂/∂r)δt)n can be written as ṙnδtn∂n/∂rn:

Ur(δt)X(0) = eıLrδt




r(t)

p(t)





∣
∣
∣
∣
t=0

=




r(0)

p(0)



+

(

ṙ(t)δt
∂

∂r

)



r(t)

p(t)





∣
∣
∣
∣
t=0

+
1

2

(

(ṙ(t)δt)2
∂2

∂r2

)



r(t)

p(t)





∣
∣
∣
∣
t=0

+ . . .

=




r(0)

p(0)



+




ṙ(0)δt

0



 =




r(0) + ṙ(0)δt

0



 . (2.9)

The terms of order O((ıLrδt)
2) and higher do not give a contribution due to the fact that the

second derivative (∂2/∂r2)r vanishes:

Ur(δt)X(0) : r(0) −→ r(0) + ṙ(0)δt = r(0) + ṙ (p(0)) δt . (2.10)

Thus, the application of Ur(δt) shifts r. This result is exact and does hence not suffer from
the problem described in (2.6). It makes sense that Ur propagates r for all times with ṙ(0),
since Ur has no influence on the momenta. So if the momentum does not change, the velocity
remains constant. Therefore, ıLr is considered constant in that sense. Thus the error O(t2)
does not occur. An analogous outcome is obtained for Up(δt):

Up(δt)X(0) : p(0) −→ p(0) + ṗ(0)δt = p(0) + ṗ (r(0)) δt . (2.11)
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2.1.3 Factorisation

It is important to note that, for the following proposal, the time derivatives of the positions ṙ

may only depend on the conjugate momenta p, which does not seem to be a strict requirement.
Actually it holds ṙ = p/m. Vice versa the time derivatives of the conjugate momenta ṗ ∼ F

must not depend on anything else but the positions r. That is, terms like friction will lead to
difficulties in this approach. Starting from these assumptions it can be shown that the already
mentioned problems with higher order terms arise considering the full propagator U(t):

U(δt)X(0) = eıLδt




r(t)

p(t)





∣
∣
∣
∣
t=0

=




r(0)

p(0)



+

(

ṙ
∂

∂r
+ ṗ

∂

∂p

)



r(t)

p(t)





∣
∣
∣
∣
t=0

︸ ︷︷ ︸
0

B

B

@

ṙ(0)

ṗ(0)

1

C

C

A

δt +
1

2

(

ṙ
∂

∂r
+ ṗ

∂

∂p

)2



r(t)

p(t)





∣
∣
∣
∣
t=0

δt2 + . . .

=




r(0)

p(0)



+




ṙ(0)

ṗ(0)



 δt +
δt2

2

[

ṙ
∂

∂r
ṙ

∂

∂r




r(t)

p(t)



+ ṗ
∂

∂p
ṗ

∂

∂p




r(t)

p(t)





︸ ︷︷ ︸

≡0

+ ṙ
∂

∂r
ṗ

∂

∂p




r(t)

p(t)





︸ ︷︷ ︸

=ṙ
∂ṗ

∂r
=ṙ

∂F (r)

∂r

+ ṗ
∂

∂p
ṙ

∂

∂r




r(t)

p(t)





︸ ︷︷ ︸

=ṗ
∂ṙ

∂p
=ṗ

1

m
=r̈

]∣
∣
∣
∣
∣
t=0

+ O(δt3) . (2.12)

By writing ṙ as ∂r/∂t and ṗ as ∂p/∂t (2.12) could be written more simply and the O(δt3)
term would vanish. But as postulated before, the derivatives ṙ and ṗ are considered to be
functions formulated independently from r and p, respectively. This is reasonable as long as
there is no compact solution for r(t). During the numerical integration of the equations of
motion in a simulation the only analytical correlation is ṙ = p/m.

Considering the result (2.12) from an algorithmic point of view, it is crucial to factorise
U(t) in terms of Ur(t) and Up(t). It is easy to see that the summands of ıLr from (2.4) do
commutate pairwise, as well as the summands of ıLp. However, pairs of terms from ıLr and
ıLp do not commutate due to the dependencies described above:

[
ıLri

, ıLpj

]
=

[

ṙi
∂

∂ri
, ṗj

∂

∂pj

]

= ṙi

(
∂ṗj

∂ri

)
∂

∂pj
+ ṙiṗj

∂2

∂ri∂pj
− ṗj

(
∂ṙi

∂pj

)
∂

∂ri
− ṗj ṙi

∂2

∂pj∂ri

= ṙi

(
∂Fj

∂ri

)
∂

∂pj
−







ṗi

(
1
m

)
∂

∂ri
if i = j

0 if i 6= j






6= 0 , (2.13)

i.e., the propagator U cannot be trivially factorised:

U(t) = eıLt = eı(Lr+Lp)t
!
6= eıLrt × eıLpt ⇒ U(t) 6= Ur(t) × Up(t) . (2.14)
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For two non-commutating operators A and B there is the Trotter identity

e(A+B)t = eAt/2 × eBt × eAt/2 + O(t3) , (2.15)

or more generally

⇒ exp

[
n∑

i=1

Ait

]

= eA1t/2 × exp

[
n∑

i=2

Ait

]

× eA1t/2 + O(t3) = . . .

=
n−1∏

i=1

eAit/2 × eAnt ×
1∏

i=n−1

eAit/2 + O(t3) . (2.16)

In case of A = ıLr and B = ıLp the obtained formulae are well known as the velocity Störmer-
Verlet algorithm. The correlation with the original formulation of Verlet [23] is shown in [20]
in section 4.3. It shares a big advantage for implementation purposes with all algorithms that
are derived in this way: it is time reversible and thus energy conserving. Actually it has been
tested that the short-time energy drift of the Störmer-Verlet-algorithm is rather large, while
the long-time drift is very small. The method has some self-healing behaviour which leads to
outstanding stable trajectories.

To have a better imagination of why this form of factorisation is so powerful it shall be
compared to the trivial one claimed as unprofitable in (2.14). Recalling the derivation of
(2.9), terms with A2 = (ıLr)

2 and B2 = (ıLp)
2 on the right-hand side (i.e., acting first) do

not contribute. Therefore the exact expansion of exp[(A + B)t] is:

e(A+B)t = 1 + (A + B)t +
1

2
(AB + BA) t2

+
1

6

(
A2B + ABA + BAB + B2A

)
t3 + O(t4) . (2.17)

Obviously the trivial factorisation in (2.14) is wrong for order O(t2) since one mixed term is
missing while the other one has a factor 2 compared to the correct result:

eAt × eBt = (1 + At) × (1 + Bt) = 1 + (A + B)t + ABt2 . (2.18)

The Trotter formula expands to:

eA
t
2 × eBt × eA

t
2 =

(

1 + A t

2

)

× (1 + Bt) ×
(

1 + A t

2

)

= 1 +

(A
2

+ B +
A
2

)

t +

(A
2
B + BA

2

)

t2 +
ABA

4
t3

= 1 + (A + B)t +
1

2
(AB + BA) t2 +

1

4
ABAt3 , (2.19)

which is obviously in agreement with (2.17) up to the order O(δt2).

2.1.4 Time Reversibility

Again, an exemplified one-dimensional system shall be considered to clarify the fact of time
reversibility of the formulation derived from the Trotter identity. First, the evolution of X(0)
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in time, δt, is treated as it is described in analogy to by the approximated time evolution
operator:

Ũ(t) = Up(t) × Ur(t) = exp[ıLpt] × exp[ıLrt] . (2.20)

With (2.10) and (2.11) it can be calculated:

Ur(δt)X(0) =




r(0) + ṙ(0)δt

p(0)



 = X̃(δt′) , (2.21)

Up(δt)X(δt′) =




r(δt′)

p(δt′)



+




0

ṗ(δt′)δt



 ={p(δt′)=p(0)}




r(δt′)

p(0) + ṗ(r(δt′))δt



 = X̃(δt) . (2.22)

The resulting phase space vector X̃(δt) is indicated with a tilde, because it is only an approx-
imation of the exact result X(δt) and depends on the utilised time evolution operator Ũ . If
Ũ(t) is time reversible, it would be possible to go back to X(0) by applying Ũ(−δt) to X̃(δt).
But as expected some different result is obtained by the arithmetics analogous to (2.21) and
(2.22). This time the intermediate step is indicated by “∗”, not to confuse with the quantities
from (2.21) marked with an inverted comma which represent a different state:

Ur(−δt)X̃(δt) =




r(δt)

p(δt)



+




ṙ(δt)(−δt)

0



 ={r(δt)=r(δt′)}




r(0) + ṙ(0)δt + ṙ(δt)(−δt)

p(δt)





=




r(0) + (ṙ(0) − ṙ(δt))δt

p(δt)



 = X̃(δt∗) , (2.23)

Up(−δt)X̃(δt∗) =




r(δt∗)

p(δt∗)



+




0

ṗ(δt∗)(−δt)





={p(δt∗)=p(δt)}




r(δt∗)

p(0) + ṗ(r(δt′))δt + ṗ(r(δt∗))(−δt)





=




r(0) + [ṙ(p(0)) − ṙ(p(δt))]δt

p(0) + [ṗ(r(δt′)) − ṗ(r(δt∗))]δt



 = X̃(0)
!
6= X(0) . (2.24)

(2.24) shows that the propagation by Ũ(t) is not time reversible, because doing one step
forward and one backward, the system does not arrive at its initial conditions. Now the ap-
proach derived by the Trotter factorisation shall be tested. The corresponding time evolution
operator is

Û(t) = Ur(t/2) × Up(t) × Ur(t/2) = exp[ıLrt/2] × exp[ıLpt] × exp[ıLrt/2] . (2.25)
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Again, the two intermediate steps in the forward direction are indicated with one and two
inverted commas, while the backward direction is marked with one and two “∗” respectively:

Ur

(

δt
2

)

X(0) =




r(0) + ṙ(0) δt

2

p(0)



 = X̂(δt′) , (2.26)

Up(δt)X̂(δt′) =




r(δt′)

p(0) + ṗ(δt′)δt



 = X̂(δt′′) , (2.27)

Ur

(

δt
2

)

X̂(δt′′) =




r(δt′) + ṙ(δt′′) δt

2

p(δt′′)



 =




r(0) + (ṙ(0) + ṙ(δt′′)) δt

2

p(0) + ṗ(δt′)δt



 = X̂(δt) . (2.28)

It is interesting that for the reverse time direction Û(−δt) the intermediate states do exactly
agree with those from the forward propagation:

Ur

(

− δt
2

)

X̂(δt) =




r(δt) + ṙ(p(δt))

(
− δt

2

)

p(δt)





{p(δt)=p(δt′′)}
=




r(0) + (ṙ(0) + ṙ(p(δt′′)) − ṙ(p(δt′′))) δt

2

p(δt′′)





=




r(0) + ṙ(0) δt

2

p(δt′′)



 = X̂(δt∗) = X̂(δt′′) , (2.29)

Up(−δt)X̂(δt∗)
{r(δt∗)=r(δt′′)=r(δt′),p(δt∗)=p(δt′′)}

=




r(δt′)

p(δt′′) + ṗ(r(δt′))(−δt)





=




r(δt′)

p(0) + [ṗ(r(δt′)) − ṗ(r(δt′))]δt



 = X̂(δt∗∗) = X̂(δt′) , (2.30)

Ur

(

− δt
2

)

X̂(δt∗∗)
{r(δt∗∗)=r(δt′),p(δt∗∗)=p(δt′)=p(0)}

=




r(δt′) + ṙ(p(0))

(
− δt

2

)

p(0)





=




r(0) + [ṙ(p(0)) − ṙ(p(0))] δt

2

p(0)



 = X̂(0)
!
= X(0) . (2.31)

From (2.31) it can be seen that the evolution obtained by Û as defined in (2.25) is actually
time reversible.

2.2 Simulations in the Microcanonical Ensemble

In the following the standard implementation of the already mentioned Störmer-Verlet algo-
rithm [20, 23] shall be used. Due to its explicit time reversibility (see section 2.1.4), it is
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Figure 2.1: Trajectories of (a) the 1d harmonic
oscillator (m = 1kg, ω = 1s−1) and (b) the 1d
quartic double well (a = 1m, D0 = 1Jm−4) in a
microcanonical simulation at different energies.
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Figure 2.2: Time series of dynamic quantities for
the same systems. The data was obtained by sim-
ulating with time steps δt = 10−4s.

possible to obtain trajectories with a minuscule long-time energy drift. For the propagation
of the system with the Störmer-Verlet algorithm, the force is needed. This can of course be
calculated from the potential, F = −∂U/∂x. In pseudo code, the method looks like this:

rnew = r + ( p + force(r)*dt/2.0 )/m*dt

p = p + ( force(r) + force(rnew) ) *dt/2.0

r = rnew

Figure 2.1 shows trajectories in phase space of two simple one-dimensional systems, the
harmonic oscillator and the quartic double well. The thermodynamic properties of these
systems will be discussed in detail in the next section 2.3. The potentials are defined as
follows:

Epot, ho =
1

2
mω2x2 , Epot, qdw = D0(a

2 − x2)2 . (2.32)

The respective forces are:

Fho = − ∂

∂x
Epot, ho = −mω2x , Fho = − ∂

∂x
Epot, qdw = 4D0x(a2 − x2) . (2.33)

The quartic double well potential has some interesting characteristics. A particle with an
energy of E < a4D0 (e.g. E = 0.5J in the figure) would of course stay on one side of the
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positional space and never see the other one, due to the potential energy barrier a4D0. For
simulations in the microcanonical ensemble this is not a problem. But for the canonical
ensemble, the algorithm will have to ensure that the system also samples the side, where it
did not reside initially. The “trajectory” for E = a4D0 (E = 1J in Fig. 2.1) is also something
special: it is a separatrix. That is it separates trajectories like the previously described
that belong fully to one half of the phase space, and trajectories of particles with an energy
E > a4D0, which are capable of overcoming the potential energy barrier. This also means a
particle with a kinetic energy of Ekin = a4D0 at r = ±a would need infinitely long to reach
r = 0. At r = 0 there is an instable fix point.

2.3 Thermodynamics of Selected 1d Systems

In the following, only purely position-dependent potentials will be discussed that is all systems
are conservative (F = ∇f(x)). Therefore any quantities like moments of p or the kinetic
energy distribution, which only depend on momentum, are equal for any considered type of
system.

2.3.1 Harmonic Oscillator

The first system to be considered is the harmonic oscillator:

U = Epot =
1

2
mω2x2 . (2.34)

The partition function can be calculated, as well as some thermodynamic quantities:

Zho =

∞∫

−∞

dp

∞∫

−∞

dx exp

[

−β

(
1

2m
p2 +

1

2
mω2x2

)]

=

∞∫

−∞

dp exp

[

−
(

β
1

2m

)

p2

]

︸ ︷︷ ︸
v

u

u

t

π

β 1
2m

∞∫

−∞

dx exp

[

−
(

β
1

2
mω2

)

x2

]

︸ ︷︷ ︸
v

u

u

t

π

β 1
2mω2

=
2π

βω
. (2.35)

The mean energy and the heat capacity can be directly calculated from the partition function:

〈E〉ho = − ∂

∂β
ln Zho = −βω

2π

(

− 2π

β2ω

)

=
1

β
, (2.36)

Cv ho =
∂

∂T
︸︷︷︸

−kBβ2
∂

∂β

〈E〉ho = −kBβ2 ∂

∂β

1

β
= kB . (2.37)
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Also, for checking the convergence of an algorithm, it is reasonable to calculate some moments
of x and p. A general type of integral, which appears in every derivation of these moments is:

∞∫

0

dx xne−ax2

=
Γ
(

n+1
2

)

2a(n+1
2 )

, (2.38)

∞∫

−∞

dx xne−ax2

=

0∫

−∞

dx xne−ax2

+

∞∫

0

dx xne−ax2

=

∞∫

0

dx′ (−x′)ne−ax′2

+

∞∫

0

dx xne−ax2

= (1 + (−1)n)
Γ
(

n+1
2

)

2a(n+1
2 )

=







0 for n ∈ {1, 3, 5, . . .} ,

√
π
a (2a)−n/2

n/2∏

l=1

(2l − 1) for n ∈ {0, 2, 4, . . .} .
(2.39)

Thus, any moments of an odd order do vanish. For moments of the momentum p arises from
(2.39):

〈p2k〉 =
1

Zho





∞∫

−∞

dx exp

[

−
(

β
1

2
mω2

)

x2

]








∞∫

−∞

dp p2k exp

[

−
(

β
1

2m

)

p2

]




=
βω

2π

√
2π

βmω2

(
√

π
(
β 1

2m

)

(

2

(

β
1

2m

))−k k∏

l=1

(2l − 1)

)

=

(
β

m

)−k k∏

l=1

(2l − 1) . (2.40)

Analogically the result for moments of the positions x is obtained:

〈x2k〉ho =
(
βmω2

)−k
k∏

l=1

(2l − 1) . (2.41)

With this knowledge, it is easy to calculate the mean kinetic and potential energy:

〈Ekin〉 =

〈
1

2m
p2

〉

=
1

2m
〈p2〉 {(2.40)}

=
1

2β
, (2.42)

〈Epot〉ho =

〈
1

2
mω2p2

〉

=
1

2
mω2〈p2〉 {(2.41)}

=
1

2β
. (2.43)

To verify the reproduction of the canonical ensemble by an algorithm, it is crucial to study dis-
tributions of certain quantities. Especially the distribution of the momentum p is interesting,
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since this is equal for all conservative systems:

P (p0) =
1

Zho

∞∫

−∞

dp

∞∫

−∞

dx exp
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−β

(
1

2m
p2 +

1

2
mω2x2

)]

δ(p − p0)

=
βω

2π
exp
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−β
1

2m
p2
0

]




∞∫

−∞

dx exp

[

−
(

β
1

2
mω2

)

x2

]




︸ ︷︷ ︸
v

u

u

t

2π

mω2β

=

√

β

2πm
exp

[

−β
1

2m
p2
0

]

, (2.44)

P (x0)ho =

√

βmω2

2π
exp

[

−β
1

2
mω2x2

0

]

. (2.45)

Finally the distributions of the kinetic and the potential energy shall be given. It is not
possible to calculate the density of states, which is actually the distribution of the total
energy:

P (Ekin0) =
1

Zho

∞∫

−∞

dp

∞∫

−∞

dx exp

[

−β

(
1

2m
p2 +

1

2
mω2x2

)]

δ

(
p2

2m
− Ekin0

)

{z= p2

2m
}

=

√

β

2πm
2

∞∫

0

dz
m√
2mz

︸ ︷︷ ︸

dx

dz

e−βzδ(z − Ekin0)

=

√

β

π

1√
Ekin0

exp [−βEkin0] , (2.46)

P (Epot0)ho =

√

β

π

1
√

Epot0

exp
[
−βEpot0

]
. (2.47)

2.3.2 The Quartic Double Well

A little more interesting than the harmonic oscillator is the quartic double well, which is
generally described by the potential:

U = Epot = D0(a
2 − x2)2 . (2.48)

While in the case of the harmonic oscillator, the system has only one minimum, the quartic
double well has two local minima. This can lead to problems at very low temperatures,
compared to the height of the potential barrier D0a

2. In this case, the system is likely to be
trapped in one of the two minima, and it is up to the algorithm to push it into the other one
to provide an acceptable sampling of the whole phase space. This is crucial for the statistics.
The partition sum can be calculated as:

Zqdw =

√

π3ma2

2

1√
β

exp

[

−1

2
a4D0β

](

I− 1
4

(
1

2
a4D0β

)

+ I 1
4

(
1

2
a4D0β

))

, (2.49)
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Figure 2.3: The mean energy with respect to ther-
mal energy for different parameters D0 (a = 1m).
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Figure 2.4: The respective specific heat. The key
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where Iν(x) is the modified Bessel function of first kind. The mean energy and the heat
capacity can be calculated straightforward, but the expressions are rather lengthy:

〈E〉qdw = − ∂

∂β
ln Zqdw

=
1
2 + x

β
−

x
(

I− 5
4
(x) + I 5

4
(x) + I− 3

4
(x) + I 3

4
(x)
)

2β
(

I− 1
4
(x) + I 1

4
(x)
) with x =

1

2
a4D0β . (2.50)

The mean potential energy is an even more complicated function. Again, the abbreviation
x = a4D0β/2 is used:

〈Epot〉qdw =
2x

β
+




e−x(2x)

1
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, (2.51)

where 1F1(a, b, z) is the Kummer confluent hypergeometric function. The distribution of the
positions arises from (2.49):

P (x0)qdw =
1

Zqdw

∞∫

−∞

dp exp

[

−
(

β
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2m

)

p2

]

︸ ︷︷ ︸
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t

2πm

β
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−∞

dx exp
[
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2 − x2)2
]
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=
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]
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(
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(
1
2a4D0β

)
+ I 1

4

(
1
2a4D0β

)) exp
[
−βD0(a

2 − x2
0)

2
]

. (2.52)
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With the general formula

∞∫

−∞

dx φ(x)δ(g(x))
{z=g(x)}

=
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dz
dx

dz
︸︷︷︸

1

g′(x)

φ(x)δ(z) =
∑

i

φ(xi)

g′(xi)
, (2.53)

where xi are single roots of g(x), it is also possible to derive the potential energy distribution:

P (Epot0)qdw =
1

Zqdw
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(
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. (2.54)
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2.4 Molecular Dynamics in the Canonical Ensemble

As described in section 2.2, the numerical integration of the standard Newtonian equations
of motion of a system is equivalent to consider the system in a microcanonical ensemble with
given energy. Especially time-reversible algorithms as described in section 2.1 do conserve
the energy. Thus there are two ways for a simulation in the canonical ensemble:

1. Either the algorithm has to be changed in some way so that it does not conserve the
energy anymore and somehow creates a canonical ensemble. This is handled by the
stochastic Andersen thermostat [7] for example. The price to pay is that the dynamics
is not deterministic anymore, which is undesirable.

2. Or the system has to be coupled to some kind of heat bath by means of deterministic
degrees of freedom, it has to be thermostated. The system gets more complex in doing
so, but it will turn out that the loss in efficiency is negligible, especially compared to
the possibility of observing continuous trajectories in the canonical ensemble.

2.4.1 Andersen Thermostat – Stochastic Molecular Dynamics

As stated above, the Andersen thermostat [7] reproduces the canonical ensemble by stochas-
tically changing the amount of kinetic energy. Actually, it can be understood as a kind of
hybrid algorithm between MC and MD. The procedure is described in more detail in Ref.
[20]:

• perform constant energy Molecular Dynamics (microcanonical ensemble) as described
in the first two sections of this chapter,

• chose each particle at a certain collision frequency ν, which is equivalent to the strength
of the heat bath coupling,

• assign a new velocity according to the Boltzmann distribution to this particle.

The second point in this list has to be a little more illuminated. Although introducing a
collision frequency, the collisions should still happen stochastically of course. Therefore, it is
not possible to simply carry out point three in the upper list every 1/ν MD steps. Rather
a probability of time intervals between two collisions is assessed, so that successive collisions
are uncorrelated. This is of the Poisson form [24, 25]:

P (ν, t) = ν exp [−νt] . (2.55)

According to the references given above, the probability that a particle is selected in a certain
time step δt, is p = νδt.

