UNIVERSITY OF LEIPZIG INSTITUTE FOR THEORETICAL PHYSICS Department: Theory of Elementary Particles

TP2 2017

Lecturer: PD Dr. A. Schiller List of problems 1

1. Verify the identities

$$\begin{aligned} (\mathbf{A} \times \mathbf{B}) \cdot (\mathbf{C} \times \mathbf{D}) &= (\mathbf{A} \cdot \mathbf{C}) \left(\mathbf{B} \cdot \mathbf{D} \right) - \left(\mathbf{A} \cdot \mathbf{D} \right) \left(\mathbf{B} \cdot \mathbf{C} \right), \\ (\mathbf{A} \times \mathbf{B}) \times \left(\mathbf{C} \times \mathbf{D} \right) &= \left(\mathbf{A} \cdot \left(\mathbf{B} \times \mathbf{D} \right) \right) \mathbf{C} - \left(\mathbf{A} \cdot \left(\mathbf{B} \times \mathbf{C} \right) \right) \mathbf{D} \\ &= \left(\mathbf{A} \cdot \left(\mathbf{C} \times \mathbf{D} \right) \right) \mathbf{B} - \left(\mathbf{B} \cdot \left(\mathbf{C} \times \mathbf{D} \right) \right) \mathbf{A} \end{aligned}$$

2. (i) Write in invariant vectorial form

 $\varepsilon_{inl} \varepsilon_{irs} \varepsilon_{lmp} \varepsilon_{stp} a_n a_r b_m c_t$.

(ii) Using the totally antisymmetric tensor ε_{ijk} write the product

 $(\mathbf{a} \cdot [\mathbf{b} \times \mathbf{c}]) (\mathbf{a}' \cdot [\mathbf{b}' \times \mathbf{c}'])$

as sum of terms which contains only scalar products of the appearing vectors.

3. (i) Using Cartesian coordinates x, y, z, cylindrical coordinates ρ, φ, z and spherical coordinates r, θ, φ , calculate

grad r, div \mathbf{r} , curl \mathbf{r} , grad $(\mathbf{c} \cdot \mathbf{r})$, $(\mathbf{c} \cdot \nabla)\mathbf{r}$,

where \mathbf{r} is the radius vector, \mathbf{c} is the same constant vector in all coordinate systems.

Hints: The radius vector is $\mathbf{r} = x \mathbf{e}_x + y \mathbf{e}_y + z \mathbf{e}_z$, $\mathbf{r} = \rho \mathbf{e}_\rho + z \mathbf{e}_z$ and $\mathbf{r} = r \mathbf{e}_r$, respectively.

Express the constant vector in Cartesian coordinates $\mathbf{c} = c_x \mathbf{e}_x + c_y \mathbf{e}_y + c_z \mathbf{e}_z = \mathbf{const}$ in the other coordinate systems using the relations between the unit base vectors.

For the definition of the vector operations in the different coordinates use the Appendix Curvilinear coordinates – A.4 and A.5 – of the Course context (Teaching page TP2).

(ii) Using the differential vector operator ∇ and the rules of differentiation and multiplication of vectors (without using Cartesian components) show that the following identities are valid

$$grad (\varphi \psi) = \varphi grad \psi + \psi grad \varphi,$$

$$div (\varphi \mathbf{A}) = \varphi div \mathbf{A} + \mathbf{A} \cdot grad \varphi,$$

$$curl (\varphi \mathbf{A}) = \varphi curl \mathbf{A} - \mathbf{A} \times grad \varphi.$$