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Abstract:
Cluster methods are used in Monte Carlo simulations to decrease the autocorrelation time,

i.e. the interval between statistically independent configurations, which becomes crucial close to
critical points and phase transitions. The aim of this work is to build the basis for a Monte Carlo
cluster algorithm for continuous two dimensional spin systems. First the Kornyshev-Leikin
model potential is introduced which is applied to Monte Carlo simulations of DNA systems.
Afterwards a purely geometrical technique for searching clusters is described. Furthermore it
is extended to an energetic cluster criterion, which is the basis in Monte Carlo cluster meth-
ods. The scaling of the implementation is measured and analyzed. Finally it is used to study
geometric clusters as a function of different DNA characteristics, e.g. the charge compensation
parameterθ.

Kornyshev-Leikin pair potential for rigid helical molecules

It is well known that DNA forms close packed aggregates of various structures, e.g. in human chromo-
somes or viruses. Experimentally it was observed that short fragments form columnar aggregates which
are suitable to study interactions, e.g. like charge attractions between molecules and global structures.

At first glance a whole DNA is far too complex to describe its interaction with other molecules in a closed
analytical framework. However, A. A. Kornyshev and S. Leikin [1] described DNA molecules as long
cylinders, carrying helical, continuous line charges on their surface, taking advantage of the symmetries
in helical molecules. Thus it was possible to derive an exact formalism which can be used to calculate
interactions between two stranded helical molecules like the DNA. The theory in [1] is formulated in a
rather general way, so the potential that is finally used for the simulation had to be derived and adapted
to the actual application. The whole interaction energy is obtained by a sum of three different terms. The
first one, labeled aswcyl, corresponds to the interaction between two homogeneously charged cylinders.
wself is a “self correlation” energy, which is due to correlated discrete surface charge distributions on each
molecule. Ultimatelywcrossis a “cross correlation” energy, which is caused by nonrandom alignment of
discrete charges on the opposing molecules. The following formulae describe an energy density, where
the energy is normalized to the persistence lengthLp [2].
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Due to the very rapid convergence, the sums in eqs. 3 and 4 may be truncated atn = 5 and−5 ≤ j ≤ 5.

Fig. 1: Simple scheme of important structural values for two interacting DNA double strands.

The parameters appearing in eqs. 1-5 are briefly explained [5]:
First there are the structural parameters of the phosphate pattern (see fig. 1, taken from [4]): the helical
pitchH, the azimuthal half-width of the minor groovẽφs and the hard-core radiusa. Furthermore each
DNA duplex carries the negative charge of phosphates with surface charge densityσ0 plus a compen-
sating positive charge arising from adsorbed counter ions. The degree of compensation is described by
the parameterθ, where0 ≤ θ ≤ 1. eqn. 2 the termwcyl vanishes ifθ = 1. The mobile counter ions in
solution cause an exponential decay of the Coulomb interaction of the two helices for large separations.
This exponential decay is parameterized by the inverse Debye screening lengthκ. The solution is also
considered by its dielectric constantε. Actually the dielectric constant and the Debye screening length
are both temperature dependent andκ is also a function ofε. Although this is not taken into account here
[3].

The simulations were carried out considering B-DNA structure. The proper parameters were taken from
[4] and are collected in table 1.
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L [Å] a [Å] H [Å] φ̃s/π [rad] σ0 [µ C/cm2] ε
500.0 9.0 33.8 0.4 16.8 80

Table 1: Structural and chemical parameters for the DNA-B molecules.

From eqs. 2 to 4 it can be seen that there is a two dimensional potential energy landscape for a pair of
DNA molecules depending on the distance of two strandsr = |R| and the relative azimuthal orientation
φ. The latter can be simply calculated as the difference of the respective anglesφ′1 andφ′2 of the5′ →
3′ strand, relative to a reference direction. A shift in the axial direction∆z therefore translates into a
different azimuthal orientation.