The choice of a velocity from a Boltzmann distribution, or the Maxwell-Boltzmann dis-
tribution in three dimensions, can be done by the Box-Müller method described in [26].
Therewith, from two uniformly distributed random numbers R1, R2 ∈ [0, 1), two random
numbers x and y from a Gaussian distribution with width σ can be calculated:

r =
√

−2σ2 ln(1 − R1) , Θ = 2πR2 , (2.56)

x = r cos(Θ) , y = r sin(Θ) . (2.57)
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dimensional quartic double well (D0 = 1Jm−4,
a = 1m, m = 1kg).

For simulations in more than one dimension, it is still enough to choose every component
of the velocity from a Gaussian distribution. Nothing else does, e.g., produce the Maxwell-
Boltzmann distribution in three dimensions. The correct width σ can be found by comparing
the standard Gaussian distribution and the Boltzmann distribution:

P (x) =
1√

σ22π
exp

[

− x2

2σ2

]

, (2.58)

P (vi) =

√

βm

2π
exp

[

−βm

2
v2
i

]

, (2.59)

⇒ σ2 =
1

βm
=

kBT

m
. (2.60)

In appendix A.1, an example pseudo source code is given for the implementation of the
Andersen thermostat.

Exemplary Simulations

For the purpose of testing the thermostat and especially different choices of the collision
frequency τ , several trial runs with the one dimensional harmonic oscillator and the quartic
double well are carried out. These systems were already treated analytically in the previous
section, therefore, the outcome of the simulations can be directly compared to the exact
results. All runs were performed with step size δt = 0.005s and had an equilibration phase of
105 steps. The measurements were carried out over 108 time steps at temperatures kBT =
{0.1, 0.2, . . . , 1.0}.

The general behaviour of the system due to the Andersen thermostating is shown in
Figs. 2.7 and 2.8. There, trajectories of a one-dimensional harmonic oscillator and a one-
dimensional quartic double well are plotted. The trajectories look very similar to those in Fig.
2.1. This is due to the fact that constant energy MD simulations are performed. Although,
due to the stochastic changes in the kinetic energy, the system moves to a different energy
shell from time to time.
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harmonic oscillators measured with collision fre-
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kB) of one-dimensional harmonic oscillators for
the same set-ups as in Fig. 2.9.

To have an impression of the effect of altering ν, three different harmonic oscillators
(ω = {0.2s−1, 1s−1, 5s−1}) are measured with three adjustments of the collision frequency
(ν = {0.01s−1, 1s−1, 100s−1}). The relative errors of the position distributions and the specific
heat are shown in Figs. 2.9 and 2.10. Especially from the former, ν = 1s−1 seems to be a
good choice, because for this adjustment, the relative deviations are the smallest for all trial
systems. This is emphasised by the fact that the reproduction of the specific heat (kB,
according to eq. (2.37)) is also very good for this choice. The general choice ν = 1s−1 is
additionally supported by the fact that Ref. [20] suggests a minor role of the adjustment of
ν.
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2.4.2 Overview of the Nosé-Hoover-Chain Thermostat

A very well-known and frequently used class of methods to manage thermostating is the Nosé
algorithm [8] and certain extensions which shall be briefly reviewed.

The original approach of Nosé uses an extended Lagrangian formulation to derive the
Hamiltonian for the system and the equations of motion:

LNose =
N∑

i=1

mi

2
s2ṙi

2 − U(rN ) +
Q

2
ṡ2 − (f + 1)kBTeq ln s . (2.61)

This results in non-equidistant time steps and is fixed by the introduction of a virtual time
scale. In (2.61) Teq is the desired equilibrium temperature. f is the number of degrees of
freedom and s can be understood as a dimensionless scaling factor. A detailed discussion can
be found in section 6.1 of Ref. [20].

Hoover showed that it is equivalent to introduce one additional degree of freedom to the
considered system [9]. The connection to Nosé’s formulation is:

Qṡ

s
= Q

d ln s

dt
= pξ . (2.62)

The resulting equations of motion are the following, where ξ is the virtual position of the
thermostat “particle”, which is obviously dimensionless like s, and pξ = Qvξ = Qξ̇:

ṙi =
pi

mi
, (2.63)

ṗi = Fi − vξpi = −∇ri
U(rN ) − pξ

Q
pi , (2.64)

ṗξ =

(
N∑

i=1

p2
i

mi
− fkBTeq

)

= 2 (Ekin,instantaneous − Ekin,equilibrium) . (2.65)

Q has the dimension [Energy×Time2 =Mass×Length2] and is a thermal inertia parameter,
which determines the rate of the heat transfer. However, it appears in the equations of motion
as a virtual mass. This parameter will be discussed in more detail later. The advantage of
the Nosé-Hoover (NH) thermostat is firstly that it is possible to derive equations of motion in
“real time”, and furthermore that the according equations of motion are easier to understand.
Specifically from (2.65) it is easy to see the operating principle of the NH thermostat. The
Nosé-Hoover “particle” at the virtual position ξ is driven by the difference of the instantaneous
and the desired kinetic energy. However, the system is not Hamiltonian anymore. A certain
energy term is conserved, but it is not possible to derive the equations of motion from it. This
problem was tackled by Tuckerman [27], who deduced the basis for the statistical mechanics
of non-Hamiltonian systems. Also Joannopoulos showed [28] that the canonical ensemble is
only obtained by a NH thermostat, if the virtual total momentum is not conserved or constant
zero (Ṗ 6= 0 or P ≡ 0).

A much more critical issue is the fact that both the original Nosé and the Nosé-Hoover
algorithm do not reproduce the correct canonical statistics for the one-dimensional harmonic
oscillator, which is the simplest nontrivial system. Hoover already pointed out this problem
in his publication [9]. It was claimed that this could be connected to the problem found by
Joannopoulos. The solution was the introduction of the Nosé-Hoover-Chain method (NHC)
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[10]. Actually the idea is to control the kinetic energy of the Nosé-Hoover “particle” by yet
another NH thermostat and so forth. The equations of motion for a system with N particles,
f degrees of freedom and a chain of M NH thermostats are therefore:

ṙi =
pi

mi
, (2.66)

ṗi = Fi −
pξ1

Q1
pi = −∇ri

U(rN ) − pξ1

Q1
pi , (2.67)

˙pξ1 =

(
N∑

i=1

p2
i

mi
− fkBTeq

)

− pξ2

Q2
pξ1 , (2.68)

˙pξk
=

(
p2

ξk−1

Qk−1
− kBTeq

)

− pξk+1

Qk+1
pξk

, (2.69)

˙pξM
=

(
p2

ξM−1

QM−1
− kBTeq

)

. (2.70)

The conserved energy for this general system is:

HNHC = H(r,p) +
M∑

k=1

p2
ξk

2Qk
+ fkBTeqξ1 +

M∑

k=2

kBTeqξk . (2.71)

As already mentioned, it is not possible to derive the equations of motion (2.66) – (2.70) from
(2.71). Thus HNHC is not a Hamiltonian.

It turned out that it was not only possible to obtain the correct canonical ensemble for the
harmonic oscillator by coupling two NH-thermostats (M = 2), but also the pitfall concerning
the conservation of the total momentum was not a problem anymore [29]. According to Liu
and Tuckerman [30] there is still a concern, the NHC method is only capable of maintaining
adequate temperature control in equilibrium. Any perturbation away from equilibrium, for
example caused by the presence of external fields or by motion over a high barrier, causes the
method to break down.

2.4.3 Algorithmic Details of NHC

Numerical Integration in Particular

It is possible in principle, to use the Liouville/Trotter formalism as it was explained in sec-
tion 2.1, to derive an explicit algorithm. However it is expected that there will occur some
problems, since the system is not strictly conservative anymore! As it can be seen from (2.67)
and (2.64) respectively, the force has now a velocity dependence. So the original approach
has to be modified somewhat.

The separation of the Liouville operator is done in a slightly different way. While for a
simple microcanonical approach, where the number of particles N , the volume of the system
V and the total energy E are given and fixed (see section 2.2), ıL is divided into two parts
ıL = ıLr + ıLp, now the terms depending on the thermostat variables are separated from the
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variables of the stand-alone system [21]:

ıLNHC =
N∑

i=1

vi∇ri
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−
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vξ1vi∇vi
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ıLCv
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vξk

∂

∂ξk
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ıLξ

+

M−1∑

k=1

Gk
∂

∂vξk
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ıLGk<M

−
M−1∑
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vξk+1
vξk

∂

∂vξk

︸ ︷︷ ︸

ıLvξ

+ GM
∂

∂ξ̇M
︸ ︷︷ ︸

ıLGM

, (2.72)

with G1 =
1

Q1

(
N∑

i=1

p2
i

mi
− fkBTeq

)

, Gk>1 =
1

Qk

(
p2

ξk−1

Qk−1
− kBTeq

)

, (2.73)

ıLC = ıLCv + ıLξ + ıLGk<M
+ ıLvξ

+ ıLGM
. (2.74)

ıLC represents the parts of the Liouville operator, which are connected to the thermostat.
The structure of ıLCv and ıLvξ

is in principle different from the form of the Liouville operator
as considered in section 2.1 (see Ref. [20], appendix E):

exp

[

ax
∂

∂x

]

f(x) = exp

[

a

(
∂ ln x

∂x

)−1

︸ ︷︷ ︸

x

∂

∂x

]

f(x) = exp

[

a
∂

∂ ln x

]

f(x)

= exp

[

a
∂

∂ ln x

]

f (exp[ln x]) = f (exp[ln x + a]) = f(x exp[a]) . (2.75)

Therefore, actually the considerations based on the certain form in section 2.1 do not hold
for ıLCv and ıLvξ

. Tuckerman derives the analytical propagation for a more general case of
dependency in Ref. [31]. However, in practice higher-order Trotter schemes and a multiple
time step approach are used to deal with this problem for the propagation of the thermostat
“particles”, which comes out of ıLC . That is, the propagator is firstly separated with the
Trotter scheme as discussed in section 2.1, (2.16):

ÛNHC(δt) = exp
[

ıLC
δt
2

]

× exp
[

ıLr
δt
2

]

× exp [ıLpδt] × exp
[

ıLr
δt
2

]

× exp
[

ıLC
δt
2

]

. (2.76)

Afterwards, for the propagation of exp [ıLCδt/2], the time step δt is divided once more,
particularly into nc equidistant steps. For the integration of exp [ıLCδt/(2nc)] the already
mentioned higher-order Trotter formulae [32, 33] are applied. This results in:

exp
[

ıLC
δt
2

]

=

nc∏

i=1





m∏

j=1

exp

[

ıLC
wjδt

2nc

]


 . (2.77)

The Trotter factorisation of ıLC is discussed in detail by Martyna [21]. According to Windiks
[22], it is standard to use a 5th order integration scheme (m = 3) for the thermostat propa-
gation, which is correct up to the 6th order as proven in Ref. [32], and set nc = 1. Only if
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Figure 2.11: The chain dotted line and the twofold dashed line are the theoretical distributions of r
and p of a one-dimensional harmonic oscillator. The solid line and the dashed line are the relative
errors (|Pmes(x)/Panalyt(x) − 1|) of the measured histograms over r and p respectively for different
choices of Q1 and Q2, given in Js2. All quantities are plotted logarithmically. The data is obtained by
simulating 107 time steps of length δt = 0.01s of a harmonic oscillator with the following parameters:
kBT = 5J, m = 2kg, ω2 = 1/2s−2.

the typical time scales of fluctuations in the system are very short, it is useful to increase nc.
Also a detailed description of the Yoshida-Suzuki approach and the required numerical values
for the 3rd, 5th, 7th, 9th and 27th order schemes can be found in Ref. [22]. There, as well
as in Ref. [21], a general implementation of a Nosé-Hoover-Chain thermostat in pseudo code
can be found, each with one straightforward optimisation, which can be combined. The full
example pseudo source of the Nosé-Hoover-Chain thermostat with both optimisations and
some minor spelling fixes is given in appendix A.2.

Choice of the Virtual Masses

It turns out that the choice of the thermal inertia parameters Qi is crucial for the reproduction
of the canonical ensemble. From Fig. 2.11 it is obvious that not only for unfavourable ratios,
but also for very small or very large Q the obtained distributions are totally wrong. Martyna
give an estimate for the masses in appendix B of Ref. [10]. According to these considerations,
it follows:

Q1 = fkBTeqτ
2 , Qi>1 = kBTeqτ

2 , (2.78)
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Figure 2.13: Discrete Fourier transform of the ve-
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function. The scale below shows the real frequen-
cies f = 1/T , where T is the duration of one
oscillation. The scale above shows the circular
frequency ω.

where τ = 1/ω is a typical time scale for the considered stand-alone system. That is, larger
thermal inertia Q result in a larger time scale for the fluctuations of the bath particles. Thus
the thermostat is not capable of following the system fluctuations fast enough. On the other
hand, making Q very small can lead to sampling problems due to high-frequency oscillations
in vξ. For a correct propagation of the thermostat, the overall time step δt should be roughly
a factor 20 – 40 smaller than τ . But this can also be fixed with increasing nc as described
above.

But how to define τ if the considered system is rather complex? Windiks [22] suggests to
measure velocity autocorrelation functions. The main peak of the Fourier transform gives a
typical frequency of the system. The expression for a normalised autocorrelation function is:

Av(∆t) =
〈v(t)v(t + ∆t)〉 − 〈v(t)〉2

〈v(t)2〉 − 〈v(t)〉2 . (2.79)

How can a velocity autocorrelation function be understood? Figure 2.12 shows a velocity time
series of a harmonic oscillator. Contrary to the time series from the microcanonical simulation
in Fig. 2.2, it is not a smooth sine. Due to the heat bath coupling by the thermostat, there
are fluctuations on the major oscillation. It is expected that in a complex system these
fluctuations will increase because of interactions with other particles. Therefore it is possible
that the major oscillation mode will not be as obvious as in the exemplary system. The
autocorrelation function will have maxima at the major oscillation times nT , where the data
of t and t + ∆t = t + nT fit best. In Fig. 2.12 it is obvious that the autocorrelation function
does effectively smooth the velocity time series. This will emphasise the major oscillation
peak in the Fourier transform.
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The discrete Fourier transform of a list ur of length n is calculated as follows:

νs =
1√

n(1−α)

n∑

r=1

ur exp

[
2πı

n
b(r − 1)(s − 1)

]

. (2.80)

The parameters a and b can be set to a = 0, b = 1. In Fig. 2.13, the Fourier transform of
the velocity time series is compared to the Fourier transform of the velocity autocorrelation
function. The signal-to-noise ratio is not significantly different, but this is also due to the
simplicity of the system. It is not astonishing that the main peak is found at about ω = 1 as
for the harmonic oscillator the circular frequency is explicitly defined to be ω = 1.

2.4.4 Exemplary Simulations of Selected 1d Systems with the NHC

For the purpose of testing the algorithm and the various statements about its correct use,
several simulations are carried out. The chosen test systems are the one-dimensional har-
monic oscillator and the one-dimensional quartic double well, as they were already treated
analytically in section 2.3.

In contrast to MC simulations, there is a time scale in Molecular Dynamics. Therefore,
it is possible to directly compare the results of a MD simulation with experimental data by
choosing SI units for all intrinsic quantities in the simulation. This is the reason, why in
the following the mass is given in [kg], energy in [J], length in [m] and momentum in [kg
m/s]. However, the choice may be misleading, since a harmonic oscillator with a mass of 2kg
would never show measurable thermodynamic effects at room temperature, and a thermal
energy of kBT ∼[J] is also not realistic. Actually, it would be necessary to rescale all units
to a reasonable range. This is forgone here for keeping the simplicity of the values. The
one-dimensional systems observed here are artificial anyway, so it is not worthy to consider
complex scaling factors for all the following measurements.

The chosen parameters for the test systems are given in the following. The mass of the
harmonic oscillator (HO) is chosen to be m = 2kg. If not differently noted, the circular
frequency is ω = 1s−1. The parameters of the quartic double well (QDW) are D0 = 1Jm−4

and a = 1m. The mass that is moving in the QDW potential is chosen to be m = 1kg.

Only a Single Nosé-Hoover Thermostat

As mentioned before, it is not possible to simulate the one-dimensional HO with a single
Nosé-Hoover thermostat, which is equivalent to a NHC thermostat with chain length M = 1.
Figure 2.14 shows a long-time trajectory of the simulation of a HO with such a thermostat.
It is obvious that the system is trapped in a fix area of phase space. Therefore, the obtained
distributions of position x and momentum p of the HO as well as the velocity of the Nosé-
Hoover particle vξ, which are plotted in Fig. 2.15 and should be Gaussian, are completely
wrong. From Fig. 2.16 it is clear that a different choice of the Nosé-Hoover mass does not
solve this problem.

Choice of the Virtual Masses

Before starting to look at thermodynamic quantities, the idea for choosing the virtual masses
as described in the previous section shall be tried out. This is done by measuring frequency
spectra for simulations with several parameters.
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Figure 2.14: Trajectory of a simulation of the HO
for 108 time steps δt = 0.005s at kBT = 1.0J.
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single NH thermostat is used (M = 1), and the
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mentum p of the HO as well as the velocity of the
NH particle for the same simulation as described
in Fig. 2.14. Theoretically, all three histograms
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Figure 2.16: Trajectories of the HO, similar to the one in Fig. 2.14. Again a single Nosé-Hoover
thermostat (M = 1) is utilised. The difference is that the time scale τ , which is used to calculate the
virtual mass of the Nosé-Hoover particle, is chosen differently: (a) τ = 0.2 and (b) τ = 5.0. The plots
are comparable to the pictures in Ref. [9].

Therefore, time series of the momentum p of both the HO and the QDW are measured.
The MD step size is δt = 0.005s. The measurement is carried out at temperature kBT =
1.0J. After equilibrating for 106 steps, a time series of 106 steps is calculated. Thereafter,
a momentum autocorrelation function is calculated up to a distance of 5 · 105 steps. The
Fourier transform of these functions gives the desired frequency spectra. The frequencies f in
the following spectra of the HO are scaled by the expected frequency f0 = ω/(2π) for better
comparability. This is known, since the circular frequency ω can be directly selected for this
system.

In Fig. 2.17 the result of choosing ω = 1s−1 and τ = 1/ω = 1s, which should lead to
acceptable results in combination with (2.78) according to Ref. [10] as explained in the last
section. Indeed, there is a definite peak at the expected main frequency of the HO. The finite
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Figure 2.19: Frequency spectra of HO with (a) ω = 0.2s−1 and (b) ω = 5s−1. The time scale τ for the
Nosé-Hoover thermostat is chosen “correctly” τ = 1/ω.

width of the peak is caused by the thermal fluctuations and is thus an expected effect rather
than an artificial result from statistical errors.

Analogously, in Fig. 2.18, the outcome of the same simulation of the QDW is plotted.
Since the frequency structure of the quartic double well is not obvious, this can be only taken
as a measure of the main frequency to adjust the thermostat for further simulations of this
system. The main peak is found at ω = 1.5s−1, which suggests a better choice of τ = 0.67s.

From Fig. 2.19 it is obvious that the instructions of how to adjust the thermostat also
work for ω 6= 1s−1. Again, a clear peak arises at the expected frequency f0. The different
look of the plots in Figs. 2.17 and 2.19 is mainly caused by the different normalisation of the
abscissa, while the frequency resolution is equal in all the three measurements.

Up to now, it is not clear, if another choice of τ really causes worse results. This question
is answered in Figs. 2.20 and 2.21. There, the Nosé-Hoover time scale is deliberately chosen
different from 1/ω. The upper pictures show the result of τ = 0.2s and the lower belong to
τ = 5s respectively. From the frequency spectra in Fig. 2.20 it looks as if τ = 5s is even a
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Figure 2.20: Frequency spectra of harmonic oscil-
lators at ω = 1s−1 with Nosé-Hoover time scale
(a) τ = 0.2s (above) and (b) τ = 5s (below).
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Figure 2.21: Distributions of x and p of harmonic
oscillator at ω = 1s−1 with Nosé-Hoover time
scale (a) τ = 0.2s (above) and (b) τ = 5s (be-
low). The measured data is drawn with the solid
line, the dashed lines depict exact results.

better choice, compared to τ = 1s from Fig. 2.17, where the spectrum is more noisy. Whereas,
for τ = 0.2 the spectrum is seriously altered and there is no clear peak at f = f0 anymore.
However, the distributions of position and velocity, which are shown in Fig. 2.21, completely
disprove the latter assumptions. The distributions which are obtained by using a thermostat
with τ = 0.2s matches the exact results very well, although the spectrum (Fig. 2.20) is so
noisy. On the other hand, the outcome of the simulation with τ = 0.5s is totally wrong.

This can be taken as a proof that the adjustment of the Nosé-Hoover thermostat explained
in the last section (according to [10]) works correctly.

Thermodynamics with Correct Thermostating

After being confident that the proposed method for adjusting the thermostat (2.78) works
correctly, it is now examined, if the thermostat is really capable of reproducing the canonical
ensemble. Many thermodynamic quantities have been calculated for the two test systems in
section 2.3. Therefore, all the produced data can be compared to exact results, which is a big
advantage.

All the following simulations used a Nosé-Hoover-Chain thermostat with M = 2. The
observed systems are as described in the beginning of the section. The time scale τ is τ =
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Figure 2.22: Several projections of the trajectory of a harmonic oscillator with a NHC thermostat
(M = 2) at kBT = 1.0J. The trajectory shows a length of 105 MD time steps. The projections are:
(a) x - p, (b) vξ1

- vξ2
, (c) x - vξ1

, (d) x - vξ2
.

1/ω = 1s for HO simulations and τ = 0.67s for simulations of the QDW, according to Fig.
2.18. After equilibrating the system for 106 steps, a measurement of 108 steps is carried out.
The chosen step size is δt = 0.005s. This makes a total length of the run of t = 5 · 105s.

To get an impression of the action of a NHC, several projections of the six-dimensional1

trajectory of a harmonic oscillator with a NHC (M = 2) are drawn in Fig. 2.22.
In Figs. 2.23 and 2.24, long time trajectories of both the HO and the QDW are shown. It

is obvious, that the deterministic changes on a short-time scale as seen in Fig. 2.22 lead to
a correct sampling of the phase space for a reasonably long trajectory. The comparison with
the respective distributions in Fig. 2.25 and 2.26 shows that the sampling really matches the
theoretical predictions, except for the low temperature simulation (kBT = 0.1J) of the QDW.

For the QDW, the probability to change from one of the two potential minima to the other
one is suppressed exponentially due to the Boltzmann factor with respect to the height of
the potential energy barrier at x = 0 normalised by the thermal energy of the system. Thus,
for low temperatures the system remains in one of the two potential valleys for a long time,
and exchanges between the valleys are extremely seldom. This is the reason, why one of the
two peaks of the distribution in Figs. 2.26 is more pronounced than the other one. Also from
the upper picture in Fig. 2.24 it can be assumed that the right valley is more populated than
the left. This is a statistical error that vanishes for very long run times. In other words, the

1There are three degrees of freedom in the whole system: the one-dimensional harmonic oscillator and the

two Nosé-Hoover particles. Each of these has a position and a velocity, spanning a six-dimensional phase space.



2.4. MOLECULAR DYNAMICS IN THE CANONICAL ENSEMBLE 39

x / [m]

p
/

[k
g

m
/s

]

3210-1-2-3

6

4

2

0

-2

-4

-6

kBT = 0.1J

x / [m]

p
/

[k
g

m
/s

]

3210-1-2-3

6

4

2

0

-2

-4

-6

kBT = 1.0J

Figure 2.23: Trajectory of a simulation of the HO
for 108 time steps δt = 0.005s at (a) kBT = 0.1J
and (b) kBT = 1.0J. A dot marks the position of
the system after every 103 time steps.
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Figure 2.24: Trajectories of the QDW at (a)
kBT = 0.1J and (b) kBT = 1.0J obtained sim-
ilarily as in Fig. 2.23.

autocorrelation (see chapter 3) of the system is very large at low temperatures.

