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23. Consider a sphere of radius R centered at the origin. Suppose a point
charge q is put at the origin and this is the only charge inside or outside
the sphere. Furthermore the potential is Φ = V0 cos θ on the surface of the
sphere. What is the electrostatic potential and the electric field vector both
inside and outside the sphere?
Hint: Use superposition to take into account the potential of the point
charge inside the sphere.

24. A sphere of radius R is uniformly polarized with polarization vector P
(polarization — dipole moment per unit volume) along the z-axis.
Using spherical coordinates find the potentials due to that polarization
inside and outside the sphere.
Write the found potentials in a coordinate free form using the vector P.
Calculate the corresponding electric field vectors E and D inside and outside
the sphere.
Hint: Taking into account the axial symmetry, use the expansion of
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with cos γ = cos θ cos θ′ + sin θ sin θ′ cos(ϕ − ϕ′) in the expression of the
potential [here x = (r, θ, ϕ), x′ = (r′, θ′, ϕ′)].

25. Voluntary

A localized distribution of charge has a charge density in spherical coordi-
nates
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1
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(a) Make a multipole expansion of the potential due to this charge density
and determine all the nonvanishing multipole moments. Write down the
potential at large distances as a finite expansion in Legendre polynomials.
(b) Determine the potential of that charge distribution explicitly at any
point in space using the expansion of 1/|x− x′| in spherical harmonics
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Show that near the origin, correct to r2 inclusive,
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