Due to a lack of time it was not possible to study the DNA aggregates with respect to different screening
lengthsκ−1. For all discussions and measurements in this report it is fixed toκ = 0.1Å−1. The following
pictures should help to get an imagination of the potential energy and support the understanding of the
expected effects.
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Fig. 2: a: Kornyshev-Leikin potential atφ = 0.4π for θ = {1.0, 0.9, 0.85, 0.8}, whereθ = 1.0 is the
lowest plot andθ = 0.8 the uppermost.b: Calculated withθ = 1.0. The values of the potential energy
are expressed in artificial units.

Fig. 2.a shows four qualitative different types of the interaction potential obtained for different values
of θ. For high compensationθ the interaction of the two DNA strands is purely attractive for a nearly
perpendicular azimuthal alignment until a certain equilibrium distance of about22Å is reached. That
is very short considering the hard core distance of2 × 9Å= 18Å. As the number of adsorbed counter
ions decreases a local maximum arises which separates a condensed and a crystalline state, while the
local minimum is still below zero and the energy barrier gets lower. For even lower values ofθ the
local minimum at short distances exceeds zero and thus the bound (clustered) state is obviously not any
longer more preferable than the crystal state. Finally there is a certain - probably critical - point of charge
compensation where the local minimum vanishes and the potential gets completely repulsive.

Keeping in mind that the potential energy landscape is not 1- but 2- dimensional (see fig. 2.b) it becomes
clear that even in the case ofθ = 1 it is not sure wether all the DNA strands will go into the equilibrium
distance and form one big cluster in the ground state. The preferred orientation between two molecules
at short distances is≈ π/2 (cmp. fig. 2.b). A clustering of three molecules will result in an energetically
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frustrated configuration and therefore the formation of big clusters is not obvious. Also it can be seen
from fig. 2.b that for large distances of two interacting strands the parallel orientation is favorable. Inter-
estingly even if the system would be simulated on a lattice the potential would therefore still be density
dependent. This makes it clear that there is a rich phase behavior to be expected. Forθ = 0.7, i.e. in the
repulsive regime, this was studied for the ground state in ref. [5].
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Fig. 3: These pictures illustrate the critical behavior of the Kornyshev-Leikin potential atκ = 0.1 and
θ ≈ 0.86. Also it is shown that it is important to look for a local minimum with respect tor and φ.
a, b: θ = 0.864. c, d: θ = 0.860. b andd are both obtained forφ = 0.38.

Another important fact that results from the dependency of the orientationφ is visualized in fig. 3. The
two plotsb andd show the potential for fixed mutual orientations. They seem to be qualitatively similar.
However, this is, which is proofen bya andc where it is obvious that forθ = 0.860 thereis nopotential
barrier as seen in fig. 3.d since the two strands can always loose energy by orientating parallel and
seperate from each other at the same time. Whereas forθ = 0.864 a real local minimum exists. This
demonstrates that the critical value forθ must be in the range ofθc ∈ [0.86, 0.864] and not at0.85 as it
could be expected from fig. 2.a.

Simulations

All simulations were carried out with the program“SpinCG2d” by G. Sutmann [6]. As it is seen from
eqs. 1-4, the only variables describing the interaction between two DNA molecules are their interaxial
distance and their mutual orientation. This picture corresponds to a 2-dimensional spin system, where
spins have three degrees of freedom (position, orientation), i.e. a kind of generalized X-Y-Model.

The starting configuration of DNA strands consits of a hexagonal structure with lattice constantd. This
distance is related to the DNA density. Afterwards a mixture of down-hill and simulated annealing algo-
rithm is performed, i.e. the temperature is decreased by a certain amount aftereachMonte Carlo step. In
so doing the system is cooled down fromT (tMC = 1) = 1000K to T (tMC = NMC) = 30K. NMC is the
number of Monte Carlo steps performed in a whole simulation andtMC is the Monte Carlo time. This
means that not only the system is given no time to equilibrate but in the whole simulation the forming of
an equilibrium state is actually prevented. On the other hand as we are mostly interested in energetically
favorable states the cooling to very low temperatures will definitely lead to ground state like structures
of the aggregate. These are naturally somehow artificial since the DNA would probably change its con-
figuration dramatically at such low temperatures. It can be assumed that for long simulation timesNMC

the influence of the non equilibrating kind of the simulation can be neglected. In [2] the temperature
was kept constant over a certain number of Monte Carlo steps and similar results were observed. During
the simulation the size of the trial moves is adapted to have an acceptance rate of0.5. Since the explicit
evaluation of the potential is rather expensive it is interpolated during the simulation by a second or-
der interpolation from a table. For the cross correlation energy the first5 terms of the sum overn are
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interpolated and multiplied by the orientation dependentcos(nφ).