There is nothing remarkable about the specific heat plots in Fig. 2.27. The error bars
cover the analytically calculated heat capacity.

Besides the distributions of position and velocity, it was also possible to derive energy
distributions analytically for the two test systems (see section 2.3). The comparisons of the
measured histograms of potential and kinetic energy are shown in Figs. 2.28 and 2.29. For the
HO, the potential and the kinetic energy are equivalent. Both histograms (solid lines) match
the theoretic prediction (dashed lines). This is also the case for the kinetic energy histogram
of the QDW, which is the same as for the HO.

The only remarkable detail about these three plots is that the measured histogram entry
for low energies is a little bit too large, compared to the exact result. This could be caused by
the fact that equidistant histogram bins were used. Thus, the plot is obtained by connecting
the points at the middle of each histogram bin. This presumes that the plotted function
(the energy histogram in this case) can be approximated by calculating averages with the
trapezoidal rule (f(x) ≈ (f(x + ε/2) + f(x− ε/2))/2). For low energies, there is a divergence
in the energy distribution, and thus this assumption does not hold.

The only result, which shows some serious deviation from the analytic prediction, is the
potential energy distribution of the QDW (Fig. 2.29 (a)). For both the simulation at kBT =
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Figure 2.27: Specific heats of (a) HO and (b) QDW. The symbols are the average results from the
measurements, with error bars from a Jackknife analysis (see chapter 3). The dashed lines denote the
exact result.

0.1J and kBT = 1.0J, the histogram obtained by simulation drops quickly at Epot = 1J. This
is certainly caused by some anomaly of the Nosé-Hoover thermostat. However, since all the
other tests showed outstanding results, this is not taken too serious here.

The convergence of the algorithm is assessed by measuring time series of several moments
of the momentum p. The outcome shown in Fig. 2.30 is as expected. The relative devia-
tions from the exact result are larger for higher moments, but these deviations are decaying
quickly. At least at t = 5000s, which is equivalent to 106 time steps, the errors are acceptably
small. This is the length of the equilibration phase in the other simulations. Because for this
measurement, the behaviour from the first time step on was interesting, no equilibration was
applied to the system.
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Figure 2.28: Distributions of Epot and Ekin of the
HO, each at kBT = 0.1J and kBT = 1.0J. Solid
lines depict the measurements, the exact results
are indicated with a dashed line. The double log-
arithmic scale is chosen to visualise the deviations
both at the divergence near E = 0 and in the tails.
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Figure 2.29: Distributions of Epot and Ekin simi-
lar to Fig. 2.28 for the quartic double well (QDW).
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Figure 2.30: Time series of the relative deviation of the running averages of several non-vanishing
moments of the momentum from the exact result according to (2.40) for (a) HO and (b) QDW. For
the purpose of checking the convergence especially the first part of the simulation is of interest. Thus,
the averages are already recorded during the equilibration phase. A logarithmic scale of the abscissa
is chosen to make it possible to see both the strong fluctuations at the very beginning of the run and
the long-time relaxation behaviour.
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Chapter 3

Monte Carlo Simulation Methods

and Data Analysis

3.1 Simulation

One of the goals of the work at hand is to get a basic understanding of Molecular Dynamics
simulations at finite temperature. This topic is covered in an individual chapter 2. Another
big class of computer experiments are Monte Carlo simulations. In this section, the utilised
Monte Carlo methods shall be only briefly introduced.

The principle of Monte Carlo simulations is to sample the phase space by a random
walk at finite temperature. This is done in order to collect information about the density
of states Ω(E), from which all thermodynamic quantities can be calculated. The Boltzmann
distribution that gives the probability of sampling states X with a certain energy E = E(X):

Pβ(E) = Ω(E)e−βE . (3.1)

Here, β = 1/kBT is the inverse temperature.

The simplest approach would be to do “simple sampling” and just randomly choose states
and average them with respect to the Boltzmann weight exp[−βE(X)]. However, for any
nontrivial system, most of the randomly generated states will have a high potential energy and
thus do virtually not contribute to the partition sum. Therefore, the “importance sampling”
was invented, which is suitable to find relevant states.

3.1.1 Metropolis Sampling

The first method with general validity was the Metropolis algorithm, published in 1953 [11].
The simulation starts from any random configuration. Afterwards, configurational changes,
so called “updates”, are proposed to the system. The update is accepted with a probability
depending on the potential energy of the old and the new configuration:

w(Xold → Xnew) =

{

1 , if Eold > Enew ,

exp
[
−β(Enew − Eold)

]
, if Eold < Enew

(3.2)

= min
(

1, exp
[

−β(Enew − Eold)
])

.

43
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The big advantage of the Metropolis algorithm is its universality. It is possible to use it
with any model system, i.e., any rule of calculating a potential energy from a given state of
the system. A serious drawback is in contrast that the probability of overcoming barriers Ebar

in the free-energy landscape is proportional to the Boltzmann factor exp[−βEbar]. Therefore,
sampling can be trapped in local minima especially at low temperatures.

3.1.2 Parallel Tempering

Over the years a number of sophisticated algorithms have been developed to get rid of this
problem. One of these is the parallel tempering (PT) algorithm introduced by Hukushima
and Nemoto in 1996 [12]. In this generalised-ensemble method, several replica of the system
are simulated in parallel with, e.g., a Metropolis algorithm at different temperatures. After
a number τPT of independent Metropolis sweeps, an exchange between two configurations X

and X′ at the inverse temperatures β and β ′ is suggested and accepted with the following
exchange probability:

w(X ↔ X′; β, β′) =

{

1 , if ∆ < 0 ,

e−∆ , if ∆ > 0
(3.3)

= min
(
1, e−∆

)
,

∆ = (β′ − β)(E(X) − E(X′)) .

The key idea is that due to frequent exchanges of the configurations to low and high
temperatures, valleys of the free-energy landscape are sampled thorough enough to gain in-
formation for the low temperature range and high barriers can be circumvented. Due to the
dependency of the transition probability on energy and temperature, a suitable acceptance
rate of exchanges is obtained for acceptably overlapping potential energy histograms for the
different temperatures. The overlap of the energy histograms has another benefit as it allows
the application of reweighting methods (see section 3.2.2). On the other hand, to make use of
the advantages of the PT algorithm, the temperature range should be as broad as possible.
Thus, some thought has to be put into the choice of the number of replica NR, the tempera-
ture range and the distribution of the single replica over the latter. This is discussed in detail
in section 4.1.1.

The character of the algorithm makes the parallelisation with, e.g., MPI easy and fast,
even for distributed memory systems. To save communication, each replica is covered on one
single processor. When actually exchanging configurations, it is also possible to only exchange
the temperature.

3.2 Statistical Analysis

3.2.1 Error Analysis

The error analysis in methods of statistical physics is a very delicate task. In [34] this is
discussed in detail. Here, only a brief summary shall be presented to explain the applied
method in the work at hand, the Jackknife error analysis.
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Autocorrelation

Purely stochastic data is uncorrelated and thus the statistical error of the average O of a
number of N measurements Oi is the root of the variance of the single events:

σ2
O

=
σ2
Oi

N
=

〈O2
i 〉 − 〈Oi〉2

N
. (3.4)

In a Monte Carlo simulation an intrinsic memory exists, resulting from the fact that each
configuration is evolved from the previous one by a certain alteration – the update. Thus,
the obtained data are correlated. The explicit memory does only reach to the previous state.
However, the previous state covers information about the last but one and so forth, which leads
to a decaying long-range correlation. The correlation can be measured with the normalised
autocorrelation function:

A(k) =
〈OiOi+k〉 − 〈Oi〉2
〈O2

i 〉 − 〈Oi〉2
. (3.5)

A(k) denotes the correlation of two individual measurements with a time separation of k
simulation iterations. For k = 0 it holds A(k) = 1 due to the normalisation. To have suitable
data for A(k), the simulation has to be much longer than the considered time separations
k ¿ N . From the autocorrelation function the integrated autocorrelation time τ ′

O,int can be
calculated:

τ ′
O,int =

1

2
+

N∑

k=1

A(k)

(

1 − k

N

)

. (3.6)

This goes directly into the error estimation:

σ2
O

=
σ2
Oi

N
2τ ′

O,int . (3.7)

Therefore, the number of measurements is effectively decreased due to the correlations by a
factor 2τ ′

O,int. The calculation of τ ′
O,int is not trivial, since the statistical noise in the tail of

the autocorrelation function always adulterates the result.

For large time separations k, the autocorrelation function decays exponentially. From this
behaviour, the exponential autocorrelation time τO,exp can be estimated:

A(k)
k→∞−→ a exp

[

− k

τO,exp

]

. (3.8)

It can be shown that τ ′
O,int ≤ τO,exp. Therefore, fitting the measured autocorrelation function

by the exponential behaviour (3.8) can give a confident insight in the statistical effect of the
correlations in a simulation.

Autocorrelation times are especially large for low temperatures and at critical points,
where transitions between different conformational areas of the state space take place. Hence,
an analysis of autocorrelation at a low temperature, or at a known transition temperature,
gives a “worst case” estimation that vaguely holds for the whole temperature range.
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Jackknife Analysis

Since it would be quite exhausting to employ the whole analysis described above for every
single measurement, general but less accurate methods have been developed to estimate the
error of a Monte Carlo run. Both the Binning and the Jackknife analysis divide the data of a
simulation Oi in blocks. The Binning analysis considers a number NB = N/k of equidistant
blocks of length k.

OB,n =
1

k

k∑

i=1

O(n−1)k+i , n = 1, . . . , NB . (3.9)

In contrast, a Jackknife block OJ,n contains all data except for the data in one certain Binning
block:

OJ,n =
NO − kOB,n

N − k
. (3.10)

The benefit of the Jackknife method is that the statistics of each block is better than in
the Binning approach. Actually, for linear quantities like the energy, both methods give an
analytically equal result. Deviations do only occur, when nonlinear quantities like the mean
square energy are treated, as it is necessary for evaluating the specific heat. Considering bias
effects and the raised statistics of the longer Jackknifing blocks, the error of the estimator O
can be evaluated:

σ2
O

=
NB − 1

NB

NB∑

n=1

(
OJ,n −O

)2
(3.11)

The whole methods presumes that the data in different blocks is uncorrelated, i.e. k À τint.
However, an empiric rule is that k ≈ 6τexp gives acceptable results. Also, if k is chosen too
small, the resulting error is also too small. Therefore, calculating the estimated error for
different block sizes k can help choosing a reasonable bin size. If increasing k does not alter
σ2 considerably, the bin size is large enough. Furthermore, an interesting feature is that for
large k the product kσ2 converges against 2τint. So the observation of the evolving plateau of
kσ2 for large k allows the estimation of τint.

3.2.2 Reweighting

In the canonical ensemble, i.e. at a given volume V , particle number N and temperature T ,
the thermodynamic properties are guided by the Boltzmann distribution. The probability to
observe states with a certain energy E is (as already given in (3.1)):

Pβ(E) = Ω(E)e−βE . (3.12)

Thus, if the exact energy distribution at any temperature T = 1/kBβ is known, the density of
states Ω(E) can be simply calculated from this single energy histogram. If Pβ(E) is not known
exactly, it still covers information about the density of states for an energy range, where it
has reliable values, i.e. around its maximum. By the knowledge of Pβ(E), the average of any
function of E can be evaluated at β:

〈f(E)〉β =

∑

E

f(E)Pβ(E)

∑

E

Pβ(E)
. (3.13)
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Reweighting means the calculation of energy histograms for various temperatures from
a single measured distribution Pβ0

(E). Actually, the method is better referred to as “single
histogram reweighting”, since all the information input comes from a single histogram at
temperature β0. In doing so, in combination with (3.15) it gets possible to calculate 〈f(E)〉
at temperatures β 6= β0. The method is described in detail in [35]. Considering (3.12) it
is easy to see that from a given histogram Pβ0

(E) at inverse temperature β0, the energy
distribution Pβ(E) at inverse temperature β can be calculated as follows:

Pβ(E) = Pβ0
(E)e−(β−β0)E , (3.14)

which leads to an expression for 〈f(E)〉β :

〈f(E)〉β =

∑

E

f(E)Pβ0
(E)e−(β−β0)E

∑

E

Pβ0
(E)e−(β−β0)E

. (3.15)

This approach is only possible in a narrow temperature range, where the erroneous tails of
the reweighted histograms have a negligible influence on the results.

Multiple Histogram Reweighting

Ferrenberg and Swendsen derived a technique to use a number of m overlapping histograms
for virtually extending the range where reweighting gives acceptable results as desired [36].
The key point is that the density of states is calculated from any of the implied histograms
Pβi

(E) by inverting (3.12). By trivial averaging over the so obtained Ωi(E), the errors from
the tails of P (E), which are multiplied by gigantic values eβE due to the inverted equation
(3.12), would lead to a chaotic guess of Ω(E). Therefore, the error of each value Pβi

(E) is
approximated by ∼

√
Pβi

(E). The error weighted average of xi with variance σ2
i is [37]:

x =

∑

i
xi/σ

2
i

∑

i
1/σ2

i

. (3.16)

Thus, the error weighted combined histogram gives:

Ω(E) =

m∑

i=1
Pβi

(E)

m∑

i=1
Z(βi)−1e−βiE

. (3.17)

The values of the partition function Z(βi) are not known, but can be self-consistently deter-
mined from the density of states:

Z ′(βi) =
∑

E

Ω(E)e−βiE =
∑

E

e−βiE

m∑

k=1

Pβk
(E)

m∑

k=1

Z(βk)−1e−βkE

. (3.18)

The whole reweighting procedure is thus an iterative algorithm which consisting of the fol-
lowing steps:
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1. start from any choice for all Z(βi) (e.g. Z(βi) ≡ 1 ∀ i),

2. calculate Ω(E) according to (3.17),

3. with the so obtained Ω(E) calculate Z ′(βi) according to (3.18),

4. if Z(βi) ≈ Z ′(βi) ∀ i → ready, else Z(βi) := Z ′(βi) → return to step 2.

According to [37] a reasonable interruption condition is to check the relative deviation of
Z(βi) and Z ′(βi):

∆2 =
∑

i

[
Z ′(βi) − Z(βi)

Z ′(βi)

]2

. (3.19)

If ∆2 under-runs a limit value ε2, the iteration has reached the desired accuracy.
Usually, the partition function Z(βi) spans many orders of magnitudes. Even when nor-

malising it to values around 1, it happens frequently that the exponent overrides the provided
range even for double-precision variables. Therefore, it can be useful to work with the loga-
rithm of the partition function ln Z instead of Z. In doing so, the product Z−1e−βE simply
gets − ln(Z) − βE. Unfortunately, there is also a sum running over Z−1e−βE . A solution of
the problem how to calculate ln C = ln(A + B) by only knowing ln A and ln B is provided in
[38]:

ln C = ln(A + B) = ln

[

max(A, B)

(

1 +
min(A, B)

max(A, B)

)]

= max(ln A, ln B) + ln {1 + exp [min(ln A, ln B) − max(ln A, ln B)]} . (3.20)

Reweighting of Non-Energy Quantities

So far, it is only possible to calculate averages over functions of the energy E from the density
of states as obtained by the procedure described above:

〈f(E)〉β =

∑

E

f(E)Ω(E)e−βE

∑

E

Ω(E)e−βE
. (3.21)

By simply introducing an additional degree of freedom for the density of states, any quantity
can be reweighted by an analogous procedure. Let Pβi

(E,A) be two-dimensional histograms
covering the number of events that matched a certain range of energy E and any quantity A
at inverse temperature βi. The above equations (3.17) and (3.18) can be rewritten as:

Ω(E,A) =

m∑

i=1
Pβi

(E,A)

m∑

i=1
Z(βi)−1e−βiE

, (3.22)

Z ′(βi) =
∑

E

e−βiE

m∑

k=1

Pβk
(E)

︷ ︸︸ ︷
∑

A

Pβk
(E,A)

m∑

k=1

Z(βk)−1e−βkE

(3.18)
= Z(βi) . (3.23)
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Therefore, once the partition function Z(β) has been iterated, it can also be used for cal-
culating higher dimensional densities of states as seen in (3.22). Now, histograms of A and
mixed functions f(E,A) can be evaluated at any temperature within a reasonable range that
is spanned by βi:

Pβ(A) ∼
∑

E

Ω(E,A)e−βE , (3.24)

〈f(E,A)〉β =

∑

E

(
∑

A
f(E,A)Ω(E,A)

)

e−βE

∑

E

(
∑

A

Ω(E,A)

)

︸ ︷︷ ︸

Ω(E)

e−βE

. (3.25)

3.2.3 Fluctuation Quantities in Molecular Dynamics Simulations

In conservative systems, the whole energy E = H(r,p) can be fully separated into a potential
energy term Epot which depends on the positions only Epot = Hpot(r), and the kinetic energy,
which is of course only dependent on the momenta: Ekin = Hkin(p). The fluctuation of a
quantity A with respect to temperature can be written as:

∂

∂T
〈A〉 = kBβ2 (〈AE〉 − 〈A〉〈E〉) . (3.26)

In Monte Carlo simulations the kinetic energy is usually not considered, thus “E” in (3.26)
always means Epot. In a Molecular Dynamics simulation kinetic energy and velocities appear.
Now it shall be shown that both the whole system energy E and the potential energy Epot are
suitable to calculate fluctuation quantities as in (3.26), provided that the system’s potential
energy and the quantity do not have any velocity dependence (A ≡ A(r), Epot ≡ Hpot(r)):

∂

∂T
〈A〉 =

∂β

∂T
︸︷︷︸

−kBβ2

∂

∂β

∫
dr dpAe−βH(r,p)

∫
dr dp e−βH(r,p)

= −kBβ2

[∫
dr dpA (−H(r,p)) e−βH(r,p)

∫
dr dp e−βH(r,p)

︸ ︷︷ ︸

−〈AE〉

−
∫

dr dpAe−βH(r,p)

∫
dr dp e−βH(r,p)

︸ ︷︷ ︸

〈A〉

∫
dr dp (−H(r,p)) e−βH(r,p)

∫
dr dp e−βH(r,p)

︸ ︷︷ ︸

〈−E〉

]

= kBβ2 (〈AE〉 − 〈A〉〈E〉) , (3.27)

∂

∂T
〈A〉 = −kBβ2 ∂

∂β

∫
drAe−βHpot(r)

∫
dp e−βHkin(p)

∫
dr e−βHpot(r)

∫
dp e−βHkin(p)

= −kBβ2 ∂

∂β

∫
drAe−βHpot(r)

∫
dr e−βHpot(r)

= −kBβ2

[∫
drA (−Hpot(r)) e−βHpot(r)

∫
dr e−βHpot(r)

︸ ︷︷ ︸

−〈AEpot〉
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−
∫

drAe−βHpot(r)

∫
dr e−βHpot(r)

︸ ︷︷ ︸

〈A〉

∫
dr (−Hpot(r)) e−βHpot(r)

∫
dr e−βHpot(r)

︸ ︷︷ ︸

〈−Epot〉

]

= kBβ2 (〈AEpot〉 − 〈A〉〈Epot〉) . (3.28)

However, for the special case of the heat capacity CV = ∂〈E〉/∂T , the considered fluctuation
quantity is the whole energy: E(r,p) = Epot(r)+Ekin(p). Due to this momentum dependence
it does not fulfil the criterion stated above and (3.28) does not hold:

CV =
∂

∂T
〈E〉 =

∂〈Ekin〉
∂T

+
∂〈Epot〉

∂T

= −kBβ2 ∂

∂β

∫
dr e−βHpot(r)

∫
dpHkin(p)e−βHkin(p)

∫
dr e−βHpot(r)

∫
dp e−βHkin(p)

+
∂〈Epot〉

∂T

= −kBβ2 ∂

∂β

∫
dpHkin(p)e−βHkin(p)

∫
dp e−βHkin(p)

+
∂〈Epot〉

∂T

= −kBβ2

[∫
dpHkin (−Hkin(p)) e−βHkin(p)

∫
dp e−βHkin(p)

︸ ︷︷ ︸

−〈E2
kin

〉

−
∫

dpHkine
−βHkin(p)

∫
dr dp e−βHkin(p)

︸ ︷︷ ︸

〈Ekin〉

∫
dp (−Hkin(p)) e−βHkin(p)

∫
dp e−βHkin(p)

︸ ︷︷ ︸

〈−Ekin〉

]

+
∂〈Epot〉

∂T

= kBβ2
(
〈E2

kin〉 − 〈Ekin〉2
)

+
∂〈Epot〉

∂T
. (3.29)

Since the kinetic energy for a system of N particles in d dimensions is always given as Ekin =
∑N

i=1

∑d
j=1 p2

ij/2mi, it is possible to generally integrate the kinetic energy part. For brevity

it shall be written as Ekin =
∑dN

i=1 p2
i /2µi, where µi = m(i−i mod d)/d:

〈Ekin〉 =
1

Zkin

∞∫

−∞

dpdN

(
dN∑

k=1

p2
k

2µk

)

exp

[

−β

dN∑

i=1

p2
i

2µi

]

=
dN∑

k=1

∞∫

−∞
dpdN p2

k

2µk
exp

[

−β
dN∑

i=1

p2
i

2µi

]

∞∫

−∞
dpdN exp

[

−β
dN∑

i=1

p2
i

2µi

] =
dN∑

k=1

∞∫

−∞
dpk

p2
k

2µk
exp

[

−β
p2

k

2µk

]

∞∫

−∞
dpk exp

[

−β
p2

k

2µk

]

︸ ︷︷ ︸

1

2β

=
dN

2β
, (3.30)

〈E2
kin〉 =

1

Zkin

∞∫

−∞

dpdN

(
dN∑

k=1

p2
k

2µk

)(
dN∑

l=1

p2
l

2µl

)

exp

[

−β

dN∑

i=1

p2
i

2µi

]

=
dN∑

k=1

dN∑

l=1

∞∫

−∞
dpdN p2

k

2µk

p2
l

2µl
exp

[

−β
dN∑

i=1

p2
i

2µi

]

∞∫

−∞
dpdN exp

[

−β
dN∑

i=1

p2
i

2µi

]
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=
dN∑

k=1

dN∑

l=1

(

δk,l

∞∫

−∞
dpk

p4
k

(2µk)2
exp

[

−β
p2

k

2µk

]

∞∫

−∞
dpk exp

[

−β
p2

k

2µk

]

︸ ︷︷ ︸

3

4β2

+ (1 − δk,l)

∞∫

−∞
dpk

p2
k

2µk
exp

[

−β
p2

k

2µk

]

∞∫

−∞
dpk exp

[

−β
p2

k

2µk

]

︸ ︷︷ ︸

1

2β

·

∞∫

−∞
dpl

p2
l

2µl
exp

[

−β
p2

l

2µl

]

∞∫

−∞
dpl exp

[

−β
p2

l

2µl

]

︸ ︷︷ ︸

1

2β

)

= dN

(
3

4β2
− 1

4β2

)

+ (dN)2
1

4β2
=

dN

2β2
+

(
dN

2β

)2

. (3.31)

With (3.30) and (3.31) CV can now be evaluated:

CV = kBβ2

(

dN

2β2
+

(
dN

2β

)2

−
(

dN

2β

)2
)

+ kBβ2
(
〈E2

pot〉 − 〈Epot〉2
)

= kB
dN

2
+ kBβ2

(
〈E2

pot〉 − 〈Epot〉2
)

. (3.32)

3.3 Quantities

For the observation of the considered protein models, several thermodynamic and structural
quantities are measured. These shall be briefly summarised within this section. In the
following chapters, most of the time a certain normalisation (e.g. to the number of atoms
N or the number of bonds N − 1) is used for most of the quantities. The particularly chosen
normalisations are also given here.

