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Abstract

The aim of this work [1] is to build the basis
for a parallel Monte Carlo cluster algorithm
for continuous two-dimensional spin systems.
A purely geometrical technique for searching
clusters is developed. It is capable of being
extended to an energetic cluster criterion, which
is the basis in Monte Carlo cluster methods.
The scaling of the implementation is measured
and analyzed. The new method is applied
to model DNA systems [2] simulated with
“SpinCG2d” [3] using the Kornyshev-Leikin [4]
potential. Geometric clusters are studied as a
function of different DNA characteristics, e.g.
the charge compensation parameter θ.

DNA Model System

It is well known that DNA forms close-
packed aggregates of various structures, e.g. in
human chromosomes or viruses. Experimentally
it was observed that short fragments form
columnar aggregates which are suitable to study
interactions [5].
A pair potential for

Figure 1: Important structural
values for two interacting DNA
double strands.

the interaction of two
parallel DNA fragments
of persistence length
Lp can be derived [4],
describing them as
long cylinders, carrying
helical, continuous line
charges on their surface.
The only dependencies
are the distance r = |R|
and the azimuthal
orientation φ = φ′

1 − φ′
2 (see fig. 1). Thus

the model can be treated as a continous two-
dimensional spin system.

Cluster Criterion

It is necessary to
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threshold distance r0,
which decides whether
two molecules belong to
the same “geometric cluster”. It turned out that
correlating r0 with the potential as the distance,
where the potential barrier is overcome by 4/5,
provides acceptable results.

The Algorithm

The cluster search has to deal with the
continuous properties of the system and the
particular parallelization of “SpinCG2d”, utilizing
a spatial decomposition and being capable of
running on distributed memory systems.
The basic approach consists of:
1. identifying clusters sequentially and

independently on each node,

2. communicating to link global clusters,

3. distributing the whole linking information.

Local Cluster Identification

Concerning the cluster identification a lattice
system has two advantages compared to a
continuous system: The particles are in a
given order and there is a definite number of
neighbors. Thus the idea is to extend the highly
efficient but lattice-based Hoshen-Kopelman [6]
algorithm.

The figure shows how the molecules are sorted
into a virtual square lattice structure at the
border of a node. The lattice constant is chosen
as l = r0/

√
2 so that two molecules belonging

to the same lattice cell are geometrically bound.

Global Cluster Linking

For the global linking some kind of all-to-all
communication is needed. The figure below
illustrates the chosen communication model.
One of two communicating nodes is the master
and receives the whole domain edge information
of the slave. Now the bordering edge is linked
and the communication is continued with a
master of the same rank. The amount of
linking data cannot be reduced, but in so doing
the number of communication steps scales with
O(ln Np).

Scaling

The theoretical speedup for a system with
latency λ and throughput χ is:

c(Np) = log2(Np)λ + log2(Np)

(

1 − 1

Np

)

χ .

Fig. 2 clarifies that c(Np) can imply negative
speedups on some algorithmic part, which
however does not have a crucial influence on the
entire scaling as the actual runtime is noticeable
below the Monte Carlo routines.
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Figure 2: (a) Runtimes of different routines. (b) Scaling of the
cluster algorithm itself and attached to the Monte Carlo step.

Simulations

All structural constants are chosen as appearing
in B-DNA. Groundstate-like structures are
obtained by cooling down a system of 5000
particles linearly from 1000K to 30K in varying
numbers of Monte Carlo Metropolis steps,
starting from a hexagonal structure with a lattice
constant of d = 35.0Å. The system structure is
analyzed by measuring cluster size histograms.
The degree of compensation of the negative
charged phosphates by adsorbed counter ions,
parameterized by θ, is varied. The choice of θ
is crucial for the interaction.

Cluster Size Distributions

The errorbars on the cluster size histograms
result from averaging over 100 independent final
configurations. From percolation theory it is
known that the relative number ns of clusters
of size s is asymptotically given by

ns ∼ s−τe−cs .
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Figure 3: (a), (b) Section of a final configuration after 10000 Monte
Carlo steps for θ = 0.95 and θ = 0.865. (c), (d) The respective
cluster size histograms with ns fits.

In analogy to pc in
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Figure 4: Double-log plot of the
exponential factor c versus charge
compensation.

percolation studies,
some critical value
θc can be introduced
for the observed
system. In fig. 4
it can be seen, that
c obviously diverges
with a potential law
close to θc. The
critical exponent seems to depend on the speed
of cooling down the system.
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