Geometrical cluster search

Thinking of an efficient way to identify neighbors in a certain distance, which still has to be defined, it is
most important to consider the continuous properties of the particles in the system on the one hand and the
spatial decomposition of“SpinCG2d” on the other. The latter is mostly significant for the parallelization.
The whole program is written using MPI for distributed memory systems without memory replication,
so the cluster search also has to deal with this distributed data handling.

The basic approach consists of:

1. identifying clusters sequentially and independently on each processor

2. communicate with other processors to link global clusters

3. scatter the whole linking information

First of all it is necessary to introduce a geometric cluster criterion. If the distance of two molecules
exceeds a treshold lengthr0 they are not considered asneighbors. Since the structures of aggregate
configurations are extremely varying, it seems to be a good choice to correlate this criterion with the
Kornyshev-Leikin potential and thus introduce a barrier dependent treshold lengthr0. By some test runs
it turned out that postulatingr0 as the distance where the potential barrier is overcome by4/5 provided
acceptable results (see fig. 4). Because of the form of the potential it was always quite obvious which
particles were in the short distance of the potential minimum, and which were in a kind of crystalline
state with respect to each other. That is the clusters were clearly separated and the identification could be
verified easily.
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Fig. 4: The maximum distance of two particles belonging to one cluster is derived from the interaction
potential.

Sequential local cluster identification

There is a variety of algorithms for searching clusters on a lattice. One of the most well known is probably
the Hoshen-Kopelman algorithm [7]. A lattice system is particularly simple in that way, that firstly the
particles (i.e. the lattice sites) are in a given order which makes them easy to address. Furthermore there
is a definite number of neighbors at given positions. Both of these lattice properties are not given in the
considered system. Since there is no way to order the particles systematically, it would be necessary to
check every particle against every other particle which would result in a complexity ofO(N2). Even if
the particles would be sorted by the x- or y-coordinate, the quadratic scaling behavior would probably be
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only decreased by a factor. This is of course undesirable. Thus the idea is to alter a lattice based algorithm
to fit the needs without loosing its benefits.

Virtual lattice structure

This is accomplished by introducing a virtual lattice and sort the molecules into the lattice cells by a
linked list (see fig. 5). In so doing a small number of particles belonging to one cell can be addressed
nearly as fast as if they actually were particles in a lattice system. Furthermore this method makes it
possible to check only pairs of molecules in a number of potential neighbor cells. But the structure of the
lattice still needs some more investigation.

Fig. 5: Schematic view of the sorting of particles into a virtual lattice at the border of a processor.

It is plausible that the preferable structure is a square lattice. It is easy to address and the particles can
be assigned efficiently to the cells. How to choose the lattice constantl? A very smalll means that in
one lattice cell there will be only few molecules and hence the step of checking each particle in one cell
against any particle in another one will not be expensive although it has a complexity ofO(N2

c ), where
Nc is the number of particles in a cell. On the other hand for largel the number of cells in the whole
latticeandalso the number of possible neighbor cells decreases. The latter two factors are both scaling
with 1/l2. Whereas the number of particlesNc is scaling withl2. So the overall scaling with respect to
l will be 1/l2 × 1/l2 × (l2)2 = 1. From that it is not obvious why the introduction of a lattice should
improve the performance.

It has to be noted that every particle has a certain size (hard core radiusa in the viewed application)
which gives an upper bound for the density of the system, i.e. there is a certainl where on average only
one or two particles are located in each cell. Decreasingl even further would result in many empty lattice
cells which still have to be checked as potential neighbor cells. On the other hand for very smalll there
are cells whose particles are always within the radiusr0 which avoids an explicit check of particle pairs
within cells. But since for the specific exampler0 is not much larger than twice the hard core radius
of one of the molecules it would surely not make sense to decreasel to such low values. So there is a
lower bound ofl. Also a minimum of8 neighbor cells exists which always have to be checked because
they have bordering corners or edges and could therefore contain molecules bound to molecules from
the currently considered cell. So it is also apparent that it is no use in increasingl to very large numbers
because the number of neighbor cells does not reduce anymore after reaching8.