3.3.1 Energy and Specific Heat

The potential energy Epot is elementary for any simulation. It is responsible for the specific
behaviour of a system. The description of a considered model always means to introduce the
expression for evaluating the potential energy of a certain configuration of the system. This
has been done in chapter 1.

Talking of the energy E in a Monte Carlo simulation always means the internal (potential)
energy Epot, since the kinetic energy is already integrated out by the algorithm. Within the
Molecular Dynamics simulation, there is an explicit kinetic energy Ekin besides the potential
energy. Furthermore, when applying the Nosé-Hoover-Chain (NHC) thermostat, the virtual
heat bath particles also have a potential and kinetic energy. The sum of all these four energies
(2.71) is theoretically kept constant over the simulation.

However, as explained in the previous section, the specific heat of a MC simulation can
be compared to the fluctuation of the potential energy in a MD simulation. Therefore, within
this work heat capacities from MD simulations always mean the contribution of the potential
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energy according to the second summand of (3.32). The fixed part kBdN/2 arising from
the kinetic energy is not taken into account. One good reason to do so is that in a finite
simulation the average will never match the exact value and the variance will not vanish.
Thus, considering the total energy of the stand-alone system for measuring the specific heat
would only increase the statistical errors.

In the following, the values of energy and specific heat are normalised to the number of
monomers N if not denoted otherwise. To consider the energy per monomer makes sense as
far as most of the potential contributions can be linked to single monomers.

3.3.2 End-To-End-Distance and Radius of Gyration

For protein folding, structural aspects of a certain configuration are very important. There-
fore, it is necessary to define suitable quantities to describe the structure.

A straightforward approach to describe a configuration is to measure the distance of the
first and the last monomer – the end-to-end-distance:

Ree(X) = |rN − r1| . (3.33)

It is expected that for rather linear or “unfolded” structures Ree will have explicitly larger
values than for more compact ones, that could be called “folded”.

For a chain with N monomers in an equal distance r0 the largest end-to-end-distance will
be (N − 1) · r0. Thus, the obvious normalisation is the number of bonds N − 1, since the
equilibrium bond length is set to r0 = 1. If the end-to-end-distance is normalised by the
number of bonds, it is possible to compare the findings of sequences with unequal length.

Although the evaluation of Ree is very simple, the information content is questionable.
If, for example, a long chain has a sharp bend a monomer in the middle and the two tails
are nearly parallel and very close to each other, the end-to-end-distance could be very small,
while the structure is actually quite wide-stretched.

Therefore, a more sophisticated quantity shall be used to describe the structural properties
of a configuration. The radius of gyration is defined as the average square distance from the
centre of mass:

Rgyr(X) =

√
√
√
√ 1

N

N∑

i=1

(ri − rS)2 , rS =
1

N

N∑

i=1

ri . (3.34)

This value will be still big, if e.g. a large loop is evaluated as described above. Only if a
configuration is really dense, Rgyr will have small values, since then most of the monomers
are close to the centre of mass.

The normalisation is not as obvious as for Ree. To normalise by the maximal value of
Rgyr for a given number of monomers N implies a rather complicated expression and it is not
clear, what the real differences of Rgyr are for different N . Therefore, in the following Rgyr

will be simply normalised by the number of monomers N .

3.3.3 Comparing Two Configurations

Proteins live at room temperature in nature and thus have to cope with rather large thermal
energies. Still, a protein has to exist in a relatively stable state at these temperatures, since the
function is mainly induced by its three-dimensional structure. Therefore, in the complicated
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and rugged free-energy landscape of a protein there must be some steep and deep valley, so
that it is possible to surely stay within this valley at room temperature. The whole thermal
energy has to be accumulated by fluctuations which are not crucial for the biological behaviour
of the protein.

Therefore, in a realistic protein model the hope is to also find minimal energy states which
can be explicitly distinguished from the rest of the ensemble of configurations not only by
especially low energies, but also by means of the structural uniqueness. Once such a potential
ground-state has been found, the terms “folded” and “unfolded” can be identified by com-
paring with this ground-state structure X(0). Several ways of accomplishing the comparison
are described in the following.

The methods can of course be used to compare any two configurations, no matter how they
have been obtained. For example it is also possible to compare two ground-state structures
that have been found for different simulation parameters.

q Parameter

As described in chapter 1, by the Lennard-Jones-like interaction it is induced that A monomers
have a strong attraction. Indeed, the only type of energy that is negative, are the attractive
A-A and B-B interactions from the Lennard-Jones potential. Therefore, it is expected that a
lot of A monomer pairs will have a distance close to that, where the Lennard-Jones potential
has its minimum (rij ≈ 1.1 for the given parameters). Such a pair of non-neighbouring
nearby monomers is called a contact. In a ground-state structure with very low energy,
there will be a high number of such contacts. Since the ground-state is considered to be the
native configuration X(0) of the system as explained above, a contact within the ground-state
structure is called native contact.

By counting, how many of the native contacts are formed in an instantaneous structure
X, it can be compared to the ground state:

q(X,X(0)) =
# contacts formed in X

# contacts in X(0)
. (3.35)

The implementation leaves some choices. The first is the exact definition of what a contact
is. Mostly the following criteria are used in this work: (a) rij < r0,cont = 1.7, (b) |i − j| > 2.
The latter fact is motivated by the fact that even next but one neighbours get quickly in
contact even for smaller choices of r0,cont. This can yield relatively high values for q although
two configurations are really disparate. However, there is some space for adjustment.

The second question is: When is a contact considered formed? The rule applied in this
work is determined following [39]. A contact is formed, if the instantaneous distance rij of
two monomers which are in contact in the ground-state configuration X(0) is smaller than

γ · r(0)
ij . According to [39] the cut-off factor γ does not have a crucial influence on the results

and is chosen γ = 1.2.

The range of q is q ∈ [0, 1]. If q = 1, the X is very similar to X(0). Analogously, if
q = 0, none of the native contacts is formed and the configuration is far from the ground
state structure. A drawback of the q parameter is that it is highly discrete. A typical number
of native contacts in a ground-state of a sequence with N = 20 monomers is 25 . . . 35. Also,
since the presented criterion for considering a contact as formed is quite imprecise, the variety
of configurations that lead to the same value for q is enormous.
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Overlap Parameter

The two drawbacks brought up in the last paragraph are dissolved with the introduction of
the overlap parameter in Ref. [17]:

Q(X,X(0)) = 1 − d(X,X(0))

Nt + Nb
, (3.36)

d(X,X(0)) =
1

π

(
Nt∑

i=1

dt(Φi, Φ
(0)
i ) +

Nb∑

i=1

dt(Θi, Θ
(0)
i )

)

,

dt(Φi, Φ
(0)
i ) = min

(

|Φi − Φ
(0)
i |, 2π − |Φi − Φ

(0)
i |
)

,

db(Θi, Θ
(0)
i ) = |Θi − Θ

(0)
i | .

In (3.36), Nt is the number of torsion angles (see chapter 5) and Nb is the number of bond
angles. With all torsion angles Φi and bond angles Θi, a configuration is uniquely defined.
Therefore, comparing the deviation of all the angles as it is done when evaluating Q(X,X(0))
gives thus a definite statement about the equality of two configurations. If Q = 1, i.e. if all
angles are the same and therefore d vanishes, the two configurations are exactly the same.
For lower values of Q the match is less well. However, values lower than Q = 0.5 are hardly

observed. The reason is that e.g. if the difference of two bond angles should be |Θi−Θ
(0)
i | = π,

which would be the maximum contribution to d(X,X(0)), one of the bond angles would have
to be 0 and the other one π. While, Θ = 0 is unlikely, Θ = π is virtually impossible, since
the strong Lennard-Jones repulsion for small distances excludes configurations, where two
monomers are close.

There are two special cases, which have to be considered when calculating Q. Firstly, one

configuration can be a mirrored image of the other one if Φi = −Φ
(0)
i holds for all torsion

angles. Furthermore, in the special case of a symmetric sequence, it can of course happen
that the configurations are nearly equal, but running in opposite directions. Hence, also a
sequence reversal has to be calculated in case of symmetric sequences by comparing ΦN+1−i

and Φ
(0)
i as well as ΘN+1−i and Θ

(0)
i . The maximum of all Q resulting from the four possible

combinations of these two assumptions is the overall overlap of the two sequences.

In principle, Q gives a reasonable information over the equality of two configurations
for Q ≈ 1. For lower values, it is not clear where the deviation comes from. On the one
hand, it would be possible that all angles are altered a little bit but the configurations are
still very similar. On the other hand, it is as likely that only a small number of angles
is completely different from the original structure, which can lead to an explicitly different
overall configuration.
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Root Mean Square Deviation

Finally, a very useful but extremely costly method of comparing two configurations is to
calculate the root mean square deviation:

Drms = min

√
√
√
√ 1

N

N∑

i

(

r̃i − r̃
(0)
i

)2
, (3.37)

r̃
{(0)}
i = r

{(0)}
i − r

{(0)}
S = r

{(0)}
i − 1

N

N∑

i=1

r
{(0)}
i .

Actually, the structures are shifted to the same position by considering the positions of the
monomers relative to the centre of mass rS . The critical point is finding the minimum of the
root mean square deviation, since the alignment of the structures in terms of rotation is free.
This implies a complicated calculation and thus cannot be done for every step within the
simulation. If the structures are identical, than Drms = 0. For unequal structures of length
20, values of Drms ≈ 1.0 are typical.
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Chapter 4

Examination of the Model System

One of the key points of the present project is to study possible differences in the behaviour
and the results of Monte Carlo and Molecular Dynamics simulations. The systems described
in the first chapter have been studied in detail with several methods of Monte Carlo within
the group. Thus, there are many reliable data for the original model available, where the
bonds are fixed to unit length. However, flexible bonds have never been examined before.
Therefore, it is necessary to create data for this particular case both with MC and MD. The
results of the MC studies are presented in this section.

4.1 Thermodynamics with Monte Carlo simulations

4.1.1 General Facts about the Simulations

MC Update

For testing the MC program and comparing the flexible bonds case with the original model,
both alternatives were implemented. In contrast to Molecular Dynamics, constraints can be
easily implemented in a Monte Carlo simulation by choosing a suitable update that follows
the requirements. One method of updating the positions of monomers by keeping all next-
neighbour distances constant is to rotate one bond vector. Afterwards, the positions of the
monomers can be calculated from successively summing up all bond vectors, starting from
the very first monomer.

Figure 4.1 shows such an update scheme, the monomers are numbered. The positions
of the monomers at the beginning of the chain stay unchanged, until monomer number i.
Since bi is rotated, all succeeding monomers are moved by the difference of the new and
original bond vector bi. The bond vector is rotated by an angle θ with respect to its original
direction, which leaves an azimuthal degree of freedom ϕ, which can be randomly selected
out of ϕ ∈ [0, 2π). The proposed update is done in spherical coordinates, which means the
Jacobian of spherical coordinates r2 sin θ has to be taken into account. The radius r means
the bond length in this case, which is fixed to unit length. Thus the only relevant term is
sin θ. Choosing cos θ instead of θ means that not explicitly spherical coordinates are used, but
r, ϕ and cos θ. This choice makes the Jacobian r2, so no particular distribution for selecting
cos θ has to be followed. Thus, it is possible to simply select cos θ ∈ [cos0, 1.0), where cos0 is
a freely selectable lower bound. The smaller cos0 is chosen, the wider is the possible update
cone, from which the new bond vector can be chosen. This value should be selected carefully

57
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Figure 4.1: Visualisation of the utilised update scheme for simulating the AB model with fixed bonds.
The picture is taken from Ref. [17].

for obtaining reasonable acceptance rates. If cos0 is too small, the suggested updates will be
rejected most of the time, since the configurational change is too large. If cos0 is too large,
the movement in phase space is very slow and the acceptance rate is near to 1, since the
suggested update does rather change anything about the current configuration.

For the case of flexible bond, things are simpler. Here it is possible to suggest a small
cartesian movement of one or more monomers as and update. Indeed, it is reasonable to chose
between two different types of cartesian updates: a local one, where the position of only one
monomer is changed, and a global one, analogous to the previously described case, where one
bond vector is altered, and thus the whole succeeding chain is moved. The first case has an
advantage considering the implementation: Since only one monomer is moved, only potential
terms which imply this particular monomer must be recalculated to obtain the energy of the
new configuration. This is especially crucial for the Lennard-Jones potential, which has a
complexity O(N2). By using a local update scheme, the complexity can be reduced to O(N).
However, it will turn out that the autocorrelation time for the local update is significantly
larger than for the global update. Therefore the gain in computation time is lost by the
need of more statistics. For that reason and also because in the fixed bond case also a global
update is used, the local update scheme is rejected.

Specific Set-Up for Parallel Tempering

As explained earlier, a parallel tempering simulation uses several replica of a system, which
are simulated coinstantaneously at different temperatures. The probability that two replica
at neighbouring temperatures are exchanged depends on the difference of the inverse tem-
peratures, as well as the current energies. Therefore, for having a suitable acceptance rate
of such exchanges, the ensemble of temperatures should feature an acceptable overlap of the
energy histograms. This means that more replica should be placed at low temperatures in
principle, where the energy histograms are sharp. One way to reach this would be to chose
temperatures by hand. Both in [12] and in [40] rather sophisticated methods for the choice of
the simulation temperatures are described. However, the effort is questionable and the results
were not satisfying in some test simulations. Yet, to stay flexible in terms of temperature
range (T1 . . . T2) and number of replica NR, a general formula for distributing the temperature
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Figure 4.3: Normalised potential energy his-
tograms for the finally chosen scheme of temper-
ature distribution.

range over the different replica i is developed. Using a linear interpolation between the two
bordering temperatures,

Taeq.,i = T1 + (T2 − T1)
i

NR − 1
, (4.1)

would surely imply problems in the low temperature range, because there would be too few
replica. However, a linear interpolation between the inverse temperatures (implying kB ≡ 1),

βaeq.,i = T−1
1 + (T−1

2 − T−1
1 )

i

NR − 1
, (4.2)

would stress the low temperature range far too much. Therefore, a quadratic interpolation is
chosen, which is close to βaeq.,i for small i, and adapts more to Taeq.,i for larger i:

Ti = β−1
aeq.,i + (Taeq.,i − β−1

aeq.,i)
i

NR − 1

=
(NR − 1)2(iT1 + (NR − i − 1)T2)

T1T2(NR − 1)3 + i2(NR − 1)(T1 − T2)2 − i3(T1 − T2)3
. (4.3)

Figure 4.2 compares the temperature “functions” for the parameters that are used in all
simulations, if not specified differently. I.e., 18 replica (NR = 18) cover a temperature range
from T1 = 0.1 to T2 = 1.6. T2 is considered high enough to quickly sample the rough energy
landscapes of the observed systems and circumvent large potential energy barriers. Whereas,
T1 seems to be low enough to thoroughly sample the valleys of the energy landscape to find low-
energy ground-states. The number of processors is large enough to have a suitable potential
energy histogram overlap (see Fig. 4.3). Additionally, the variance of the replica number that
is currently simulated at a particular temperature is accumulated for each temperature. This
makes it possible to access how often each replica visits the lowest and highest temperature.
The outcome was always satisfactory.
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Figure 4.4: From the left to the right, the different update types are visualised: The update with fixed
bond length (compare Fig. 4.1), the global cartesian update (also one bond vector is altered) and the
local cartesian update, where only one monomer is moved.
(a) In the first row a logarithmic plot of the autocorrelation function A(k) is shown. The x-coordinate
is normalised by τPT. For the largest choice of τPT, the noise is too strong to have confident results for
k > τPT. (b) Beneath, the product of variance and Jackknife block size is plotted over the Jackknife
block size for the respective measurements (see text for details). In [34] it is proven that a plateau
shows up at kσ2

B = 2τint. Therefore these plots can be used to estimate τint. (c) In the bottom row,
the estimated errors of a simulation of sequence 20.4 are plotted for several Jackknife block sizes.

Autocorrelation Functions

The study of potential energy autocorrelation functions is important for two major reasons.
First, for the whole error analysis machinery it is crucial to have a rough estimation of
the autocorrelation time. Secondly, the simulation should be capable of running on parallel
systems with distributed memory, using MPI. Therefore, it is to expect that the more steps τPT

are made between two trial replica exchanges, the more efficient would be the parallelisation.
On the other hand, the efficiency of the parallel tempering algorithm is increased by frequently
proposing such exchanges, i.e. for small τPT. The influence of τPT on the autocorrelation times
should be an important argument for the choice of a reasonable medium value for τPT.

Since the autocorrelation time is always larger at low and especially at critical tempera-
tures, the following simulation is chosen to compare the three different MC update types: 10
replica of sequence 20.6 are simulated on a temperature range from T1 = 0.35 to T2 = 1.0.
Thus, the lowest temperature is lying at a strong peak of the specific heat (compare Fig.
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4.5). After 105 MC sweeps of equilibration, the potential energy time series at the lowest
temperature is measured over 107 sweeps. After τPT = {102, 103, 104} steps an exchange of
the replica is suggested. For the previously described update with fixed bond length (see Fig.
4.1), cos θ is chosen from cos θ ∈ [0.99, 1.0), thus cos0 = 0.99. For the two types of cartesian
updates, a random displacement is chosen out of a cubic box with edge length 0.1.

The results of the measurements are shown in Fig. 4.4. The first row (a) shows the
autocorrelation functions for the three update types and for several choices of τPT. The
exponential autocorrelation times are listed in Table 4.I. It is very remarkable that the
autocorrelation time seems to rise by a factor 2 . . . 10 for time separations k > τPT! For
showing this effect more clearly, the abscissa is normalised to τPT. At k/τPT = 1 is a definite
sharp bend, and the exponential autocorrelation time changes its value noticeably (compare
Table 4.I). However, the normalisation of the abscissa leads to the impression that the
autocorrelation time is smaller for large τPT which would be the contrary of the expectation.
But this is not the case, it is only an effect of the chosen normalisation of the x-axis. The
speculation about the form of A(k) would have been that only for k > τPT the advantage of
parallel tempering is really seen and thus the autocorrelation time is much smaller than for
k < τPT. Obviously, the opposite is the case. The reason for this astonishing effect is maybe
not trivial, but could result from the fact that for small k the system samples only one valley
of the potential energy landscape, and only for k > τPT the real roughness of the landscape
is noticed. Since detailed parallel tempering studies are not the main goal of the project, no
further effort is made to investigate this effect in more detail.

From the pictures in the second row of Fig. 4.4 an assumption about τint can be made.
Obviously the difference between τPT = 102 and τPT = 103 is smaller, than between τPT = 103

and τPT = 104. Since τPT = 102 implies 10 times more latency than τPT = 103 considering
the parallelisation, it is chosen to use τPT = 103 in all the following simulations. Also, for
the local cartesian update, it gets clear that the autocorrelation time is about one order of
magnitude larger than for the two more “global” update schemes, where whole parts of the
polymer are shifted against each other. Unfortunately, the statistical noise gets too strong
for large block sizes, so that an estimation of τint is impossible. Therefore, another couple of
simulations is carried out.

Sequence 20.4 is simulated for 108 sweeps after an equilibration phase of 105 sweeps. The

Table 4.I: Exponential autocorrelation times obtained by fitting the plots from Fig. 4.4.

Update type Range τPT = 102 τPT = 103 τPT = 104

bi =const. k < τPT 1.59 · 102 1.02 · 103 2.80 · 103

global cartesian k < τPT 1.75 · 102 1.21 · 103 4.79 · 103

local cartesian k < τPT 1.99 · 102 1.47 · 103 1.20 · 104

bi =const. k > τPT 1.20 · 103 2.17 · 103 –

global cartesian k > τPT 1.76 · 103 3.72 · 103 1.08 · 104

local cartesian k > τPT 3.13 · 103 1.52 · 104 5.05 · 104
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temperature range is chosen as in the following runs from T1 = 0.1 to T2 = 1.6, and N = 18
processors are used. The absolute error of the heat capacity obtained by the use of different
Jackknife block sizes k is plotted in the last row of Fig. 4.4. The correct choice of k is reached,
when larger k do not increase the error substantially anymore. While for low temperatures
the differences between the three update types are marginal, it is clear that at the larger
peak (T ≈ 0.6, compare Fig. 4.5) the local update is explicitly worse than the other methods.
This is analogous to the general finding that global update schemes lead to seriously shorter
autocorrelation times at transition temperatures. Therefore, the global cartesian update is
chosen for all runs with flexible bonds, by accepting a slower computation of about a factor
3 for systems with 20 monomers. Since the deviations of the estimated error for Jackknife
bin lengths k = 5 · 105 and k = 106 sweeps are negligible even for low temperatures, the
former selection k = 5 · 105 is chosen for all following simulations, yielding a better statistics
of Jackknife bins.

4.1.2 Thermodynamics

For the six 20mer sequences given in Table 1.I, several thermodynamic quantities are mea-
sured. Also, the configurations with the minimal observed energy are written out after every
simulation. Since the data should be used for comparison with the Molecular Dynamics re-
sults, flexible bonds with a bond strength of αr = 50 are used. All runs have an equilibration
phase of 105 sweeps, to which a parallel tempering run of 3 · 108 sweeps is affiliated. The
Jackknife bin size and the parallel tempering exchange rate τPT are chosen as described in
the previous section.

Specific Heat

The measurements of mean potential energy and specific heat are shown in Fig. 4.5. All values
are normalised to the length of the sequence, i.e., divided by 20. First of all, the results match
very well with data for fixed bond length in [17], recalling that the heat capacity is raised
by about ≈ 1/2 because of Vbond. For a graphical illustration, see Fig. 1.5 above, where the
stiff bond case is compared to the flexible bond case. The mean energy 20.1 – 20.4 lies in the
same range from Ē(T = 0.1) ≈ −1.5 to Ē(T = 1.6) ≈ 1.0. For 20.5 and 20.6, which are also
distinctive for the specific heat, the energy range is smaller and starts at about E = −1.0
for low temperatures. The specific heat of the observed systems always shows a double peak,
except for sequence 20.6, where only a shoulder is left over from the first peak. This indicates
two transitions between different configurational states. In [41], the three states are referred
to as the ground-state domain, the globule domain and the random-coil domain. In 20.1 –
20.4, the temperatures, where the peak arises, are very similar. For 20.5 and 20.6, there
are also similarities. The main difference is the height of the peaks. Therefore, the general
behaviour seems to be much more dependent on the fraction of A monomers. This is the
main difference between the two sequence groups 20.1 – 20.4 and 20.5 – 20.6, as it can be
seen from Table 1.I. Both peaks of the specific heat are at lower temperatures for the latter
two sequences in comparison to 20.1 – 20.4. This is analogous to the finding that the energies
are larger at low temperatures. Thus, the amount of thermal energy that destabilises the
ground-state is lower, and the transitions occur at lower temperatures.
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Figure 4.5: Mean potential energy and heat capacity of the six 20mers listed in Table 1.I. The lines
are obtained by multiple histogram reweighting (except for 20.5, where the reweighting procedure did
not work properly). The error bars result from a Jackknife analysis.

