
Chapter 10

Summary of time independent

electrodynamics

10.1 Electrostatics

• Physical law

Coulomb’s law – charges as origin of electric field
Superposition principle
Vector of the electric field E(x) in vacuum due to charge distribution in volume V
given by the volume density of free charges ρ(x)

E(x) =
1

4πε0

∫

V

ρ(x′)
x− x′

|x− x′|3
d3x′

d3x′ volume element (= dx′dy′dz′ in Cartesian coordinates)
Charge density of a discrete set of charged point particles at positions xi

ρ(x) =
n

∑

i=1

qi δ(x− xi)

Medium as phenomenological model

• Basic differential and integral equations

P – polarization vector, D – electric displacement vector, n – outward normal unit
vector

∇ ·D(x) = ρ(x) ,

∮

S

D · n =

∫

V

ρ(x) d3x = Qencl (Gauss law)

∇× E(x) = 0 ,

∮

C

E · dl = 0

D = ε0 E+P , D = εE

Bounded charges or polarization charges

ρb = −∇ ·P , σb = P · n
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• Boundary conditions at interface between two media

n21 – normal unit vector from medium 1 to medium 2
σ – free surface charge density

(D2 −D1) · n21 = σ , n21 × (E2 − E1) = 0

• Electrostatic scalar potential Φ(x)

∇× E(x) = 0 ⇒ E(x) = −∇Φ(x)

• Poisson equation for isotropic and linear media (ε position and direction independent)
(ρ = 0: Laplace equation)

∇
2Φ ≡ ∆Φ = −

ρ

ε

Solution without bounding surfaces

Φ(x) =
1

4πε

∫

ρ(x′)

|x− x′|
d3x′

• Solution of the Poisson equation in the presence of bounding surfaces

Use Green’s theorems and Green functions
Green functions – solution with δ-function as inhomogeneous part
interpretation: potential due to a unit point charge (in units 4πε)

∇
′2G(x,x′) = −4π δ(x− x′)

G(x,x′) =
1

|x− x′|
+ F (x,x′) , ∇

′2F (x,x′) = 0 x′ ∈ V

Use freedom in the definition of G via F to satisfy appropriate bounday conditions
Dirichlet: specification of potential on closed surface S

GD(x,x
′) = 0 , x′ ∈ S

Potential for x ∈ V using Dirichlet boundary conditions

Φ(x) =
1

4πε

∫

V

ρ(x′)GD(x,x
′) d3x′ −

1

4π

∮

S

Φ(x′)
∂GD(x,x

′)

∂n′
da′ ,

∂GD

∂n′
≡ ∇

′GD · n′

Neumann: specification of electric field (normal derivative of potential) on S

• Solution of Laplace equation with boundary conditions for problems with symmetries

Method of image charges: mimic boundary conditions by placing image charges of
appropriate magnitude at positions in a region external to region of interest and take
into account their potentials
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Method of separation of variables: construct an ansatz for the solution
Example: Boundary-value problem with azimuthal symmetry using Legendre poly-
nomials (unknown constants Al, Bl determined from boundary conditions)

∆Φ(r, θ) = 0 → Φ(r, θ) =
∞
∑

l=0

(

Al r
l +Bl r

−l−1
)

Pl(cos θ)

• Electrostatic energy for linear media

We =
1

2

∫

E ·D d3x =
1

2

∫

ρΦ d3x , we =
1

2
E ·D

• Multipole expansion of a localized charge distribution in Cartesian coordinates

Φ(x) =
1

4πε0

(

Q

x
+

p · x

x3
+

1

2
Qij

xixj
x5

+ · · ·

)

, x = |x|

E(x) =
1

4πε0

(

Qx

x3
+

3(p · x)x− x2 p

x5
+ · · ·

)

Q – total charge, p – electric dipole moment, Qij – traceless quadrupole moment
tensor

Q =

∫

ρ(x) d3x , p =

∫

x ρ(x) d3x , Qij =

∫

(3xixj − x2 δij) ρ(x) d
3x

10.2 Magnetostatics

• Physical laws

Biot and Savart law – absence of magnetic monopoles (individual magnetic charges)
B – vector of magnetic induction or magnetic flux density due to some free current
distribution with density J (SI-unit A/m2)

B(x) =
µ0

4π

∫

J(x′)× (x− x′)

|x− x′|3
d3x′

Ampere’s law – free currents are origins of magnetic fields, H – magnetic field vector
∮

C

H · dl = Iencl , in vacuum H =
1

µ0

B

• Basic equations (current divergenceless: ∇ · J = 0, M – magnetization)

∇ ·B(x) = 0 ,

∫

S

B · n da = 0

∇×H(x) = J(x) ,

∮

C

H · dl =

∫

S

J · n da = Iencl

H =
1

µ0

B−M
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Diamagnetic and paramagnetic material: H =
1

µ
B

Ferromagnetic material: Nonlinear relation between H and B

Effective volume and surface currrent densities (SI-units A/m2 and A/m)

Je = ∇×M , λe = M× n

• Boundary conditions at interface between two media (usually λ ≡ 0)

(B2 −B1) · n21 = 0 , n21 × (H2 −H1) = λ

• Vector potential A(x)

A defined up to the gradient of an arbitrary scalar function ψ (gauge freedom)

∇ ·B(x) = 0 ⇒ B(x) = ∇×A(x)

For isotropic and linear media (µ constant) and choosing Coulomb gauge ∇ ·A = 0
derive from

∇×H =
1

µ
∇×B = J

the partial differential equation for A

∇
2A = ∆A = −µJ

Solution in unbounded space (Coulomb gauge)

A(x) =
µ

4π

∫

J(x′)

|x− x′|
d3x′ , ψ = const

• Method of scalar magnetic potential

Use in regions with J = 0 (µ constant)

∇×H = 0 ⇒ H = −∇Φm

Laplace equation for Φm

∇ ·B = 0 ⇒ ∇
2Φm = ∆Φm = 0

• Various quantities for a localized current distribution J(x)

Force on J in an external B

F =

∫

J(x)×B(x) d3x
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Total torque

N =

∫

x× (J×B) d3x

Magnetic moment

m =
1

2

∫

V

x× J(x) d3x

Vector potential and magnetic field at large distances (in vacuum)

A =
µ0

4π

m× x

x3
, B =

µ0

4π

3(m · x)x− x2 m

x5

• Magnetostatic energy for linear diamagnetic and paramagnetic media

in derivation Faraday’s law of induction required

Wm =
1

2

∫

H ·B d3x =
1

2

∫

J ·A d3x , wm =
1

2
H ·B

157