An important fact is that for a lattice constant smaller or equal tor0/
√

2 it is surethat particles belonging
to one cell are in the same geometric cluster (see fig. 6). Otherwise this has also to be checked which
results in anotherN2

c step for every lattice cell! Taking all these actualities into account it seems to be a
good choice to setl = r0/

√
2. Still it is possible that for certain parameters like extremely low or high

densities a change of the virtual lattice constantl could result in some speedup. From fig. 6 it can be seen
that for this particularl there are20 cells possibly containing neighbors. For checking each pair of cells
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only once it is enough to check10 neighbors from each cell. There is no cell that definitely can only
contain molecules in the neighboring distance, so every cell has to be checked.

Fig. 6: Study of the virtual square lattice with lattice constantl = r0/
√

2.

For the later communication with other processors it is mandatory that the lattice coordinates are some-
how global. Otherwise the linking would get complicated. This is achieved by sorting the particles into a
global grid structure, where single grid cells may belong to different processors. Technically this is real-
ized by truncating the decimal places of the two dimensional floating point coordinates of each molecule,
which are global, divided by the lattice constantl = r0/

√
2. In Fortran code it would look like this:

lattice_coordinate=FLOOR(real_coordinate/lattice_constant)

This also explains the gap between the edge of the processor and the edge of the lattice in fig. 5.

Adapted Hoshen-Kopelman algorithm

The Hoshen-Kopelman algorithm works iterative by using a linked list. Fig. 7 is a schematic of the
underlying idea. If two clusters are linked, the list entry of the one with the higherproper cluster label
becomes a pointer to the smaller cluster label, which is represented by a negative integer number. The
list entry of the other one contains a positive integer which is the total number of particles in the certain
cluster, including all clusters which are linked with this one. Now thepropercluster label has to be find
in the list by following these pointers until an entry equal or greater than0 is reached.

list entry no.

value

1 32 1 32

8−22 −2−1301

2 31

1

1 11

3

2

2

1 2 1

1 3 2

2 1

1

Fig. 7: Visualization of the Hoshen-Kopelman cluster search for next neighbors in a small square lattice.

The algorithm is capable of handling any number of potential next neighbor cells. Now some pseudo
code will show how the actual sequential local cluster search is done.
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DO FOR all lattice cells i
DO FOR half of the possible neighbor cells j

search for proper cluster label of j
IF this label is not yet marked as linked with i

IF there is a pair of molecules from i and j with distance<r_0
mark label of j as linked with i -> j_l

END IF
END IF

END DO
IF number of linked clusters is

0: i gets new cluster label
>=1: find smallest proper label j_s from {j_l}

link all other linked neighbors j_l and i to j_s in the list
save sum of all cluster sizes as new size of j_s

END IF
END DO

For the later parallelization it is important that the newly introduced cluster labels are globally unique.
This is no problem since every processor has a non-ambiguous number for identification and there is
an upper bound of particles that can be on one processor. So a new cluster label will be calculated like
below:

cluster_label=local_counter+local_cpu_id*max_particles_per_cpu .

To provide the ability of linking local clusters to global ones the linked list array, which will be called
cluster id in the following, should have a dimension of

number_of_processors*max_particles_per_cpu

on every processor. This makes sure that also the linking information is somehow global from the begin-
ning and can therefore be easily exchanged.

Parallel global cluster identification

In “SpinCG2d” the whole two dimensional system is divided intoNPE domains, whereNPE is the num-
ber of processors on which the application runs. These domains are not stripes, which would mean that
the effort of communication for the Monte Carlo simulation is not decreasing by higher amount of pro-
cessors, but the program tries to make the domains as close to a square as possible. Hereby through
adding more processors the edge length of each processor is reduced which is the driving factor for the
communication.
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Fig. 8: With only next neighbor communication this example would need 5 communication steps until
all of the local clusters are connected to one global one.
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Now it has to be thought of a good strategy for identifying the global clusters which means clusters that
span the domains of more than one processor. Fig. 8 depicts that it is not possible, or at least not efficient,
to do this only by communication between next neighbor processors. The specific example shows that
one could probably construct an artificial global cluster to get the necessity of any “desired” number of
communication steps until the local clusters would be linked correctly. From that it is obvious that there
has to be some kind ofall-to-all communication.