End-To-End-Distance and Radius of Gyration

Since the fluctuations are more interesting, as their extrema indicate temperature ranges,
where possibly transitions take place, only the fluctuations of end-to-end-distance and radius
of gyration are plotted in Fig. 4.6. In general, the fluctuation of the radius of gyration is
not as strong as for the end-to-end-distance. Obviously, the end-to-end-distance is more
dependent on the several configurational domains that have already been identified by the
specific heat peaks. For the first three sequences, there is also a double peak in both of the
fluctuation quantities, although it is not as pronounced as for the specific heat. For 20.4-20.6,
actually only the second peak is left, which is much more pronounced in exchange. Maybe
this deals with the fact that for these three systems the second peak of the specific heat is
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Figure 4.6: Fluctuation of end-to-end-distance radius of gyration of the six 20mers listed in Table 1.I.
Unfortunately no reweighting data is available, so the results are obtained by simple averaging.

higher than the first peak. It is remarkable that the temperatures of the peaks of the Ree and
Rgyr fluctuations correlate very well with those from the specific heat.

Ground-States

In Table 4.II, the minimum energies are listed as they are found during the simulations. It
is remarkable that the minimal energies do obviously also rather depend on the particular
sequence, but on the number of B monomers (compare Table 1.I). This is reasonable consid-
ering the fact that a close A-A interaction gives an negative energy contribution that is four
times as low as a B-B interaction. Thus, the more A monomers are present, the more A-A
contacts will arise and lead to a seriously lower ground-state energy. This can be also seen
from the mean energy plots in Fig. 4.5.
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4.1.3 Impact of Different Bond Strengths on the System

The question of what the impact of different bond strengths αr is, is exemplarily examined
for sequence 20.4. Figures 4.7 and 4.8 show an overview of the heat capacities of sequence
20.4 for several bond strength αr. The second peak is continuously lowered by increasing the
bond strength. For small αr, there is a much larger ensemble of accessible configurations in
principle, compared to rather strong bonds. The second peak denotes the transition between
globule and random-coil configurations. It is easy to see that within the globule domain –
the ground-state domain is considered as a special case of the globule domain here – there
are strong constraints due to the Lennard-Jones potential. Within the globule domain, even
a system with quite weak bonds can thus not take advantage of the wider range of possible
configurations. Only after reaching the random-coil domain, the steric repulsions lose im-
portance in favour of the bond fluctuations. Therefore the difference in the density of states
within the globule and the random-coil domain is the larger the smaller αr is. This can be
taken as an argument for the higher peak in the heat capacity. Nevertheless it is remarkable
that the temperature where the second peak arises seems to be independent from αr. The
fluctuations of end-to-end-distance in Fig. 4.9 and of the radius of gyration in Fig. 4.10 do not
show any distinctive feature. The big peak correlates acceptably with the second peak of the
heat capacity and is pronounced for weak bonds as well. Also the tails show small deviations,

Table 4.II: Energies of the ground-states observed by the described MC parallel tempering simulations.

Sequence 20.1 20.2 20.3 20.4 20.5 20.6

Emin −33.4 −33.7 −33.1 −34.2 −18.9 −18.6
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Figure 4.11: Closer look on the first peak of the heat capacities of sequence 20.4 for different bond
strengths αr. (a) Low bond strength, (b) higher bond strength.

which can be probably explained by the larger bond length fluctuations for low αr.

For the first peak in the heat capacity, things are more difficult. A closer look is provided
in Fig. 4.11. When increasing αr coming from weak bonds (see Fig. 4.11(a)), the height of the
first peak decreases. The specific temperature moves first towards higher temperatures and
is decreasing again afterwards. For higher values of αr (Fig. 4.11(b)), the peak gets stronger
again and is finally again slowly decaying and slightly moving towards higher temperatures.
A special case is observed for αr = 10. There is a double-peak structure in the heat capacity,
where generally only one peak arises. However, the effect is very small compared to the usual
height of the peak, thus it is not unlikely that it is an artifact of the reweighting procedure.
As mentioned earlier, the first peak of the heat capacity is thought to constitute the transition
from ground-state like structures to globules. The variety of different heights and locations of
the first peak for different bond strength indicates that the ground-state structure is highly
dependent on αr.

Therefore, the minimum energy states found during the parallel tempering runs should
be investigated more thoroughly. Figure 4.12 shows the overlap and the root mean square
deviations (see section 3.3.3) of pairwise compared ground-state configurations for several
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Figure 4.12: The result of the pairwise comparison of the ground-state structures for the observed
bond strengths is plotted here. (a) Overlap Q, (b) root mean square deviation.
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Figure 4.13: Pictures of the ground-states for (a) αr = 2, (b) αr = 50. The dark spheres depict
monomers of type A, the light ones are B monomers. The numbers of the first and last monomers are
given for better orientation.

values of αr. It is clear that only structures of equal or relatively close αr match adequately.
All other pairwise comparisons show that there is a wide range of independent structures for
the different observed bond strengths.

An interesting feature of weak bonds can be directly seen and qualitatively understood
from a ground-state snapshot. Figure 4.13 shows a minimum energy configuration of sequence
20.4 for (a) the weakest (αr = 2), and (b) the strongest bond (αr = 50) that has been studied.
The potential energy penalty for two neighbouring monomers that get very close comes only
from the bond potential, the Lennard-Jones potential does not act between next neighbours.
Particularly, according to the definition of the bond potential (eq. (1.2)), the potential energy
is raised by αrr

2
0 if two neighbouring monomers reside in the same position. In the considered

case r0 = 1, the energy penalty is actually αr. Therefore, for low values of αr it is possible that
the benefit from the Lennard-Jones contribution by forming more contacts is greater than the
energetic loss from the bond potential. This is exactly what can be seen in not less than four
cases in Fig. 4.13 (a). The potential energy of this configuration is Epot = −43.9, while the
potential energy of the configuration with αr = 50 in Fig. 4.13 (b) is Epot = −34.3. So the
weaker bonds make it really possible to gain a lower ground-state energy. It is conceivable
that for higher bond strengths, the monomer pairs break up one by one. This will lead to new
types of ground state like configurations again and again and can be taken as an argument
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Figure 4.14: A contact map for the ground-states of sequence 20.4 for (a) αr = 2, (b) αr = 50. It
shows where the distance between non-neighbouring monomers rij is rather small. In this case these
two monomers are considered to be “in contact”. It is clear that the map is symmetric with respect
to the diagonal because rij = rji. The key at the right shows the range of distances that the certain
gray tones mark. Since a contact between A monomers is energetically much more favourable than
a contact between B monomers (which can be seen only once in (b) for that reason), the sequence
is important for the interpretation of the map. Therefore, the sequence is illustrated at the left and
below the map. Thick parts of the line depict an A monomer. Furthermore, the B monomers are
marked with dashed lines within the contact map.

for the large variety of forms of the first heat capacity peak. Additionally Fig. 4.13 (a) clearly
shows that due to the weak bonds and the unaltered strong Lennard-Jones repulsion, the
equilibrium distance for the B monomers is definitely above r0(= 1).

A look onto the contact maps in Fig. 4.14 makes it possible to roughly estimate the
contributions from the Lennard-Jones potential. In Table 4.III the numbers of A-A contacts
within a certain range of distances are collected for the two considered cases (a) αr = 2 and
(b) αr = 50. Additionally the average value of the Lennard-Jones potential for the particular
ranges are given, which makes it possible to estimate the energy contribution of close A-A
interactions. The formation of the four monomer pairs for αr = 2 makes roughly Vbond =
4 · αr = 8. Therefore the final approximation neglecting farther A-A and B-B interactions as

Table 4.III: The average Lennard-Jones potential energy for A-A interaction is given within certain
distance ranges, as well as the number of contacts in these ranges for the two considered cases (a)
αr = 2 and (b) αr = 50 (compare Fig. 4.14). Additionally the total estimate of the close A-A
interaction is calculated in the last column.

Range rij ∈ (1.0, 1.1) rij ∈ (1.1, 1.15) rij ∈ (1.15, 1.2) rij ∈ (1.2, 1.3) Total

®VLJ −0.67 −0.99 −0.94 −0.77

# (a) 12 32 11 1 ≈ −50.8

# (b) 5 20 10 2 ≈ −34.1
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well as the bending term and small bond length deviations is: (a) V ≈ −51 + 8 = −43 and
(b) V ≈ −34, which is very close to the exact result given before.

In conclusion, weak bond strengths are artificial in principle. Experiment shows that
especially for proteins the bonds are nearly rigid. Also the observed monomer-pairs for low
αr are a heavy contrast to the fact that the “monomers” in the model depict whole amino acids
in nature, which have a strong steric repulsion of course. Therefore, the found effects in the
weak bond regime do not have any relevance in protein folding. Nevertheless, the examination
has shown, that there is no systematic impact of flexible but strong bonds, besides that the
heat capacity is raised by ≈ 1/2 due to the bond fluctuations.

4.2 Comparison with Results from Molecular Dynamics sim-

ulations at finite temperature

4.2.1 Simulation Fundamentals

Starting Configuration

When choosing a random configuration with unit bond length as the only requirement, the
potential energy of this configuration will be generally very large. This comes from the
strong steric repulsion (r−12

ij ) of the Lennard-Jones energy. If two non-neighbouring monomers

have a distance of 0.6, the potential energy contribution is about 103. Therefore, a random
configuration will have a potential energy that is orders of magnitude higher than the expected
mean potential energy at a certain temperature. In a Monte Carlo simulation, this is not really
a problem. After a small number of updates, the potential energy reaches a reasonable range.
In a MD simulation, however, a very high initial energy will lead to high potential gradients,
which is equivalent to very large forces. Large forces result in large velocities, so the potential
energy is quickly translated into kinetic energy. Thus, before the thermostat is able to bring
the system into an equilibrium state by assimilating the excessive amount of energy, the
system will simply “explode”. To prevent this, a nearly linear starting configuration is chosen
randomly, by selecting bond vectors of the following form:

bi =








(RAN − 0.5) · 0.1
(RAN − 0.5) · 0.1

1








. (4.4)

RAN denotes a random number from a uniform distribution in the range RAN ∈ [0, 1). The
small intrinsic bond length deviations from r0 ≡ 1 do not have a noticeable effect for the
utilised bond strength αr = 50. If a really linear configuration would be chosen, there would
be only one explicit direction in the system and no force could point away from the linearity,
i.e., a linear configuration is an instable fixed point. The potential energy of such an elongated
configuration is around E = 0. It would also be possible to start from a linear configuration
and randomly chose non-zero velocities for each monomer. However, in the selected method
the dynamics is purely driven by forces and the thermostat, which is more analogous to the
desire to observe deterministic dynamics.
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Adjustment of the Thermostat

The most important source of information when adjusting a Molecular Dynamics simulation
with the Nosé-Hoover thermostat are frequency spectra. On the one hand, it is crucial to
know the typical, fastest time scale of the system to correctly chose the virtual masses of
the NHC, on the other hand only the knowledge of the fastest fluctuation can ensure that
the time step δt has not been chosen to large. Furthermore, if the system shows a broad
range of frequencies, it is possible that a chain of more than two thermostats M > 2 is
needed. However, for measuring a frequency spectrum, a MD run has to be performed, i.e.
an initial guess of the respective constants is needed. The first assumption is therefore that
the bond fluctuations arising from Vbond are the fastest within the system. Also, the bonds
are approximated as harmonic oscillators by neglecting the influence of the other potential
terms. Finally, all monomers are considered to have the same mass m = 1 for simplicity. In
doing so, the frequency of the bond fluctuation can be calculated in dependency of the bond
strength αr:

αr =
1

2
mω2

bond =
1

2
m

1

τ2
bond

,

⇒ fbond =
ωbond

2π
=

1

2π

√

2αr

m
, (4.5)

τbond =

√
m

2αr
. (4.6)

To check the assumptions for their validity, a whole MD run is performed with sequence 20.2.
As a first guess, the length of the Nosé-Hoover-Chain is set to M = 2, as required for the
harmonic bonds. For being sure that the thermostat can handle potential fluctuation of higher
frequencies, the time step is chosen to be δt = 0.001. The system is simulated at temperature
T = 1.0. A long equilibrium phase of 108 MD steps is performed to make sure that the
system really is in equilibrium when starting the measurement of 3 · 108 time steps. As a first
guess, the size of the Jackknife bins for the error analysis is set to 106. At temperature 1.0,
the histograms of velocities and bond lengths are measured for comparison with the exact
results. Also the time series of the same quantities are used to study the frequency spectrum.

The results can be seen in Figs. 4.15 and 4.16. The average frequency spectrum of the
bond length fluctuations (the lower plot in Fig. 4.15) has – as expected – one maximum at
f = f0. The velocity spectrum (upper plot) analogously shows the same maximum. At lower
frequencies, there are further maxima, which are much more pronounced. These can surely
be ascribed to the rest of the interactions. The velocity (component) histograms in Fig.
4.16 perfectly match with the theoretic prediction. The velocities of the thermostat particles
should also have a Gaussian distribution, and live up to expectations, which is exemplarily
shown for the first thermostat particle in the figure. The coincidence is nearly perfect, so that
the measured and theoretic graphs cannot be visually distinguished. Also, histograms of the
bond length deviations have been measured. The magnification in the top left corner of the
plot shows that the measured distribution behaves very similar to a harmonic oscillator, but
the average is slightly larger than the equilibrium bond length. This could be caused by the
Lennard-Jones interaction, which does in principle favour distances larger than r0, although
not for neighbouring monomers. However, e.g. from Fig. 4.13 (a) it can be seen that the
equilibrium distance especially of B monomers can be definitely larger than r0 due to the
Lennard-Jones potential.
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Figure 4.17: Plot of the average kinetic energy (cross symbols) and the theoretic prediction (dashed
line) for the MD simulation of sequence 20.2. The error bars are smaller than the line thickness.

Another good test is of course, to compare the average kinetic energy at each temperature
with the theoretic prediction Ekin = (3/2)kBT . This comparison is shown in Fig. 4.17. But
as it could be expected from the very good results of the two more sensitive previous checks,
the agreement of the measured values and the analytic results is great. Obviously, all made
choices have been reasonable and can be kept up.

4.2.2 Thermodynamics

So far, only purely kinetic and thus thermally induced effects have been inspected. But
up to now it is not clear, whether the results are comparable with those obtained from the
Monte Carlo simulations. Therefore, the thermodynamic quantities that have already been



72 CHAPTER 4. EXAMINATION OF THE MODEL SYSTEM

MD II
MD I

MC

CV

Epot

T

〈E
p
o
t
〉,

C
V

1.61.41.210.80.60.40.20

3

2.5

2

1.5

1

0.5

0

-0.5

-1

-1.5

-2

Figure 4.18: Mean energy and specific heat
of sequence 20.2, normalised to the number of
monomers. The solid line denotes the MC data,
while the long- and medium-dashed lines belong
to the two MD simulations as described in the
text.

MD II

MD I

T

〈q
〉

10.90.80.70.60.50.40.30.20.1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
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calculated with MC are also measured within Molecular Dynamics. The observed temperature
range is T1 = 0.1 to T2 = 1.0 in equidistant temperature steps of ∆T = 0.1. Since MD as
it is implemented here is best compared with Metropolis in MC, it is not sure if the phase
space is sampled well especially in the low temperature range and at critical temperatures,
essentially everywhere, where the autocorrelation times are expected to be large. Thus, two
different types of simulations are performed. In one case – MD I – the simulation starts
with the ground-state as found with parallel tempering at each temperature. This means,
the structure has to “unfold” from its minimum energy state. The other one – MD II – uses
a random starting configuration as explained before. Thus, the chain is “folding” to lower
energy states at low temperatures. Both use 108 MD steps for equilibration at each of the
simulated temperatures. The measurement is again performed by simulating 300 Jackknife
bins of 106 MD steps.

Figure 4.18 shows the mean potential energy and the specific heat as it has been measured
in the two different MD runs in comparison to the MC data. Strikingly, in the low temperature
range the data match very well. Deviations only arise at higher temperatures.

For the energy plots it is remarkable that the MD II “unfolding” simulation shows a
slightly higher potential energy than the MC comparison data, the error bars do not overlap.
This deviation is negligible in the other simulation. A trivial explanation would be that the
thermostat does not manage to drive the system into the relevant low energy domain. But
as everything seems to work fine for very low temperatures, where the ground-state domain
is definitely most relevant, this is obviously not the case. During the observations it seemed
as if the effect vanishes with longer equilibration and simulation times. On the other hand
it cannot be a purely statistical error, since remarkably it has never been observed that the
energy in an MD run is lower than in the according MC simulation. It is always systematically
higher except for low temperatures. The phenomenon is not really understood, although a
small additional investigation is carried out by the use of the Andersen thermostat in an
equivalent simulation (see below).
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Figure 4.20: Fluctuation of the end-to-end-
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Figure 4.21: Fluctuation of the radius of gyration
is plotted for the two MD runs in comparison to
MC.

The measurement of the specific heat, which is more sensitive to statistical errors than the
plain average energy, confirms the previous result. The MD I simulation, which started from
the ground-state at each temperature, perfectly matches the MC comparison data. Although,
here the error bars do not overlap at all measured temperatures. However, the effect is small
and can be suspected to be due to too small Jackknife bins or too few statistics in general.
The MD II run shows larger deviations at temperatures T > 0.4, which is not surprising since
already the mean energy showed discrepancies. It does not seem as if this error results from
the fact that around T = 0.7 there is some thermodynamic transition, which is indicated by
a peak in the specific heat. If so, the high temperature tail would be reproduced correctly,
which is not the case.

In Figs. 4.20 and 4.21, the fluctuations of end-to-end-distance and radius of gyration,
respectively, are shown. The same observations can be made. The MD I plot shows the
largest difference to the MC data at T = 0.7, where also the specific heat showed the largest
deviation. The fact that again the error bars do not cover all the discrepancies, is not especially
noteworthy. This is considered to be a statistical problem. The behaviour of the second MD
simulation is again seriously deviating from the MC results.

Finally, Fig. 4.19 shows the measurement of the q parameter for the two MD simulations.
Unfortunately, no data are available from parallel tempering for comparison. However, it can
be clearly seen that for the lowest temperature, where the configuration is expected to be
close to the ground-state structure, only the simulation which starts from the ground-state
samples the respective domain of the configuration space correctly. In the second case, the
structurally relevant domain is not found at all. This can be proven by comparing the state of
lowest energy with the ground-state found by parallel tempering, as it is done in Table 4.IV.
The comparison of the parallel tempering ground-state and the minimum energy structure
found by a multicanonical simulation in ref. [42] shows a very well agreement, which supports
the assumption, that it belongs to the global energy minimum. The lowest energy that is
found by the unbiased MD run, which means that no structural information is put into the
simulation, is about ∆E = 0.66 higher than in the parallel tempering run. This is a serious
difference. Also, the measurements of overlap and root mean square deviation show clearly,
that the structures are definitely not equivalent.
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In conclusion, the results of the measurement showed that the qualitative thermodynamic
and structural behaviour of the considered system in a Molecular Dynamics simulation, where
the canonical ensemble is provided by a Nosé-Hoover-Chain thermostat with the described ad-
justments, is very similar to what is seen in sophisticated Monte Carlo simulations. However,
there are quantitative deviations beyond the error bars, whose origin is not fully understood.
One possible reason is that the evolution of the system within MD is obviously much slower
than in a comparable MC run. Therefore, for producing data with an acceptable error ana-
lysis, a thorough investigation of the statistical parameters like equilibration time, Jackknife
bin size and of course simulation time has to be carried out. Some thoughts considering this
issue can be found in the next subsection.

Cross-Check with Andersen Thermostat

The question of how the effect of the systematically higher mean energies in the MD simulation
could be explained, is still open. It is interesting to observe what happens when changing the
thermostat. The Andersen thermostat can be considered to be a hybrid algorithm between
MC and MD. Therefore, if the considered problem does not occur when utilising the Andersen
thermostat, this would be a definite sign that the problem has to do with the specifics of the
Nosé-Hoover-Chain thermostat. If the effect is only decreased but still exists, it might be
possible that it is a general problem of MD. All parameters of the run are chosen as for the
previous MD II simulation. As before, the starting configuration is an elongated but not
linear chain. The collision frequency is selected to be ν = 1, which seems to be a reasonable
choice in general (compare section 2.4.1).

Indeed, the plots of the average potential energy and the specific heat in Fig. 4.22 show
a perfect agreement with the parallel tempering MC data. The error bars overlap over the
whole temperature range. No deviation can be seen in the lower potential energy plot. This
supports the assumption that the erroneous behaviour that is observed in the MD NHC
simulation is really caused by the specific type of thermostat.

Interestingly the q parameter, which is shown in Fig. 4.23, is again too small for low
temperatures. But in contrast to the observations for the MD NHC simulation, the ground-
state is found! As Table 4.V shows, the minimum energy configuration of the Andersen run
is even ∆E = 0.62 lower than the state that is found in the parallel tempering comparison
simulation. But, as the overlap and root mean square deviation shows the two ground-state
configurations are systematically equal. This finding means that obviously the ground-state is
found too late within the simulation, when the measurement had already been started. Thus, a
longer equilibration time would be necessary to prevent this problem. The fluctuations of end-
to-end-distance and radius of gyration are also reproduced well in the particular simulation
as seen in Figs. ?? and 4.25.

Table 4.IV: Difference of the lowest energy, overlap and root mean square deviation for the observed
minimum energy states by parallel tempering and an MD run which started from an elongated chain.

∆Emin Overlap rmsd

0.66 0.74 1.22
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4.2.3 Time Scales

Several interesting questions concerning time scales can be asked when performing continuous,
deterministic Molecular Dynamics simulations.

1. The most important: In contrast to Monte Carlo simulations, a physical time is implied.
By translating quantities and scales of the model into the “real world”, or vice versa,
the MD time can be identified with a real time scale in seconds. This is not that easy
possible in a Monte Carlo simulation. However, the estimation of the real time scale for
the model at hand is difficult if possible at all. The reason is the artificial character of
the model, which impedes the identification of energy and temperature scales.

2. Although the dynamics in a Monte Carlo simulation is not deterministic, there is of
course still Markovian dynamics. The comparison of kinetic effects in MC and MD
is thus very interesting. For the considered systems, a good opportunity would be so
called Chevron plots [43, 44, 45], where folding kinetics are analysed. The incorporated
measurements are quite exhausting, thus this is not done in this work. The expectation
is that the dynamic behaviour in MC and MD is similar and the MC time scale can be
translated into a MD time scale. The question is: How many MD time steps can be
compared to one MC sweep?

Table 4.V: Difference of the lowest energy, overlap and root mean square deviation for the observed
minimum energy states by parallel tempering and an MD run which started from an elongated chain
and is thermostated by an Andersen thermostat with a collision frequency ν = 1.

∆Emin Overlap rmsd

−0.62 0.97 0.07
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3. In Markov processes, there is an autocorrelation time, which is induced by the fact
that each of the instantaneous configurations of a system has been generated from the
previous state by some update procedure. Hence, there is an intrinsic memory. In
Molecular Dynamics, the successive states are highly correlated, since there is a set of
deterministic rules – the Newtonian equations of the system – defining how each con-
figuration is developed from the previous one. Therefore, for the correct error analysis
it is important to evaluate these autocorrelations.

Autocorrelation Times

Contrary to Monte Carlo dynamics, in MD there are explicit fluctuations, e.g. the bond
fluctuations in the considered system. Therefore, it would be possible that the relatively
quick changes in energy due to these fluctuations cause an artificially rapid fall-off of the
autocorrelation function. Thus, it could be necessary to measure autocorrelation functions
for each potential energy contribution independently and take the highest autocorrelation
time found by this procedure as the autocorrelation time of the whole system. This is not
done here.