To realize this with an acceptable scaling the idea is to use a communication tree. While descending to
the root no information from the domain borders may be lost. This is achieved by introducing virtual
domains as shown in fig. 9. One of two communicating processors is always themasterwhich receives
the whole border information from theslave. Afterwards it processes the bordering edge to link the
clusters. This linking is done exactly like the identification of local clusters before. Thereafter it uses the
rest of the received information to build up the virtual border of the domain containing the whole area of
the two processors before. Since the bordering edge information is already translated into cluster linking
pointers and it is obviously not part of the edge of the new virtual domain, it does not have to be sent in
the next step of communication and can be rejected. Now themasteris capable of communicating with
othermastersof the same level in the tree which will have similar dimensions relating to their virtual
domains. Thus the number of communication steps is proportional to the logarithm of the number of
processors in a certain direction.
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Fig. 9: During the communication process the only important thing is the edge of the domain of a pro-
cessor. These edges grow and become the borders of virtual domains which include the real domains of
many processors.

Since communication is very expensive it is important to reduce the information that has to be exchanged
to a minimum. First of all there is no way to avoid sending the poisitions of the particles near the border
of the processor domains. The appropriate array will be calledrxyz border in the following. Also it is
necessary to have the correct cluster labels which are assigned to the bordering lattice cells. And finally
the global linking cannot be done without partly knowing the entries ofcluster id , i.e. all entries
dealing with cluster labels which exist on or which are pointed at from the lattice border. Therefore
an arraycluster id border is introduced, which dimension is two times the number of linked list
entries as described before, one for the address and one with the actual value of each entry. To not
loose any information during the communication especially concerning the finally broadcasted feedback
which tells every processor the global labels of the clusters which are contained by it, it is necessary to
always keep this information up-to-date with the global linking andneverreject any of this data, even if
it lies on a border inside a virtual domain. This makes up a difference to the other two communication
arrays. To reduce the amount of distributed data it is useful to link the clusters lying on the edge of
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each processor directly to the proper labels before starting the communication. Therefore only proper
labels and the labels that they point to, which is important for their size, have to be send. Fortunately it
is always possible to calculate the dimension of the lattice on the edge of a virtual domain. That is the
cluster labels in the lattice can be sent first because there is no uncertainty about the length of the array
that has to be received. At the end of the array the size of the other two arrays can be stored, so absolutely
no unnecessary information is exchanged.

The amount of communication is dependent on the overall edge length of virtual domains during the
whole global cluster linking process. For rectangular areas the optimal form with respect to the edge
length would be of course the square. So at first glance it should be faster to build up quadratic virtual
domains instead of firstly linking global lines as it is done in the scheme in fig. 9. But after the global
lines are linked, the vertical edges do not contain any relevant information for linking anymore. It is
important that for a system with periodic boundary conditions this would be the point of time to ap-
ply periodic boundary conditions in horizontal direction. A short calculation example shall confirm the
speed up coming from neglecting the vertical edges for further communication. Considering a number
of 16 processors and fully quadratic domains with an edge lengtha. A communication tree which uses
quadratic virtual domains if possible would have a whole edge length of4a + 6a + 8a + 12a = 30a to
be send while communicating. Using the approach shown in fig. 9 and rejecting the vertical edge infor-
mation for the last two communication steps it is only4a + 6a + 8a + 8a = 26a. As looked at before
the size of the linked list table is independent from the chosen type of communication since it is never
shrinked.

The hexagonal setup of the system in“SpinCG2d” leads to a system that expands more in the y-direction.
For that reason it should even be actually faster to first build up global lines rather than global columns.
Since afterwards the amount of communication is only dependent on the length of the lines, which
is smaller than the length of columns would be, and does not increase anymore. Also the number of
processors in the y-direction is greater than the decomposition in x-direction, that is why the rejection of
the vertical borders can be done one communication step earlier under certain circumstances. Finally if
we consider the architechture of a parallel computer, e.g. theZAMPaNo[11], it is likely that neighboring
processors in x-direction have shared memory, which makes the first one or two steps of communication
fast in the case of first building global lines. But it would need some thorough investigations to proof
this.

After all this there will be aglobal master. In its local arraycluster id it contains the whole global
linking information. If it is enough for every processor to know only the size of clusters whose global
labels originate from it, theglobal mastermust only send back the updated entries of the linked list array
which originally came from the certain processor. If in contrast it is important that every processor knows
the size of every cluster which can be found in its domain, than the whole linked list array of former edge
cluster entries will have to be broadcasted to every processor.

Extension to capability of building clusters for a Monte Carlo cluster algorithm

An energetic cluster criterion

A very important fact about a Monte Carlo algorithm in general is, that it has to fulfill detailed balance.
That is the probability of going from one state into another in a Monte Carlo step must be the same
as the probability of getting back. In cluster algorithms this is ensured by the introduction of a certain
probability to cut a geometric cluster into smaller parts dependent on energy and temperature as it was
postulated by R. H. Swendsen and J. S. Wang in 1986 [8]. Actually every bond between two particles
that geometrically belong to one cluster is cut by a probability calculated from their pair energy. The
original algorithm dealed with systems of discrete degrees of freedom like the Potts spin models. U. Wolff
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extended this to a theory which could be applied to continuous spin systems like theO(n) models in
general [9]. To compare two spins his approach uses a projection of the spins to a predefined direction.
But still the system has to be simulated on a lattice and the energy is not distance dependent. It is not
yet clear, how the criterion of detailed balance can be fulfilled for the cluster building for a system with
positional and angular degrees of freedom exhibiting frustrated configurations.

Necessary modifications

Due to these considerations the present work was focused to build the basis of a Monte Carlo cluster
algorithm. This implies some modifications of the previously described algorithm. The most important
difference is that the cluster labels are obviously no longer associated with cells of the virtual lattice but
with each molecule in the system since it must be possible that every molecule belongs to an independent
cluster, even if two or more of them are assigned to one cell.

A short pseudo code shows the approach for the local cluster identification.

initialize every particle with a globally unique cluster label
all clusters have size 1
DO FOR every cell

DO FOR every pair of molecules in this cell
IF energetic criterion fulfilled

get proper labels of both particles
# ˆ ˆ important to do this here, can change in every step!
link referring clusters to smaller proper label, sum size

END IF
END DO
DO FOR every molecule inside this cell

DO FOR all molecules in (half of) the neighboring cells
IF both cluster criteria fulfilled

get proper labels of both particles
# ˆ ˆ important to do this here, can change in every step!
link referring clusters to smaller proper label, sum size

END IF
END DO

END DO
END DO

The previously described order of(i) do the linking within each cell and(ii) through the neighboring
cells in the lattice; is not necessary. However it seems to be impossible to have real speed up at this spot.
The checking has to be done for all molecules and cannot be stopped for a certain cell if one link is found
as it was possible in the method described before. This is a serious loss in performance.

Thinking about the communication the overall scheme will be conserved while the data that have to
be exchanged will be different. Thecluster id border array is handled exactly as it was done in
the purely geometric cluster search. It is clear that also the positions and orientations have to be sent
for every particle on the border. These are saved inrxyz border again. To identify the entries of the
rxyz border array with the linking information incluster id border also the former, globally
unique label of every particle is important (see the initialization part of the pseudo code). This means
there will be an additional array with 1 integer value for each molecule in the virtual bordering area of a
processor, containing the original label. Obviously none of the sizes of these arrays is given in advance.
So it is a good way to let the receiving processor guess the dimension of the original label array (which
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has the least amount of data inside) plus an uncertainty and receive an array of that size with the amount
of data in the other arrays attached to the end. It would be possible to send the dimensions of the arrays in
an additional communication step before transmitting them, however it seems that some overhead cannot
be avoided.