Instead, Metropolis and MD simulations are carried out with sequence 20.4. In contrast
to parallel tempering, a single Metropolis simulation is more comparable to MD, since the
system cannot jump to a completely different phase space area within one sweep – which
happens quite often in parallel tempering, when replica are exchanged. The update and step
sizes are chosen as in the simulations in the previous sections. In the Metropolis simulation
the update of a bond vector means a displacement of every component between −0.1 and
0.1. For MD the time step is δt = 0.001 again. The autocorrelation function is measured at
T = 0.25, where the specific heat has a maximum (see Fig. 4.5), and at T = 1.0. In each case
a time series of 108 successive potential energy values is measured after an equilibration of 107

sweeps or steps respectively. Only in the MD simulation at T = 0.25, where the exponential
behaviour of the autocorrelation function is only observed for large time separations k, a
longer time series of 109 MD steps is necessary to have enough statistics for large k.

The results are shown in Fig. 4.26, and the exponential autocorrelation times extracted
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Figure 4.26: Logarithmic plot of autocorrelation functions for a Metropolis and a MD simulation of
sequence 20.4 at (a) T = 0.25 and (b) T = 1.0.

from the functions by fitting are listed in Table 4.VI. The MD autocorrelation function for
T = 0.25 could easily and mistakenly be considered to behave already exponential for much
lower values of k. Only the A(k) plot for large time separations k shows that it converges
extremely slow against the final exponential fit. For T = 1.0 the change in the behaviour is
more like a kink and can be identified easily.

The listing of τexp in Table 4.VI shows that at the specific heat peak (T = 0.25) the
autocorrelation times in terms of simulation iterations (MC sweeps/MD steps) are in the
same range. The exponential autocorrelation time of the Metropolis simulation is 3 times
smaller than τexp in MD. In contrast a serious difference can be seen for T = 1.0. There,
the autocorrelation times differ by more than two orders of magnitude. If it is possible to
generalise this finding this would mean that contrary to Metropolis, the autocorrelation time
in a Molecular Dynamics with a NHC thermostat is not as susceptible for transition regions.
This would also mean that the identification of MC and MD time scales is not generally
possible. But this should be checked by further examinations. A definite outcome of the
explicit values of τexp in Table 4.VI is that if the error analysis in a MD simulation can be
carried out as for a Markov process, the chosen Jackknife interval of 106 time steps does not
guarantee uncorrelated data and is thus too small.

Table 4.VI: Exponential autocorrelation times of MC and MD.

Simulation T τexp in sweeps/steps

MC 0.25 40 · 103

MC 1.0 850

MD 0.25 250 · 103

MD 1.0 125 · 103
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Search for States with Minimal Energy

From the previous paragraph it is already apparent that because of the faster evolution of the
system in Markov dynamics, a Monte Carlo simulation should be generally faster in finding
configurations with minimal energy. However, there is also an objective technical reason, for
which MC simulations should be preferred for ground-state searches. In MC it does not cause
any problem to choose high temperatures and propose large updates for having a fast random
walk through the phase space. It is even possible to use sophisticated techniques like energy
landscape paving [46] to drive the system into regions of minimal potential energy. Molecular
Dynamics is much more sensitive with respect to the choice of big time steps or other technical
tricks to accelerate the overall dynamics. Actually, while in Monte Carlo maybe the ensemble
is not sampled correctly anymore (like when using energy landscape paving), a wrong choice
of the parameters in Molecular Dynamics can quickly lead to an “explosion” of the system,
e.g. when large forces arise due to too large step sizes. Therefore, MD is much more restricted
compared to Markov dynamics. Searching for states with minimal energy will thus be always
better carried out with a Monte Carlo program.

Computer Time

The question whether a Monte Carlo sweep or a Molecular Dynamics step is faster with respect
to the computational effort, is easy to answer. In most of all cases, Molecular Dynamics is
faster. The reason is that a Monte Carlo sweep usually includes N updates for a system with
N particles. In particular, all the necessary quantities for evaluating the potential energy have
to be calculated N times every MC sweep. When performing Molecular Dynamics, once the
forces of the system have been evaluated for a certain configuration, the application of e.g. the
Störmer-Verlet algorithm handles the evolution of all particles at once. The calculation of the
forces is usually more costly than the calculation of the potential energy. However, for the case
at hand, the calculation of the pairwise monomer distances rij is most expansive, since it has
the complexity O(N2). This has to be done for calculating both the potential energy and the
forces. The rest of the calculations are of complexity O(N). Therefore, even the fact that for
the force three components have to be calculated, does not change the finding: One Molecular
Dynamics step is less exhausting than one Monte Carlo sweep, especially for large N . On the
other hand, recalling the results of the analysis of autocorrelation times, it is expected, that
for large numbers of particles, the autocorrelation still decays much faster for one Monte Carlo
sweep. Particularly, because for large N , a large number of updates is proposed every sweep.
Therefore, from the statistical point of view, Monte Carlo surely provides more uncorrelated
data in the same computer time compared to Molecular Dynamics.

4.3 Free-Energy Landscapes

Fundamentals

In protein folding research interest is directed towards the path to fold, i.e. the question:
How does the protein find its native fold starting from a more or less random configuration.
Proteins are very complex and have thus a very high-dimensional free-energy landscape. In
general, it is thus very difficult to make statements about the path to fold, since a trivial
localisation of the protein within the phase space is not possible. Therefore, one of the
key problems is finding a suitable reaction coordinate, in whose dependence the free-energy
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landscape can be observed. However, once the ground-state has been found, it is common
to define the reaction coordinate as the degree of equality of the instantaneous structure and
this ground-state [39].

In chapter 3 several methods are shown, how structures can be compared. In the following
the according quantities, the q parameter and the overlap Q, are considered as reaction
coordinates. The partition sum of a system can be written in terms of the free-energy:

Z = e−βF (T ) =

∫

dNX e−βE(X) . (4.7)

Asking for the free-energy of a system with respect to a certain parameter, e.g. the reaction
coordinate Q, the ensemble of possible configurations has to be constrained to configurations
matching a certain value of the parameter Q = Q0:

e−βF (T,Q0) =

∫

dNX e−βE(X)δ(Q(X) − Q0) ∼ P (Q0) . (4.8)

Therefore, the free-energy can be expressed in dependence of Q as:

F (Q, T ) ∼ −kBT ln P (Q) . (4.9)

A very simple model of protein folding, which is suitable for small proteins [47], is the
two-state folding. Near the folding temperature Tf , the free-energy landscape is expected to
look schematically like the one shown in Fig. 4.27. The state space is divided into two parts,
the unfolded and the folded state, which leads to the notation two-state folding. The two
domains are separated by a transition state ensemble, which are states with a relatively high
free-energy. In particular, folded states can be identified by having a value of Q ≈ 1. On the
other hand, unfolded states will have significantly lower values of Q.

In Ref. [45], it is shown that simple protein models like the AB model can also have a
two-state folding behaviour. Since in [45] all simulations are done with Monte Carlo methods,
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it is interesting to investigate, whether the same can also be seen with Molecular Dynamics.
This is proven for another type of model, the GōCα model in Ref. [39].

Because sequence 20.6 (see Table 1.I) has a very sharp peak in the heat capacity (see
Fig. 4.5), the expectation is that it behaves like a two-state folder. Because the folding
temperature is very low, which will be shown in the next paragraph, the system will move
slowly through the configuration space. Therefore, the time step is chosen larger than in
the previous section δt = 0.006, by accepting larger numerical errors. Based on the previous
finding that the native state is hardly found by Molecular Dynamics, it is decided to start the
simulations from the ground-state configuration. Because of the larger time step, the system
is equilibrated for only 106 steps. Thereafter, a measurement of 6 · 108 steps is performed.
This procedure is repeated at each measured temperature.

Folding Temperature

The question of how to define the folding temperature is not trivial. In Ref. [48] it is proposed
that the folding temperature is, where the population of the ground-state is Pnat(Tf ) ≈ 1/2.
Another attempt is to define Tf as the temperature, where half of the native contacts are
formed on average [39], i.e. 〈q〉 ≈ 1/2 (compare section 3.3.3). However, both definitions
depend very much on the used method to determine the degree of equality of the instantaneous
and the native conformation.

Figure 4.28 shows the average q parameter for two different definitions. The first one,
denoted with “less contacts”, is analogous to the description in section 3.3.3. According to
this definition, monomers are considered as native contact, if their distance in the ground-
state is rij < 1.7 and if they have at least two monomers between them in the chain |i−j| ≥ 3.
The second definition, denoted with “more contacts”, excludes only next neighbours (which
are considered as chemically bound) |i − j| ≥ 2 from being counted as native contacts, and
instead has a sharper distance criterion: rij < 1.3. The most important observation about
the plots in Fig. 4.28 is, that the temperature where 〈q〉 ≈ 1/2 is very different for the two
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definitions. Thus it is not a good criterion to define the folding temperature.
In Fig. 4.29, the fluctuations of q are shown for both definitions. It is clear that the

fluctuations have minimum peaks at the same temperatures. Therefore, it is reasonable to
correlate the folding temperature with the temperatures, where the peaks of the q fluctuation
arise. Furthermore, the specific heat of the sequence 20.6 is shown in the figure, which makes
clear that the peaks of the specific heat and the minima of ∂〈q〉/∂T collapse. In particular,
the minimum of the fluctuation of q at lower temperature is only seen as a shoulder in the
specific heat. Also, a small deviation in the extremum temperatures can also be ascribed to
the finite size of the system. Hence, the explanation of the peaks in the specific heat can
be translated to the minima in the fluctuation of q. Two-state folding behaviour considers
folded and unfolded domains, i.e. it is expedient to define the first transition temperature as
the folding temperature, since there the system switches from the ground-state to the globule
domain. This is a reasonable definition of the folding temperature. In the example of sequence
20.6, the folding temperature is thus about Tf = 0.07. The result here is very similar to the
Monte Carlo data in [45].

Two-State Folding

In the following, the overlap parameter Q as introduced in section 3.3.3 is used as reaction
coordinate instead of the q parameter. Figure 4.30 shows the result of a measurement of the
free-energy landscape at T = {0.05, 0.06, . . . , 0.1} around the folding temperature Tf ≈ 0.07.
Recalling that the free-energy is linked to the population of certain states, the plots are as
expected. For the lower temperatures, only states with Q ≈ 1 are pronounced, which gives
a deep valley in F (Q). For higher temperatures, a second valley evolves, which is due to the
increasing population of states in the globular domain. The energy landscape at the estimated
folding temperature T = Tf = 0.07 is remarkable. The ground-state domain is not populated
at all, which gives only one broad valley at lower values of Q. Instead, the plot for T = 0.08
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Figure 4.32: Reweighted free-energy landscape for sequence 20.6 around folding temperature T ≈ Tf .

shows the expected two-state behaviour, since it clearly has two valleys separated by an area
of higher free-energy – the transition state ensemble.

The reason for the observed misbehaviour at T = Tf = 0.07 gets clear from Fig. 4.31.
Although the MD runs are twice as long as for the measurements in the previous section,
the structural state space is still not sampled well enough. In the whole simulation of 6 · 108

steps, the system undergoes only three changes between the ground-state domain to the
globule domain. Actually, this can be considered as three independent events, which has no
statistical significance. This is a serious problem, since it is not easily possible to magnify the
number of steps of the MD run by a serious factor. For this reason, using a single MD run
for measuring the free-energy landscape at a certain temperature is questionable.

However, it is possible to use reweighting methods as explained in section 3.2.2 to enhance
the statistical significance of the sum of all performed runs. This technique is also utilised
in Ref. [39], where simulations of the GōCα model are performed with Molecular Dynamics.
Since data was collected at T < Tf as well as T > Tf , reweighting gives a good estimate of
what the free-energy landscape looks like at T ≈ Tf . The result is shown in Fig. 4.32. For
the low-temperature range, several intermediate states cause buckles in the valley of unfolded
states. These buckles can also be seen at several temperatures in Fig. 4.30. Again, the
comparison to the Monte Carlo data in [45] shows a good qualitative agreement.



Chapter 5

Torsion – Extending Towards a

Generalised Coarse-Grained

Heteropolymer Model

From experiment it is known that not only the bond angles ϑ play a role in the energy function
of a polymer, but also torsion angles, denoted with φ in the following. For example the so-
called “trans”-conformation, where φ = ±π, is well-known to be energetically favourable. This
property of natural occurring polymers was incorporated into a coarse-grained heteropolymer
model in Ref. [49]. In the following it is denoted “GAB model”. Unfortunately, while this
extension does not pose any difficulties in Monte Carlo simulations, there arise systematic
problems in a Molecular Dynamics simulation - besides technical challenges, since the terms
of the potential gradient get very large and complex.

In this chapter this problem will be discussed in detail. First the potential term will be
introduced and the torsion angle shall be illustrated. Furthermore, two possible definitions for
the angle will be shown to be analytically identical in the cartesian transcription. Afterwards,
the torsional force will be derived. Finally the occurrence and treatment of the already
mentioned systematic problem will be described and some words of outlook concerning it will
conclude the considerations.

5.1 The Torsion Potential

A torsional angle is built up by three successive bond vectors b1,2,3. It is defined to be
φ ∈ [−π, π]. There are two analogous possibilities of defining it. One is to describe φ by the
angle between the pairwise cross products b1 ×b2 and b2 ×b3. It is also possible to appoint
φ ± π as the angle between the projections of the b1 and b3 on the plane perpendicular to
b2. Figures 5.1 and 5.2 shall illustrate the two definitions.

It is easy to see that so far it is not clear, how the algebraic sign of φ should be determined,
since the enclosed angle of two vectors is defined to be in [0, π]. In Figs. 5.1 and 5.2 b3 is
supposed to point at the left half space with respect to the plane spanned by b1 and b2 if
the viewer looks into the direction of the latter. If b3 would be mirrored by this plane, the
absolute value of φ would stay the same for both definitions, but b3 would point at the right
half space. The two configurations should be distinguished by the algebraic sign of φ. An
easy way to achieve this is to check, whether the projection of b3 on the normal vector of the

83
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direction.

b3

b2
b1

b1 × b2

Figure 5.3: Two different cases for b3 which will lead to the same value for φ. But the projection on
b1×b2 is either positive or negative. Thus the two configurations can be distinguished by an algebraic
sign for φ according to the sign of the described projection.

plane spanned by b1 and b2 – which is the cross product of these two vectors – has a positive
or negative algebraic sign. This is equivalent to distinguishing a “right” or “left” half space.
Figure 5.3 shall help to make this point less confusing.

Finally, the definition of the torsion potential is:

Vtors(R) =
1

2

N−3∑

k=1

(1 + cos 3φk) . (5.1)

From this definition it can be seen that the algebraic sign of the torsional angles φ does not
play a role in calculating the potential energy of a configuration, since the cosine is an even
function (cos φ = cos(−φ)). Also it is clear that the values φ = ±π/3 and φ = ±π are
energetically favoured, which is motivated by results from experimental polymer research.
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5.1.1 Cartesian Transcription

For translating (5.1) into a cartesian formulation, the definitions from chapter 1 are used.
Furthermore a trigonometric identity is utilised:

cos 3φ = 4 cos3 φ − 3 cos φ . (5.2)

From (5.2) it can be seen that for calculating the torsional contribution to the potential energy
it is again only necessary to know the cosine of the torsional angle φ. Thus (1.14) can be used
for expressing the according potential:

Vtors(R) =
1

2

N−3∑

k=1

(1 + cos 3φk) =
1

2

N−3∑

k=1

(
1 + (4 cos2 φk − 3) cos φk

)
. (5.3)

It will be shown that the two definitions of φ explained in Figs. 5.1 and 5.2 lead to analytically
equivalent expressions in the cartesian transcription.

First, the cross product definition will be faced. The Binet-Cauchy identity will help to
rewrite the appearing cross products with scalar products, which are mostly also used in the
bending potential (compare section 1.4):

(a × b) · (c × d) = (a · c)(b · d) − (a · d)(b · c) . (5.4)

The consequential scalar product of the two plane normal vectors has to be normalised:

cos φk =
(bk × bk+1) · (bk+1 × bk+2)

√

[(bk × bk+1) · (bk × bk+1)] [(bk+1 × bk+2) · (bk+1 × bk+2)]

=
(bk · bk+1)(bk+1 · bk+2) − b2

k+1(bk · bk+2)
√[

b2
kb

2
k+1 − (bk · bk+1)2

] [
b2

k+1b
2
k+2 − (bk+1 · bk+2)2

] . (5.5)

Second, the scalar product definition will be used to derive a cartesian expression for cos φ.
The projection of bk on a plane with the normal vector bk+1 can be calculated by subtracting
the contribution of bk that is parallel to bk+1 and will be denoted as bk,⊥. Therefore, a unit
vector in direction of bk+1 is needed:

bk,⊥ = bk −
(

bk · bk+1

bk+1

)
bk+1

bk+1
= bk − ((bk · bk+1)bk+1) b−2

k+1 . (5.6)

Even if bi are unit length vectors, bk,⊥ does not have unit length anymore in the general
case. Analogous to (5.6) the projection of bk+2 can be evaluated. As described earlier, φ is
not the enclosed angle of bk,⊥ and bk+2,⊥. Thus, the enclosed angle has to be shifted by π.
Since cos(φ ± π) = − cosφ it is also possible to just multiply one of the two vectors by −1
(φ is actually the enclosed angle of one projection vector and the negative other projection
as described above). Utilising (1.14) and recalling that it is necessary to normalise bk,⊥ and
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bk+2,⊥ it is obtained:

cos φk = −
(
bk − ((bk · bk+1)bk+1) b−2

k+1

) (
bk+2 − ((bk+2 · bk+1)bk+1) b−2

k+1

)

√
[
bk − ((bk · bk+1)bk+1) b−2

k+1

]2 [
bk+2 − ((bk+2 · bk+1)bk+1) b−2

k+1

]2

=

(
b2
k+1bk − (bk · bk+1)bk+1

) (
−b2

k+1bk+2 + (bk+2 · bk+1)bk+1

)

√
[
b2
k+1bk − (bk · bk+1)bk+1

]2 [
b2
k+1bk+2 − (bk+2 · bk+1)bk+1

]2

=
−b4

k+1(bk · bk+2) + b2
k+1(bk · bk+1)(bk+1 · bk+2)

√
[

b4
k+1b

2
k − b2

k+1 (bk · bk+1)
2
] [

b4
k+1b

2
k+2 − b2

k+1 (bk+2 · bk+1)
2
]

=
(bk · bk+1)(bk+1 · bk+2) − b2

k+1(bk · bk+2)
√[

b2
kb

2
k+1 − (bk · bk+1)2

] [
b2

k+1b
2
k+2 − (bk+1 · bk+2)2

] . (5.7)

Obviously (5.7) and (5.5) are analytically equal. Astonishingly, in [50] the authors pass over
the normalisation of the two projection vectors for some undocumented reason and thus obtain
a much simpler expression. Since the projection vectors do definitely not have unit length
except from very specific cases, even if all bond vectors are fixed to unit length (that would
be if the denominator would trivially get 1 by introducing bi ≡ 1 – which is not the case!), it
is neither trivial nor obvious why it should be possible to calculate cos φ without doing the
normalisation.

The combination of (5.3) and (5.5) or (5.7), respectively, leads to the final result:

Vtors(R) =
1

2

N−3∑

k=1

(1 + cos 3φk) =
1

2

N−3∑

k=1

(
1 + (4 cos2 φk − 3) cos φk

)
,

cosφk =
(bk · bk+1)(bk+1 · bk+2) − b2

k+1(bk · bk+2)
√[

b2
kb

2
k+1 − (bk · bk+1)2

] [
b2

k+1b
2
k+2 − (bk+1 · bk+2)2

] . (5.8)

The transcription of the bond vectors in differences of ri is foregone. Recalling the definition
of the algebraic sign for φ connected with Fig. 5.3, it is now possible to give a closed expression
for φ:

φ = sign ((bk × bk+1) · bk+2)

× arccos




(bk · bk+1)(bk+1 · bk+2) − b2

k+1(bk · bk+2)
√[

b2
kb

2
k+1 − (bk · bk+1)2

] [
b2

k+1b
2
k+2 − (bk+1 · bk+2)2

]



 . (5.9)

Here “sign” means the signum function:

sign(x) : R → R sign(x) =







−1 when x < 0

0 when x = 0

1 when x > 0

. (5.10)

5.1.2 Derivation of the Torsional Force

Before going into the systematic details, the pure torsion force arising from the gradient
of Vtors in (5.8) shall be calculated. Several expressions will be used for abbreviation in the
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following, to make the formulae clearer. In (5.8) the cosine of the torsional angle φk is already
defined in cartesian coordinates, especially in terms of bi. The numerator of cos φk according
to this formulation will be marked as νk, while the denominator will be called ρk for a certain
reason which will be explained later:

νk = (bk · bk+1)(bk+1 · bk+2) − b2
k+1(bk · bk+2) , (5.11)

ρk =
√
[
b2

kb
2
k+1 − (bk · bk+1)2

] [
b2

k+1b
2
k+2 − (bk+1 · bk+2)2

]
. (5.12)

As a further abbreviation ξ1,k and ξ2,k shall be introduced as the two factors in the square
root of ρk:

ξ1,k =
[
b2

kb
2
k+1 − (bk · bk+1)

2
]

, ξ2,k =
[
b2

k+1b
2
k+2 − (bk+1 · bk+2)

2
]

. (5.13)

The differentiation of the “outer” part of Vtors (an expression equivalent to one summand in
the first line of (5.8)) is quite simple:

−∇rl

[
1

2

(
1 + (4 cos3 φk − 3 cos φk)

)
]

= −1

2

(
12 cos2 φk − 3

)
(∇rl

cos φk) . (5.14)

Large expressions arise, when processing ∇ cos φ in the cartesian representation:

∇rl
(cos φk) = ∇rl

(
νk ρ−1

k

)
= ρ−1

k ∇rl
(νk) − νkρ

−2
k ∇rl

(ρk) , (5.15)

∇rk
(νk) = −bk+1(bk+1 · bk+2) − b2

k+1(−bk+2) = N0,k , (5.16)

∇rk+3
(νk) = (bk · bk+1)bk+1 − b2

k+1bk = N3,k , (5.17)

∇rk+1
(νk) = (bk+1 − bk)(bk+1 · bk+2) + (bk · bk+1)(−bk+2)

−
[
(−2bk+1)(bk · bk+2) + b2

k+1(bk+2)
]

= −N0,k −bk(bk+1 · bk+2) − bk+2(bk · bk+1) + 2bk+1(bk · bk+2)
︸ ︷︷ ︸

=N12,k

, (5.18)

∇rk+2
(νk) = bk(bk+1 · bk+2) + (bk · bk+1)(bk+2 − bk+1)

−
[
2bk+1(bk · bk+2) + b2

k+1(−bk)
]

= −N3,k + bk(bk+1 · bk+2) + bk+2(bk · bk+1) − 2bk+1(bk · bk+2)

= −N3,k −N12,k , (5.19)

∇rk
(ρk) =

1

2ρk
ξ2,k

[
−2bkb

2
k+1 − 2(bk · bk+1)(−bk+1)

]

=
1

ρk
ξ2,k

[
bk+1(bk · bk+1) − bkb

2
k+1

]
= ρ−1

k D0,k , (5.20)

∇rk+3
(ρk) =

1

2ρk
ξ1,k

[
b2

k+1(2bk+2) − 2(bk+1 · bk+2)(bk+1)
]