Scaling

After all the theoretical discussions about a good implementation of the desired functionality it is now
time to look at real time measurements. All concerning measurements where carried out on theZAMPaNo
[11], a parallel computer with 8 compute nodes. One node consists of 4 processors and has 2GB shared
memory. Therefore the memory model is only partly distributed. At first glance the communication tree
should provide atree-likescaling as it is described in [10]. That is the scaling is nearly linearly for low
numbers of processors and saturates at a constant value for large numbers. It does not show the behavior
of all-to-all communication where for large processor numbers the performance is getting worse.
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Fig. 10: Scaling of the cluster algorithm itself and attached to the Monte Carlo step in“SpinCG2d” for
different system sizes and processor numbers.

Fig. 10 shows the measured scaling of the cluster routine itself and in combination with the“SpinCG2d”
program. Since the latter has an outstanding scaling behavior it is easy to accept that the combination
of both always shows a better scaling compared to the pure cluster search. However it is found that the
described technique scales more like anall-to-all communication scheme. Remembering fig. 8 and the
conclusion that some kind ofall-to-all communication is necessary this is not really astonishing. The
reason for the difference of thetree-likecommunication and the scheme in the existing case is that the
amount of data that has to be transmitted is also rising with the number of processors since the overall
edge length is rising. This is not the case in the underlying eqn. 107 in [10]:

c(Np) = log2(Np)λ+
log2(Np)∑

n=1

2n−1χ

Np
, (6)

whereλ is the latency andχ the bandwith. To have a better view on the real complexity with respect to
Np the sum can be simplified to:

c(Np) = log2(Np)λ+
(

1− 1
Np

)
χ (7)
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HereNp is the number of processors,c(Np) expresses the relative portion of communication with respect
to communication. In eqn. 6 the term2n−1/Np is a normalized amount of data to be send within each
step. The overall amount is always1, so in the last step of communication1/2 is sent. The edge length
is growing with aboutlog2(Np) in two dimensions. So it can be derived from 6 the leading behavior:

c(Np) = log2(Np)λ+
log2(Np)∑

n=1

log2(Np)
2n−1χ

Np

= log2(Np)λ+ log2(Np)
(

1− 1
Np

)
χ . (8)
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Fig. 11: Comparison oftree-likescaling and that one which is theoretically expected for the communi-
cation scheme used in the cluster search algorithm forλ = 10−4 andχ = 0.05.

Since it cannot be avoided that the sum of the edges of all processors grows by increasing the number of
nodes, it is at least satisfactory that after the slope of speedup got negative it is slowly increasing again
(see fig. 11). The most important fact is that the good scaling behavior of“SpinCG2d” is not destroyed
by implementing the cluster algorithm into it. For that reason fig. 12 shows the absolute running times
of different routines called in“SpinCG2d” and the cluster labeling algorithm. The “local cluster” search
is done absolutely independently on every processor and therefore it exhibits a good scaling behavior.
The critical part of the“SpinCG2d” concerning the number of processors is the “spatial decomposition”
which contains communication. Its time consumption is more or less constant, independent of the number
of PEs. The two parts of the cluster algorithm containing communication are fast enough to not make
the negative scaling a real problem. The most time consuming but absolutely parallel “interaction” part
is probably slowed down by the “spatial decomposition” at nearly the same number of processors where
the global cluster identification becomes important, maybe this happens even earlier.

Cluster size distributions

Besides the important fact that the cluster search can extend the functionality of the Monte Carlo simula-
tion, it is of course also possible to measure cluster size histograms or study percolation in final config-
urations. Due to the limited time only the distributions of cluster sizes in simulation of DNA molecules
was studied. The measurement was done by creating 100 final configurations of a system withN = 5184
DNA strands by“SpinCG2d” starting from a densityρ = 2/

√
3d2, whered = 35.0Å was chosen. From
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Fig. 12: The runtime of different routines called in“SpinCG2d” and necessary steps of the cluster search
for various numbers of processors and a system size of about 100000 molecules.

final configurations an average distribution of cluster sizes was obtained. Since every configuration was
obtained by a definite number of Monte Carlo steps originating from the same initial set-up (a hexagonal
lattice) the final systems were statistically absolutely independent and the error bars were calculated just
as the standard deviation.

The measurements were carried out for different values of the charge compensationθ. The Debye screen-
ing length was always given byκ−1 = 10Å. As it was discussed in the beginning for thisκ a phase
transition is to be expected forθ ≈ 0.86. For smaller charge compensations the potential becomes com-
pletely repulsive which results in a kind of crystalline state of the system. For this reason there is no way
to identify clusters, because it is even not possible to define a cluster criterion. Either all particles would
be in one large cluster, or every particle would be identified to be separate from all others. Because of the
repulsive form of the potential it is more reasonable to talk of a crystalline phase without any clusters. For
higher values of the charge compensationθ the structure will be interesting because of the frustrations
arising from the orientation dependent part of the Kornyshev-Leikin potential. It is interesting if there
can be found some power law for the cluster size distribution in analogy to percolation on lattices for
example.

Fig. 13.a shows a system with 324 DNA strands that was obtained by a simulation of 10000 Monte Carlo
steps forθ = 0.95. For this small number of molecules the picture is not capable to show the overall
structure of such a system. But it depicts the qualitative fact that large clusters arise where the strands
orient perpendicular to each other according to the minimum in the two dimensional potential energy
landscape. Unlike in 13.b, where the same simulation was done withθ = 0.865 close to the expected
critical point. Most of the particles have a serious distance from each other while some of them gather
into very small clusters at the flat minimum in the potential curve. This difference will be reflected in
the cluster size histograms which allow qualitative statements about the structure of the system. In fig.
13.c andd the corresponding histograms to the structures in 13.a andb manifest this difference. For
high charge compensation the probability of huge clusters is still in an acceptable range. Clusters at
sizes greater than 2000 are likely to be percolating because they contain about half of all molecules in
the system. The searched power law is well reproduced for long simulation times and the according
exponent can be measured. For a rapid cooling and less Monte Carlo steps it can be observed a deviation
from the power law at a certain point. Obviously this can be taken as a sign for too short simulation
times. Near to the critical point (fig. 13.d) the slope of the cluster size curve changes dramatically (see
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Fig. 13:a, b: Final configuration of a model DNA aggregate with 324 molecules forθ = 0.95 (a) and
θ = 0.865 (b) after simulated annealing over 10000 steps. The vectors show the azimuthal orientation
of a molecule.c, d: The according cluster size histograms, averaged over 100 final configurations of a
system with 5184 particles.

also fig. 14). It can also be seen that the deviation from a power law which could be observed for short
simulation times in fig. 13.c appears even for 10000 Monte Carlo steps in this case. Therefore for the
rough estimation of an exponent only the first values where taken into account. This behavior seems to be
similar to the critical slowing down which often occurs at phase transitions in spin simulations. It would
be interesting to see the effect of a real cluster algorithm in the Monte Carlo step. May be it would help
to increase the quality of the data.

Finally in fig. 14 the exponents of the cluster size distributions are plotted for severalθ. Although the
error bars are only obtained from the least square fit (double standard deviation) the qualitative drop of
the exponent close toθ = 0.86 is obvious.

Conclusion and Outlook

The introduced cluster search algorithm can be used to build a Monte Carlo cluster algorithm for con-
tinuous two dimensional off-lattice spin systems on the one hand, and the study of cluster distributions
and percolation on the other. It is designed for parallel, distributed memory systems and does not need to
replicate memory. Although a variety of optimizations were implemented it cannot be avoided that the
scaling of the method can have negative slopes. But since its absolute run time is very short it does not
have any considerable influence on the good scaling behavior of“SpinCG2d” and can therefore extend
the functionality of the existing code.
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Fig. 14: The rough exponent of the cluster size distributions for different values ofθ.

It will be very interesting to implement an energetic criterion which could make the method capable
of lowering the autocorrelation times in the described systems. Measurements of autocorrelation times
in the current and extended version would be necessary to proof that. Also the few measurements on
system structure exponents should be carried out more thorough. An extension of the technique to three
dimensions would be desirable and should not be complicated in principle.
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