=
1

ρk
ξ1,k

[
−bk+1(bk+1 · bk+2) + bk+2b

2
k+1

]
= ρ−1

k D3,k , (5.21)
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∇rk+1
(ρk) =

1

2ρk

(

ξ2,k

[
2bkb

2
k+1 + b2

k(−2bk+1) − 2(bk · bk+1)(bk+1 − bk)
]

+ ξ1,k

[
−2bk+1b

2
k+2 − 2(bk+1 · bk+2)(−bk+2)

])

= −D0,k

ρk

+
1

ρk

(

ξ2,k(bk(bk · bk+1) − bk+1b
2
k) + ξ1,k(bk+2(bk+1 · bk+2) − bk+1b

2
k+2)

)

︸ ︷︷ ︸

=D12,k

= ρ−1
k (−D0,k + D12,k) , (5.22)

∇rk+2
(ρk) =

1

2ρk

(

ξ2,k

[
b2

k(2bk+1) − 2(bk · bk+1)(bk)
]

+ ξ1,k

[
2bk+1b

2
k+2 + b2

k+1(−2bk+2) − 2(bk+1 · bk+2)(bk+2 − bk+1)
])

= −D3,k

ρk
+

1

ρk

(

ξ2,k(−bk(bk · bk+1) + bk+1b
2
k)

+ ξ1,k(−bk+2(bk+1 · bk+2) + bk+1b
2
k+2)

)

= ρ−1
k (−D3,k −D12,k) . (5.23)

Equations (5.16) – (5.23) show that the gradient of cos φk with respect to all included
monomers i ∈ [k, k + 3] can be described by three terms, which appear with both posi-
tive and negative algebraic signs and thus fulfil Newton’s law of “Actio=Reactio”. These
terms are a combination of N0,12,3 and D0,12,3 according to (5.15), whose definitions are given
in (5.16) – (5.18) and (5.20) – (5.22):

Nl,k

ρk
− νkDl,k

ρ3
k

≡ Cl,k . (5.24)

With this knowledge the whole torsional force acting on monomer i can be expressed in the
previously defined abbreviations:

Ftors i = −1

2

[
(12 cos2 φi − 3) C0,i
︸ ︷︷ ︸

i≤N−3

+ (12 cos2 φi−1 − 3) (−C0,i−1 + C12,i−1)
︸ ︷︷ ︸

i∈[2,N−2]

+ (12 cos2 φi−2 − 3) (−C3,i−2 − C12,i−2)
︸ ︷︷ ︸

i∈[3,N−1]

+ (12 cos2 φi−3 − 3) C3,i−3
︸ ︷︷ ︸

i≥4

]
. (5.25)

5.2 Monte Carlo Simulations

As before for the AB model, parallel tempering Monte Carlo simulations are carried out to
obtain reliable data to compare with the Molecular Dynamics results. The set of parameters
is left completely unchanged. The simulations are observed with the same number of replica
(temperatures), the same number of sweeps and all the error analysis is done fully analogous
to section 4.1. The quantities of interest are again the potential energy E, the end-to-end-
distance Ree, the radius of gyration Rgyr as well as the respective fluctuation quantities.
The most important question is to observe the impact of the additional potential term on
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Figure 5.4: Potential energy and heat capacities of the GAB model, represented by the solid and the
long-dashed line, compared to the AB model, where the same quantities are plotted with medium and
short dashes respectively. The lines are obtained by multiple histogram reweighting (compare section
3.2.2), while the error bars result from the Jackknifing analysis of the measured data. The sequences
are as follows: (a) 20.1, (b) 20.2, (c) 20.3, (d) 20.4.

the results obtained for the AB model. Therefore, all results for the GAB model will be
immediately compared to the AB model.

General Thermodynamics

As in section 4.1, the system is first observed with bond strength αr = 50. In Fig. 5.4 the
potential energy and the heat capacity is plotted for both the GAB and the AB model. As it
is to be expected, the energy is systematically higher for the GAB model, since the additional
torsion potential gives always a positive contribution if any. For the heat capacity, the change
is less obvious. But it seems that it is also higher in the GAB case, except for very low
temperatures. Furthermore, the introduction of the torsion term seems to stress the first
peak of the specific heat. This might be an indicator for a higher potential energy barrier
between the ground-state like structures and globular configurations, supposed the peaks can
be understood as it is discussed earlier in section 4.1. Also, the first peak of the heat capacity
is slightly shifted to higher temperatures by the introduction of the torsion potential. This
could signify that the ground-state structures of the GAB model are more resistant against
thermal heating, which is analogous to the conclusion from the increased height of the peak.
On the other hand, the potential energy of the ground state is less negative, which would
lead to the assumption that it is less stable and the peaks of the specific heat move to lower
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Figure 5.5: It is obvious from the pictures that the plots for the AB and GAB model can be hardly
distinguished. The vertical dashes and and diagonal crosses belong to the latter, while the star and
hollow square symbols represent the results from the AB model. The assignment of the respective
sequences 20.1 and 20.4 is easier and therefore given within the figures. The plotted quantities are: (a)
End-to-end-distance, (b) radius of gyration, (c) fluctuation of the end-to-end-distance, (d) fluctuation
of the radius of gyration.

temperatures. Obviously this thought is misleading.

Structural Behaviour

Since for protein folding the structural behaviour of a system is most important, it is in-
teresting, how the GAB model differs from the AB model considering quantities like the
end-to-end-distance or the radius of gyration. Figure 5.5 shows the respective plots for se-
quences 20.1 and 20.4. It is very remarkable that, except for low temperatures, the two
considered, structurally meaningful quantities as well as the fluctuations do scarcely differ for
the two models. Especially considering the radius of gyration, the deviations are minimal.
For low temperatures, the ground-state of a sequence is dominating the ensemble of configura-
tions. Therefore, the torsion potential does only take effect on the ground-state of a sequence,
but not on the structural behaviour for higher temperatures. Table 5.I gives the results of
the comparison between the ground-states of the AB and GAB model for several sequences.
This emphasises the assumption that the torsion potential is crucial for the structure of the
ground-state. While the overlap in the range of 0.8 suggests an acceptable uniformity, the root
mean square deviation clearly shows that the found ground-state structures differ noticeably.

Figure 5.6 shows the ground-state for sequence 20.2, where both the overlap parameter
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Figure 5.6: The ground-state of sequence 20.2 for (a) the AB and (b) the GAB model.

and the rmsd have a nearly optimal value, with respect to the examined cases. To make
the identification easier, some of the monomers are numbered. The loop between monomer
number 2 and 6, as well as the structure between monomer 8 and 12 are obviously very similar
for both models. The main difference is located at the tail of the chain, where the last four
monomers (17-20) are nearly lying in one line in the AB model, but not in the GAB case.
This is also obvious from the contact maps in Fig. 5.7, where monomer number 18 has most
contacts in the AB case, and monomer number 17 in the GAB case. I.e., these respective
monomers reside in the centre of the ground-state structure. The rest of the contact maps
undergoes only minor changes. Also, in the GAB ground-state the first monomer (type B) has
only repulsive Lennard-Jones interactions. Therefore it directs straight away from the core of
the structure, which is not the case in the AB model. There it has an attractive interaction
with monomer number 14.

Although deviations like the two explained ones seem to be negligible, they can have a
considerable influence especially on the end-to-end-distance because they are both located in
the beginning and the end of the chain. This makes it more believable that the deviations
can be especially seen when considering Ree. However, the torsion term seems to quickly lose
importance when going to higher temperatures.

Table 5.I: Overlap and root mean square deviation (compare section 3.3.3) of ground-states in the AB
and GAB model.

Sequence 20.1 20.2 20.3 20.4

Overlap 0.71 0.83 0.73 0.78

rmsd 1.12 0.89 0.84 1.20
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Figure 5.7: Contact maps of sequence 20.2 for (a) the AB and (b) the GAB model. For a description
of contact maps see Fig. 4.14.
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Figure 5.8: Heat capacities of sequence 20.4 for
different bond strength αr in the GAB model (i.e.
with torsion).
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do not qualitatively result from the bond term,
the analytic effect of Vbond as given in (1.9) is
subtracted. The different heights of the tails in
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Impact of Different Bond Strengths

The observations for different bond strengths αr can be shortened here. The outcome is shown
in Figs. 5.8, 5.9 and 5.10. It is easy to see that everything is very similar to the results from
section 4.1.3. So all the detailed considerations concerning reasons for the specific appearance
can be adapted analogously. The only remarkable point is that in Fig. 5.10 (b) the first peak
of the specific heat is growing with larger αr, which is not the case in the AB model (see
Fig. 4.11 (b)). However, since the behaviour cannot be generally explained in that details, it
can be taken as an effect of the several formed monomer pairs and its stepwise breakup for
growing αr as explained in the already mentioned section 4.1.3.
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Figure 5.10: Closer look on the first peak of the heat capacities of sequence 20.4 for different bond
strength αr in the GAB model. (a) Low bond strength, (b) higher bond strength.

5.3 Realizing and Tackling the Problem in Molecular Dynam-

ics

After including the torsion potential in the already existing Molecular Dynamics program
it turned out that the theoretically conserved energy HNHC (see (2.71)) is fluctuating rather
strongly, whereas in a simulation without the torsion potential the fluctuations of this quantity
had been very small. More precisely HNHC seems to jump from time to time during the
simulation, if the torsion potential is switched on.

To study this in detail, the system is simplified as much as possible. So the homo-four-mer
(sequence AAAA) is chosen. In Fig. 5.11 this behaviour is plotted for several trial runs with
different parameters. It is easy to see from this picture that elongating the Nosé-Hoover-
Chain does not seem to solve the problem. However for the simulation with a smaller time
step, the deviations in HNHC seem to be less crucial. So it is an obvious consideration,
whether the torsion potential implies some fluctuations at a higher frequency as the bond
length fluctuations, wherefore the time step and the Nosé-Hoover coupling would have to be
adapted. In Fig. 5.12 it can be seen that this is obviously not the case. After the expected
peak in the frequency spectrum at the bond length fluctuations, the frequency spectra of the
simulations with as well as without the torsion potential are quickly decreasing.

After double-checking the correctness of the force calculations and the implementation it
shall be checked, whether the problem is a numerical error or some problem with the Nosé-
Hoover thermostating. Therefore it is crucial to find out, whether the deviations are really
“jumps” in that sense that the conserved energy is more or less constant over a long-time
and then, in one time step, is changed dramatically. Figures 5.13 and 5.14 show the result of
a closer look at the time series. Indeed the deviations turn out to be events that arise from
one single time step. The whole problem is initiated by a sudden rise in the kinetic energy
of the system. Econs is increased by the same amount of energy. After that time step Econs

stays constant again, apart from very small numerical fluctuations. The rest of the total
system included the thermostat relaxes quickly by asymptotically absorbing the additional
amount of energy in the potential energy of the Nosé-Hoover thermostat. That makes sense,
since the latter is the only type of energy that is free of any requirements or expectations.
Whereas the kinetic energies of both the classical system and the Nosé-Hoover thermostat
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Figure 5.11: Trajectories of the quantity HNHC

for several trial simulations of the homo-four-mer
(sequence AAAA). The solid line is obtained while
simulating without torsion energy. The dashed
lines are simulations with the typical time step
δt = 10−3 and different lengths of the Nosé-
Hoover-Chain: M = 2 is long-dashed, M = 3
is medium dashed and M = 12 (massive ther-
mostating: one thermostat for every degree of
freedom of the system) is the short-dashed line.
Finally another trial is done with M = 2 and
a smaller time step δt = 10−4, plotted with the
chain dotted line.

tors ν(b)
tors ν(v)

no tors ν(b)
no tors ν(v)

f/f0

|ν
|

1001010.10.01

10

1

0.1

0.01

0.001

1e-04

Figure 5.12: Here frequency spectra are plot-
ted double logarithmic. The solid and long-
dashed lines are the spectra obtained by mea-
suring the velocity and bond length fluctuations
respectively without the torsion potential. The
medium dashed and short-dashed lines are the ve-
locity and bond length fluctuations including the
torsion potential. The frequencies are again nor-
malised to the expected bond length fluctuations
f0 = 2π

√

m/(2αr). There is obviously no qual-
itative difference, especially for high frequencies,
which would explain the need of a smaller time
step when simulating the model with torsion po-
tential.

are guided by temperature and the type of the observed system guides the potential energy
of the stand-alone system of course.

Figure 5.14 shows exemplary trajectories of velocity components of the homo-four-mer at
the time, where the energy jump is observed. Obviously for some reason the velocities are
changed drastically within the respective time step. Figure 5.15 shows the configuration one
time step before the jump. To exclude the possibility that the problem is caused by numerical
precision, the forces acting on the respective configuration are calculated with Mathematica
and compared to the results from the simulation program. The relative deviations are about
10−4, but it is remarkable that the absolute value of the torsional force is about three orders
of magnitude higher than the expected values from the other potential contributions. This
finally leads to the correct conclusion: The torsional force is divergent for the case shown in
Fig. 5.15.

5.3.1 Explanation and Deeper Analysis of the Divergence

The divergence is not obvious at first sight. The torsion potential is very well behaved for
any configuration. From (5.8) it is clear that Vtors(R) ∈ [0, 1] ∀R. The divergence must
be somehow correlated with the property that three monomers nearly form a straight line.
No matter, which of the two introduced definitions of the torsion angle is used, the angle
between the two planes spanned by b2 and b1 or b3 respectively is measured (compare Figs.
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Figure 5.13: Time series of the theoretically con-
served energy (Econs, the chain dotted line) and
the contributions of the potential and kinetic en-
ergy of the stand-alone system, plotted with a
solid and long-dashed line, as well as the potential
and kinetic energy of the Nosé-Hoover thermo-
stat, visualised by the medium and short-dashed
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Figure 5.14: Time series of the x, y and z velocity
components of two monomers. The only impor-
tant information is the velocity jump at t ≈ 8854,
so a detailed key is not instructive.

Figure 5.15: After reaching this somehow critical configuration of the homo-four-mer, the velocities
undergo a sudden drastic change which leads to a jump in the kinetic energy and – which is more
noteworthy – in the theoretically conserved energy of the total system. The only remarkable property
of the configuration is, that three monomers nearly form a straight line, i.e., the middle and one of
the two other bond vectors are nearly parallel.

5.1 and 5.2). Figure 5.16 shall help to describe the critical case. Assume that b1 and b2 are
nearly parallel. In this case, b2 and b3 span a plane that is relatively stable against small
movements of the three included monomers. Whereas, the plane spanned by b1 and b2 could
easily rotate around the two included bond vectors by disturbing the position of one of the
three monomers a little bit. The angle of such a rotation would be directly reflected in the
torsion angle. Recalling the definition of the torsion potential (5.1) this means that a small
movement of one of the three considered monomers would be able to drastically change the
torsion potential. In a formal writing, a force F is defined as the change of the potential
energy ∆V over a length – the change of position ∆x: F = −∆V/∆x. Although ∆Vtors ≤ 1,
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φ

Figure 5.16: In case b2 and one of the other bond vectors (here b1) is nearly parallel, a small movement
of one monomer can lead to a complete change of the torsion potential energy. The rotation of the
first monomer of b1 around the small dashed circle is completely responsible for the torsion angle of
the configuration in the figure.

∆x can get very small as described above, which will lead to large forces F.

A closer look at (5.8) shows that for b1 ≈ b2 the denominator of cos φ vanishes (assuming
k = 1):

ρ1 =
√
[
b2

1b
2
2 − (b1 · b2)2

] [
b2

2b
2
3 − (b2 · b3)2

]

≈
√
[
b2

2b
2
2 − (b2 · b2)2

] [
b2

2b
2
3 − (b2 · b3)2

]
= 0 . (5.26)

Of course the expression for cos φ cannot diverge. On the other hand, the numerator also
converges against 0 in the considered case, which countervails the vanishing denominator
cos φ:

(b1 · b2)(b2 · b3) − b2
2(b1 · b3) ≈ (b2 · b2)(b2 · b3) − b2

2(b2 · b3) = 0 . (5.27)

The denominator of cos φk which is shown to be vanishing in (5.26), was previously denoted
as ρk. From (5.24) it is obvious that indeed ρk appears in the denominator of summands of
the torsion force, which would explain the divergence. However, the structures of the various
numerators of the summands are too complex to proof the general type of divergence. Thus
the force for a simplified case shall be calculated exemplarily. Similar to Fig. 5.16, the three
bond vectors are chosen as follows:
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. (5.28)

This makes b2 and b3 perpendicular, spanning a plane that is stable against small distortions
of one of the included monomers. b1 is parallel to b2 except for a small deviation with a
distance r from the extension of b2 and some freely selectable angle ϕ. Before calculating the
force acting on the first monomer Ftors 1 according to (5.25), some of the needed quantities
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shall be determined:

ρ1 =
√

ξ1,1 · ξ2,1 =
√

(1 + r2 − 1) · (1 − 0) = r , (5.29)

cos φ =
1 · 0 − 1 · (r cos ϕ)

ρ1
=

r cos ϕ

r
= cos ϕ . (5.30)

From (5.29) it gets clear that the denominator of cos φ, denoted with ρ earlier, is equal to the
radius of the deviation r. (5.30) shows that in this special case, the torsion angle is exactly
the same as the freely selectable displacement angle ϕ of the first monomer. This makes it
more obvious that no matter how small r is chosen, the torsion potential depends completely
on ϕ. For a very small r, a deviation in ϕ is a negligible displacement of the first monomer,
which can lead to a potential energy change as big as possible within the domain:
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. (5.31)

Two things are remarkable about Ftors 1. First, the divergence is of first order with respect
to r. Second, the force is acting perpendicular to the considered deviation from “parallelity”.
It just drives the monomer to a position, where the torsion potential energy is small by
effectively changing ϕ – and thus the torsion angle φ. The radius r, which is responsible for
the divergence, remains unchanged. What makes the situation explicitly bad is the fact that
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for example the bending energy favours configurations, where the bond vectors are as parallel
as possible. A good example would be the simple sequence AABB. There even the Lennard-
Jones potential acts exclusively repulsive, which will strongly favour straight configurations
energetically.

Now it is also obvious, how the problem happens within the simulation. As soon as
a configuration is reached, where two bond vectors are nearly parallel, the forces increase
extensively. As shown above, the torsional forces are acting circular, around the middle
bond vector of a torsion angle. But since the Molecular Dynamics simulation uses cartesian
coordinates, during the next time step the velocities are crucially updated in the tangential
direction. This causes the jump in the kinetic energy and is provoked by the fact that the
torsion force cannot be represented in cartesian coordinates in a sufficient manner. As the
update of the velocities is calculated by F× δt, the effect gets less important for smaller time
steps, which is the reason why in Fig. 5.11 the simulation with a smaller time step behaves
better.

5.3.2 Possible Solutions

There are three different ways to tackle the problem:

1. In the previous paragraph it is explained, why a smaller time step actually solves the
appearing problems with the wrongly directed, strong force. A very easy trial is thus to
make the time step dependent of the instantaneously strongest force. In doing so, the
velocity update could be adjusted by some freely selectable upper limit. To conserve
the correct canonical statistics, it would only be necessary to do all required statistical
measurements in equidistant time segments. As mentioned earlier, the torsion force can
easily get orders of magnitudes as strong as the rest of the force terms. To have a nearly
constant velocity update, orders of magnitudes more time steps would be necessary in
the respective configurational situation. For a sequence of considerable length this
happens quite often. In conclusion, the whole simulation time could be easily raised by
a factor of 103. Obviously this is not the method of choice.

2. As described in the previous section, the problem is caused by the fact that the simu-
lation uses cartesian coordinates so far, but the torsion force would better be expressed
in terms of angles of the configuration. Indeed, it is theoretically possible to describe a
whole configuration by another set of degrees of freedom than the cartesian coordinates
of every monomer. For N monomers, there are 3N cartesian coordinates. Considering
N − 1 bond lengths, N − 2 bond angles and N − 3 torsion angles, there is a lack of 6,
which are of course the 3 translational and 3 rotational degrees of freedom with respect
to the whole configuration.

As explained in section 2.1, it is possible to split up the Hamiltonian of the system into
several parts and do the integration of these parts independently of each other. This is
for example utilised for the Nosé-Hoover thermostat, where the heat-bath particles are
treated with higher order integration schemes, while the classical system is integrated
by the Störmer-Verlet algorithm. So one thought is to separate the torsion part of the
Hamiltonian from the rest of the forces of the model and integrate only the torsion part
in angular degrees of freedom. Unfortunately, this is not possible, since the condition
for such a separation is that the different parts are independent from each other. But
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a torsion angle is of course not independent from for example the rij distances, which
are responsible for the Lennard-Jones contribution.

This conclusion means that the integration has to be carried out in one step and one
fixed coordinate system. Therefore, all required quantities would have to be expressed
in angular degrees of freedom. Of course bond lengths, bond angles and torsion angles
are such degrees of freedom, thus the expression is trivial. But the already mentioned
example of the distances rij of non-neighbouring monomers in terms of angles and bond
lengths of the configuration only, is very complicated. Even worse, after finding a way of
transcribing the potential, this construct would have to be differentiated. Thus, this is a
probably very effective but extremely complicated way of getting around the respective
difficulties.

3. In all-atom Molecular Dynamics simulations it is common to cut off the long-range
Coulomb interactions smoothly by altering the 1/r behaviour by an exponential decay
factor exp[−r/r0]. As proved above in (5.31) there is also a 1/r behaviour in the existing
case – but for the force, not for the potential. Furthermore, the problem is not the long-
range tail, but the divergence for very small r. Nevertheless, it is possible to introduce
an additional factor (1 − exp[−r/r0]) in the torsion potential, which will be shown to
fix the divergence of the force. Since this is the most practical method of overcoming
the considered difficulties, it will be studied more thoroughly. Unfortunately, it will
turn out that this way of solution implies other systematic problems concerning the
structural behaviour of the system.

Modified Potential

In the example in section 5.3.1, the divergence is shown to be of first order with respect to
some distance r of b1 from an axis parallel to b2. This deviation r is intrinsically chosen by
the type of example. It is a value for the “parallelity” of two successive bond vectors. In case
r = 0, the two bond vectors are exactly parallel. But how can r be determined for a general
configuration? Any four successive monomers build up a torsion angle. The distance of the
first or the last of these four monomers from the infinitely elongated second bond vector (the
vector between the second and the third monomer), is such a parallelity value r. Another
way of describing this would be: r is the length of the projection of the first or last bond
vector (b1 or b3) to the plane perpendicular to b2. This reminds one of the second definition
of the torsion angle in the beginning of the chapter. (5.6) gives the form of such a projection

vector. The length can easily be obtained by calculating
√

b2
k,⊥:

√

b2
k,⊥ =

√
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)2
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√
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2 b−2
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−4
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=
√
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2 b−2
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√
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2
k+1 − (bk · bk+1)

2 . (5.32)

The b−1
k+1 factor is not crucial for the behaviour, since bi ≈ 1 ∀ i ∈ {1, N}. So what lasts as

the important part of (5.32) is:

rk,⊥ =
√

b2
kb

2
k+1 − (bk · bk+1)

2 . (5.33)
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But not only the case if bk and bk+1 are parallel is critical for Ftors k, the same problem arises
for bk+1 ‖ bk+2. An analogous term can be used to evaluate rk+2,⊥. For the extension of the
potential it will be sufficient to control rk = rk,⊥ · rk+2,⊥ and guarantee that the potential
will vanish for small rk. From (5.33) it is obvious that the form of rk is exactly the same as
the definition of ρk in (5.12). Thus, the nomenclature of the denominator of cos φ as ρk – like
a radius – is belatedly justified. ρk indicates how far the two outer monomers are away from
the axis through the middle bond vector.

After these considerations, it is clear how the torsion potential from (5.8) has to be
modified:

Vtors(R) =
1

2

N−3∑

k=1

(1 + cos 3φk) (1 − exp [−ρk/r0])

=
1

2

N−3∑

k=1

(
1 + (4 cos2 φk − 3) cos φk

)
(1 − exp [−ρk/r0]) . (5.34)

With r0 the falloff of the potential for small ρk can be adjusted. For ρk = r0 the additional
factor is 1 − e−1 ≈ 0.63, i.e. the falloff gets effective for ρk ¿ r0.

Before discussing some details of the impact of r0, the modified torsion force shall be
derived. Fortunately, the only effective difference to the derivation in section 5.1.2 is that
(5.14) is altered to:

−∇rl
Vtors k(R) = −∇rl

[
1

2

(
1 + (4 cos3 φk − 3 cos φk)

)
(1 − exp [−ρk/r0])

]

= −1

2

(
12 cos2 φk − 3

)
(∇rl

cos φk) (1 − exp [−ρk/r0])

− 1

2

(
1 + (4 cos3 φk − 3 cos φk)

)
exp [−ρk/r0] r

−1
0 (∇rl

ρk) . (5.35)

The respective calculations for ∇rl
cos φk and ∇rl

ρk are given in (5.15) - (5.24). The complete
expression for Ftors i analogous to (5.25) is still too complex to give a considerable insight if it
would be stated here. Instead, referring to section 5.3.1, the force acting on the first monomer
of the arbitrarily selected configuration shall be exemplarily calculated, using the results from
(5.31):
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. (5.36)

As expected, the amplitude of the tangential part of the force is limited by the exponential
factor 1 − exp[−r/r0], thus it does not diverge anymore:

lim
r→0

1 − e−r/r0

r
= lim

r→0

e−r/r0

r0
= r−1

0 . (5.37)
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Even adjusting a limit for the tangential force is possible, because the absolute value is limited
by 3/2r−1

0 (compare (5.36) and (5.37)).

Furthermore, an additional radial part is induced by the fact, that the potential has now
an explicit radial dependency. The absolute value of the radial part is also guided by r−1

0

for small r, so the upper limit for the tangential contribution also holds for the radial force.
Unfortunately, the radial contribution brings along several systematic problems. Since the
torsion energy is suppressed for smaller r, this radial part of the force points to the origin of the
circle that r describes (Frad ∼ (− cos ϕ,− sin ϕ, 0)). Thus r tends to get smaller. This means
that the system now prefers configurations that would have been critical in the unmodified
model. By now, the simulation will work well in these situations as the force converges. On
the other hand, the originally desired torsion potential (1 + cos 3φ)/2 is described especially
bad by the modified potential for the former critical configurations. So the modification itself
tends to enlarge its effect. Secondly, the absolute value of the radial contribution has its
maximum for r = 0 (the definition forbids r < 0). So it is expected that for very small r,
the radial contribution leads to a turn-down of the monomer, since it is pushed too far in
the central direction because of the finite time step. This leads to an artificial change of φ to
φ ± π, which very probably causes serious structural misbehaviour. However, all unwanted
effects for r ¿ r0 can now be considered as of less weight.

For small r0 the modified potential is similar to the original potential of the GAB model,
while a big r0 implies a strong falloff and thus better prevents large forces: Ftang,max ∼ r−1

0 .
However, the second case has the drawback that the potential converges against the one of
the AB model since the torsion potential is suppressed. But that is of course not desirable,
since all the hitherto effort was motivated by the introduction of this additional contribution.
Actually, it is possible to continuously select between the AB and GAB model. It can be
shown that while the thermodynamic properties of the GAB model are very similar to those
of the AB model, the additional torsion potential has a considerable impact on the structural
behaviour of the system. This is best seen by comparing ground-state structures of the same
sequence for the GAB and the AB model. The conclusion of this is that the freely selectable
fall-off threshold r0 leads to different structural results for any different adjustment. This
conclusion is very unsatisfactory, since the structural behaviour is crucial in protein folding.
But it would be possible to think of more sophisticated and better adapted modifications to
the original potential (5.1) to get around this problem.

Simulations with Modified Potential

After the theoretical part, the modifications should be tested. Therefore several simulations
are carried out both for the homo-four-mer and the sequence 20.4 (see Table 1.I). All the usual
parameters are used and the modified torsion potential is included. The considered problem
causes always a rise of Econs, since the kinetic energy is always spontaneously increased and
the excessive energy is accumulated in the potential energy of the NHC particles. Therefore,
the general expectation would be that still a slow increase of the “conserved” energy is ob-
served, but not as crucial as in Fig. 5.11. Also, the smaller the chosen time step δt and the
bigger the effective cut-off radius r0, the smaller should be the increase of Econs.

A time series of T = 40 · 103 is simulated for the homo-four-mer with different selections
of δt and r0. The resulting time series are shown in Fig. 5.17. Interestingly from the picture
it could be assumed that Econs is really equilibrating at a constant level. But this cannot be
true and is thus an artifact that originates from numerical errors, which are the only possible
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Figure 5.17: Logarithmic plot of the conserved
energy for several simulation setups of the homo-
four-mer, all at T = 1.0.
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Carlo result, which is represented by the chain
dotted line.
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Figure 5.19: Logarithmic plots of the conserved
energy for several simulation setups of the se-
quence 20.4, all with time step δt = 10−3.
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Figure 5.20: Heat capacities for r0 = 0.2 (solid
line) and r0 = 0.02 (long-dashed line) are com-
pared to the Monte Carlo result, which is repre-
sented by the dotted line.

cause for a decrease of Econs. However, the general finding is that the assumptions concerning
the effect of the choice of δt and r0 are correct. The smaller the time step and the larger the
cut-off radius is, the more accurate is the simulation in the critical situations, which causes
Econs to be less acceding.

The plot of the specific heat in Fig. 5.18 suggests that fortunately the effect of the con-
sidered problem does not have a systematic influence on the thermodynamic behaviour of the
system. Compared to the Monte Carlo Metropolis data, there is a clear systematic devia-
tion for all the MD simulations at the peak of the specific heat. The error bars of the MD
measurements overlap in the whole temperature range.

Unfortunately it is only possible to perform the simulation of sequence 20.4 with δt = 10−3,
since a smaller time step caused technical problems due to too much memory consumption.
The results of the investigation with r0 = 0.2 and r0 = 0.02 are shown in Figs. 5.19 and
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Figure 5.21: Fluctuation of end-to-end-distance
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dashed line) are compared to the Monte Carlo
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line) are compared to the Monte Carlo result,
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5.20. As expected, the total energy Econs is slowly growing, but slower for the bigger choice
of r0. Interestingly, the increase is a little larger for T = 0.1, while for low temperatures
the fluctuations should be smaller than for higher temperatures. But the effect is not as
explicit as the difference between the two runs with unequal cut-off radii. Again, the impact
of the different choices for r0 on the heat capacity cannot be systematically identified. Both
measurements show an acceptable agreement with the MC comparison data, except for small
deviations as already observed in section 4.2. However, the run with the bigger cut-off radius
r = 0.2, which should be closer to the AB case, really has slightly lower peaks, which is
analogous to the comparison of GAB and AB specific heats in Fig. 5.4.

Since the fluctuations of the end-to-end-distance and the radius of gyration are nearly
equal for the AB and the GAB model (see Fig. 5.5), the impact of r0 should be of a purely
numerical kind for these quantities. In fact, in Figs. 5.21 and 5.22 the deviations of the
simulation with r0 = 0.2 from the Monte Carlo data is smaller than those measured for
r0 = 0.02. However, in both cases the error bars do not overlap, which is analogous to the
findings for the AB model without torsion (see Figs. 4.20 and 4.21).

In conclusion, the observations of the testing simulations have shown that it is really
possible to decrease the unwanted effect by applying the modified torsion potential instead of
the originally defined one. The adjustment of r0 can help to obtain desired results. The most
important finding is that the described problem obviously does not have a crucial influence
on the measurement of thermodynamic quantities. Still, Molecular Dynamics simulations of
models implying the torsion term should be handled carefully.
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Summary

Within this work, a coarse-grained protein model has been studied, where amino acids are
represented by two types of single monomers – A (hydrophobic) and B (hydrophilic) – like in
a Cα model. Two successive monomers are linked by virtual peptide bonds. Therefore, the
model can be considered as a continuous, three-dimensional ball-and-stick model. The most
important properties of this model originate from an effective Lennard-Jones-like interaction
between the monomers. At low temperatures, this leads to conformations with a dense core
of A monomers, while the B monomers arrange as an outer shell. Naturally, proteins reside
in an aqueous environment, which causes a behaviour for hydrophobic and hydrophilic amino
acids comparable to the previously described effect in the AB model. The basic difference is
that in the model this external effect is implied as an intrinsic feature.

The key issue of this project was to study the above model with both Monte Carlo simula-
tions and Molecular Dynamics, representing the two big classes of computer simulations which
are frequently used in protein folding research. Since usually different problems are treated
with only one type of these techniques, this suggested the non-trivial question, whether the
obtained results can be considered as equivalent. In the work at hand, an in-depth comparison
is carried out and general statements are made.

First of all it was necessary to gain a fundamental understanding of both methods. Molec-
ular Dynamics numerically integrates the Newtonian equations of motion. There are various
ways to perform this numerical integration. The most common class of algorithms is derived
from the Liouville formalism of classical mechanics. This approach has been reconstructed
within this work. Since the classical Newtonian mechanics leaves the total energy of a sys-
tem constant, modifications, regarding the coupling to the heat bath are required to make
it possible to sample a system within the canonical ensemble. Therefore, two common ther-
mostats, the Andersen thermostat and the Nosé-Hoover-Chain thermostat were tested for the
harmonic oscillator and the quartic double well as simple model systems, which were also
treated analytically.

The AB model system was first investigated with parallel tempering Monte Carlo simula-
tions. The several considered thermodynamic properties such as specific heat or the fluctu-
ations of end-to-end-distance and radius of gyration clearly show that the system undergoes
two conformational transitions. The three separate domains can be denoted with ground-
state-like, for the lowest temperatures, globule, and random-coil for high temperatures. The
ground-state-like domain includes only structures which are close to few or even single states
with very small potential energy.

Performing Molecular Dynamics with constraints covers technical difficulties. Therefore,
flexible bonds were introduced in contrast to the original model. The impact of the usage
of flexible bonds was studied analytically as well as in computer simulations. It turned out
that in comparison to the classical model, the modification mainly constitutes a different
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behaviour of the transition from the ground-state-like domain to the globule domain. The
according differences were only observed for small bond strengths. Therefore, the choice of a
reasonable large bond strength allows to compare the results of the modified model with the
original one.

Similar computer experiments were carried out with Molecular Dynamics. The utilised
Nosé-Hoover-Chain thermostat was adjusted combining the experiences from the tests with
a harmonic oscillator and approximations according to the flexible bond potential. The ad-
justment showed very good results in comparison with theoretic expectations about kinetic
quantities. It was found that the thermodynamic properties as they had been measured with
Monte Carlo were acceptably reproduced by the Molecular Dynamics simulation. A small
systematic drift of the average potential energy towards higher values was noticed. By using
the Andersen thermostat in further measurements, this deviation could be uncovered to be
caused by characteristics of the Nosé-Hoover-Chain thermostat.

Additionally, the overlap parameter Q as well as the fraction of formed native contacts q
were considered as reaction coordinates for the measurement of free-energy landscapes with
Molecular Dynamics. It was shown that although the statistical properties of Molecular
Dynamics are unsatisfying, the reweighting of the data makes it possible to obtain qualitative
agreement with the results of Monte Carlo experiments. However, the measurements of
structural quantities in general with Molecular Dynamics showed quantitative deviations from
the Monte Carlo data.

Furthermore, the autocorrelation times of Molecular Dynamics simulations were found
to be orders of magnitudes larger than for Metropolis, especially for non-critical, higher
temperatures, where autocorrelations usually tend to be smaller. Also, the error analysis in
Molecular Dynamics runs presumes large Jackknife bins and long run times to be certain.
Therefore, Monte Carlo is superior to Molecular Dynamics with respect to the production
of statistical data. This is also the case for the special purpose of finding structures with
minimal energy, since Molecular Dynamics is much more sensitive against the implementation
of sophisticated technical extensions.

To imply further empirical chemical constraints into the AB model, an additional poten-
tial term with respect to the torsion angles was included. With Monte Carlo methods, the
deviations of the extended (GAB) and the original system were examined. The torsion poten-
tial was found to mainly influence the ground-state-like domain, which is slightly stabilised.
Also, the minimal energy structures of the AB and GAB model are different. For higher
temperatures, on the other hand, the impact of the torsion potential does not seem to play a
remarkable role.

The application of the torsion potential to Molecular Dynamics was found to be non-trivial.
In particular, while the potential itself is well-behaved, its gradient, which is proportional to
the force, is divergent for nearly linear configurations. Unlike for, e.g., the repulsion of
the Lennard-Jones potential, the divergence in the torsion force is important because linear
configurations occur frequently. Several approaches to eliminate the misbehaviour caused by
this problem were presented. The most promising, a modification of the torsion potential,
was discussed in detail and implemented. The result of according measurements was that it
was really possible to control the unwanted effect. Particularly, the impact of the divergence
and the modification of the torsion potential both did not show a remarkable deviation with
respect to the thermodynamic properties of the model system.
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This work has shown that the observation of protein folding with simple model systems
can be carried out with Monte Carlo as well as with Molecular Dynamics, where the kinetic
properties of the system are driven by deterministic laws. Therefore, many interesting starting
points for further investigations of especially kinetic effects are apparent.

For a more thorough identification of Monte Carlo and Molecular Dynamics time scales,
the measurement of Chevron plots [43, 44, 45] would be expedient. These are directly con-
nected to kinetics, as the basic is to measure the number of simulation iterations, until the
sequence is unfolded and folded respectively up to a certain degree. The comparison of the
obtained results should be even more significant than the comparison of autocorrelation times.
Being sure that the dynamics of Monte Carlo and Molecular Dynamics is comparable in prin-
ciple, it would then be possible to do all measurements with the statistically superior Monte
Carlo methods and appropriately rescale the kinetic properties.

The impact of mutation on the path to fold can be evaluated by measuring Φ-values
[51, 52], which compare the change of stability and free-energy-barrier caused by a certain
mutation of the sequence. Natural proteins can be considered to be optimised, i.e. the path
to fold will usually be decelerated by mutation. However, the sequences used for the AB
model are artificial. Thus, it would not be a surprise, if the path to fold could be accelerated
by mutation. This way, it would be even possible to perform sequence designing and find
sequences with especially stable ground states.

A more technical aspect could be the implementation of the model in non-cartesian co-
ordinates, where the angles and bond lengths are the degrees of freedom. This would make
it possible to study e.g. the GAB model as well as the GōCα model [39] without the need of
a cut-off for the torsion potential. Additionally, this would enable the use of stiff bonds and
thus allow larger time steps. Furthermore, the observation of the autocorrelation behaviour
could give an insight, if it is possible to accelerate the evolution of the system in phase space
by altering the coordinate system.



108 SUMMARY



Appendix A

Selected Source Codes

A.1 Andersen Thermostat

A pseudo-C source code of the Andersen thermostat with use of the Box-Müller method for
calculating Gaussian distributed random numbers could look like this (see section 2.4.1 for a
description of the algorithm):

1 void thermostating() {

2 for (i=1; i<=Np; i=i+1) { // for each particle

3 if (RAN01()<nu*dt) { // check for collision

4 delta_ekin=0.0;

5 sigma_sq=k_B*T/m[i]; // calculate sigma^2

6 for (j=1; j<Nd; j=j+2) { // for each dimension

7 gaussian(sigma_sq,&x,&y);

8 delta_ekin=delta_ekin-v[i,j]*v[i,j];

9 v[i,j]=x;

10 delta_ekin=delta_ekin+v[i,j]*v[i,j];

11 delta_ekin=delta_ekin-v[i,j+1]*v[i,j+1];

12 v[i,j+1]=y;

13 delta_ekin=delta_ekin+v[i,j+1]*v[i,j+1];

14 }

15 if (j<=Nd) { // if Nd is odd

16 gaussian(sigma_sq,&x,&y);

17 delta_ekin=delta_ekin-v[i,j]*v[i,j];

18 v[i,j]=x;

19 delta_ekin=delta_ekin+v[i,j]*v[i,j];

20 }

21 ekin=ekin+delta_ekin*m[i]/2.0;

22 }

23 }

24 }

The variables are explained in Table A.I, as far as they are not self-explanatory. In
delta ekin the difference of the old and new squared velocity is accumulated. This makes
sense, since a velocity update happens quite seldom, and so the kinetic energy does not have
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to be calculated from scratch every time step after applying the thermostating() func-
tion. Since the Box-Müller method is used for generating random numbers from a Gaussian
distribution with squared width sigma sq, always two such random numbers are produced.
Therefore, for the first 2n dimensions (n ∈ N) two velocity components are randomly chosen
at once (lines 6-14). Afterwards, for an odd number of dimensions in the system (e.g. for
one- or three-dimensional systems), one component is left (lines 15-20). Although, this code
replication in lines 8-10, 11-13 and 17-19 is unaesthetic, it provides a reasonable speed-up,
since calculating two new random numbers for each velocity component would be twice as
costly. For the sake of completeness here is an implementation of the Box-Müller method:

1 void gaussian(sigma_sq,*x,*y) {

2 r=sqrt(-2*sigma_sq*log(1-RAN01()));

3 theta=2*M_PI*RAN01();

4 x=r*cos(theta);

5 y=r*sin(theta);

6 }

There is still some room for small optimisation, which has not been included here for read-
ability. E.g. not using a function call when calculating x and y would be faster. Also doing
the check about the number of dimensions (line 15) only once in the beginning instead for
every colliding particle could (slightly) speed up the performance.

The implementation is simple – the function thermostating() has to be called once per
MD time step.

A.2 Nosé-Hoover-Chain Thermostat

As already mentioned while explaining the principle of the Nosé-Hoover-Chain thermostat,
both Ref. [21] and [22] give pseudo source code. Unfortunately, both include small spelling
mistakes, which can be confusing. Additionally, each implies one optimisation, which can be

Table A.I: Variables used in the pseudo source code of the Andersen thermostat.

T desired equilibrium temperature T

dt time step δt

ekin kinetic energy Ekin

Np number of particles in the system

Nd number of dimensions of the system

nu collision frequency ν

m[i] mass of particle i m

v[i,j] jth velocity component of particle i vi,j

RAN01() random number ∈ [0, 1) (used generator [53])
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combined. Therefore, it seems to be expedient to give a third version of pseudo code, which
is similar but not equal to the two variants in the given references:

1 void thermostating() {

2 E1set=Nf*k_B*T;

3 E2set=k_B*T;

4 scale=1.0; // no initial particle vel. scaling

5 for (k=1; k<=nc; k=k+1) {

6 for (j=1; j<=m; j=j+1) {

7 dts2=w[j]*dt/((double)nc*2.0);// precalculate fractional time steps

8 dts4=dts2/2.0;

9 dts8=dts4/2.0;

10 axi[1]=(ekin*2.0-E1set)/Q[1]; // calculate thermostat acceleration

11 for (i=2; i<=M; i=i+1) {

12 axi[i]=(Q[i-1]*vxi[i-1]*vxi[i-1]-E2set)/Q[i];

13 }

14 vxi[M]=vxi[M]+axi[M]*dts4; // update thermostat velocities

15 for (i=M-1; i>=1; i=i-1) { // attention: process "backwards"

16 s=exp(-vxi[i+1]*dts8);

17 vxi[i]=(vxi[i]*s+(axi[i]*dts4))*s;

18 }

19 s=exp(-vxi[1]*dts2);

20 scale=scale*s; // accumulate particle vel. scaling

21 ekin=ekin*s*s; // scale particle kinetic energy

22 for (i=1; i<=M; i=i+1) { // update thermostat positions

23 xi[i]=xi[i]+vxi[i]*dts2;

24 }

25 axi[1]=(ekin*2.0-E1set)/Q[1]; // update thermostat acc. and vel.

26 for (i=1; i<=M-1; i++) {

27 s=exp(-vxi[i+1]*dts8);

28 vxi[i]=(vxi[i]*s+(axi[i]*dts4))*s;

29 axi[i+1]=(Q[i]*vxi[i]*vxi[i]-E2set)/Q[i+1];

30 }

31 vxi[M]=vxi[M]+axi[M]*dts4;

32 }

33 }

34 for (i=0; i<Nf; i=i+1) { // scale particle velocities

35 v[i]=v[i]*scale;

36 }

37 }

The whole chapter 2 and especially the therein given references should help to get a deeper
understanding of the algorithm itself. The two main for-loops in line 5 and 6 handle the
smaller time steps and the higher order integration with respect to the Nosé-Hoover degrees
of freedom. The main effect of the whole function is the aggregation of the velocity scaling
factor scale. The higher order integration is coupled to certain prefactors w[j] for each
iteration of the j-loop, which are collected in Table A.III up to order m = 7, according to
[22]. Here also is still left some room for optimisations. E.g. line 2 and 3 must be carried out
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only once for each temperature, and if simulating with a fixed time step size dt the values
dts2, dts4 and dts8 could be precalculated for each value w[j].

The implementation of the Nosé-Hoover-Chain thermostat as given here is done as follows
(for a full example see e.g. Ref. [20], appendix E.2):

setup();

for (i=0; i<no_steps; i=i+1) {

...

thermostating();

velocity_stoermer_verlet();

thermostating();

...

measurement();

...

}

I.e., because of the separation of the Hamiltonian into the Nosé-Hoover part and the stand-
alone “classic” system by a Trotter factorisation (compare eq. (2.76)), the Nosé-Hoover prop-
agation is calculated twice: in the beginning and in the end of each MD time step, each
time with a step size δt/2 =dt/2. The function velocity stoermer verlet() stands for the
integration of the stand-alone system with an algorithm analogous to eq. (2.16). In appendix
E.2 of Ref. [20] this function is denoted with pos vel().
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Table A.II: Variables used in the pseudo source code of the Nosé-Hoover-Chain thermostat.

T desired equilibrium temperature T

dt time step δt

ekin kinetic energy Ekin

Nf number of degrees of freedom

M number of Nosé-Hoover particles (NH-Chain length) M

nc separation of one time step for NHC nc

m order of factorisation m

w[i] factorisation prefactors (see Table A.III) wj

m[i] mass of particle i mi

v[i] ith velocity component (with respect to all particles) v

Q[i] virtual mass of ith Nosé-Hoover particle Qi

xi[i] position of ith Nosé-Hoover particle ξi

vxi[i] velocity of ith Nosé-Hoover particle vξi

axi[i] acceleration of ith Nosé-Hoover particle ṗξi
/Qi

Table A.III: Prefactors for higher order Trotter schemes as given in [22].

m 1 3 5 7

w1 1 1.3512071919596576340 0.41449077179437573714 −1.17767998417887

w2 −1.7024143839193152681 0.41449077179437573714 0.235573213359357

w3 1.3512071919596576340 −0.65796308717750294857 0.78451361047756

w4 0.41449077179437573714 1.3151863206839

w5 0.41449077179437573714 0.78451361047756

w6 0.235573213359357

w7 −1.17767998417887
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