Chapter 1

Some elements of vector and tensor
analysis and the Dirac o-function

The vector analysis is useful in physics

formulate the laws of physics independently of any preferred direction in space
experimentally known: the laws of mechanics are independent of choosing a right-handed
or left-handed system of coordinate axes

1.1 Orthogonal transformations and tensors

1.1.1 The radius-vector and orthogonal transformations

In ordinary 3-dimensional space — called Euclidean space — let us introduce a coordinate
system K with some origin O, Cartesian coordinates (xy, z2,23) = (z,y, z) and base unit
vectors (e, e, e3) = (e,, ey, e,) along the Cartesian directions

The e; are orthogonal to each other, ey, e, €3 form a right-handed system

the coordinates x; are the components of the radius-vector or coordinate-vector of a point
particle

X =T € + Toe + x3€63 = (11,22, T3)

the magnitude of the radius-vector is

x| =2 = /2% + 23 + 23

Consider a rotated around the origin O coordinate system K’ with (2,2}, #%) with unit
base vectors (€], €, €})
The radius vector x is defined independently from the chosen coordinate system
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Since under
X = AX = @ A, a — A
the relation between z and z; must be linear
3
/ f— .. . .. 1
x; = g a;jx;j, a;; real coefficients
J=1
and
3
P=x=x*=x" = E xfzg a?
i=1 j=1

this transformation is called orthogonal

1.1.2 Classification of physical quantities as rotational tensors

We consider nonrelativistic (!) physical quantities

Use Einstein’s summation convention
summation over double appearing (dummy) indices is understood
Latin indices i, j, k,--- =1,2,3

A linear transformation of coordinates of a point such that the sum of squares of coordinates
remains invariant is called an orthogonal transformations of coordinates

r_ 22 :
T, = a;r;, X=X, a real coefficients (1.1)
From

2 2
T = QT Qi Ty =X = Qi = Ojk

Kronecker’s symbol

0, ifi#j
The 3 x 3 numbers a;;. can be represented as matrix a, the 3 numbers z; as column vector
X

%Z{ 1, ifi=y

€y 11 Aiz2 Qi3 il
/

To = Q21 QA22 Q23 T2
!

X3 a3; Aazz ass Zs3

Denote the transposition of a matrix a by @ (a transposed column vector becomes a raw

vector)
In this matrix notation the orthogonality takes the form
100
aa=aa=I1=|{ 01 0 or a=a"
001



I denotes the unit matrix
The raw vectors and column vectors of the orthogonal matrix a are orthonormalised
Example: rotation about the x3 = z axis in anticlockwise manner by angle ¢

cosep sing 0

a=| —sing cose 0
0 0 1
Backtransformation
¢ =ar = ar'=dar=zorT =21
in index notation with (a™'),; = (a);; = a;

Taking the trace
det(da) = [det(a)]* = 1
det(a) = +1 — proper rotation

det(a) = —1 — improper rotation: reflection + rotation

Nonrelativistic physical quantities are classified as rotational tensor of various ranks de-
pending on how they transform under rotation

Xa, Va, Pa for particle o transform according to (1.1) as coordinates: vectors
X1+ Xg, V] - P invariant under rotations: scalars
groups of nine quantities that transform according to

Bj; = agaj By second rank tensors, tensors
Tensor of rank N

T

iy = Qigjy o Giggin TG

1N
Construction of new tensors
e Addition (a,b numbers)

aS; iy +b7Tj,..j, tensor of rank N

e Multiplication

Siyiy Tjyjy  tensor of rank N + M

e Contraction
Siyojejoiny  tensor of rank N — 2

Note V;W; and r? = 7 form scalars



Tensors are defined by their behavior under orthogonal transformations (we used Cartesian
coordinates in 3-dim Euclidean space)

= Equations for tensor quantities are forminvariant (called covariant) under orthogonal
transformations

Therefore, write physical equations in form of covariant equations of tensors of various
ranks

1.1.3 Further notations
Kronecker’s symbol

The Kronecker’s symbol is defined to be independent from the chosen Cartesian coordinate
system

‘%k = Oik
it fulfills the definition of a tensor of rank 2
5;k = ainakménm = QipQkn = 5@'1@

matrix [ = (;) is the unit matrix
Useful:

J

Totally antisymmetric tensor of rank 3

0, if any of indices 1, j, k equal
, if i # j # k reached in even permutations from 123
—1, if ¢ # 7 # k reached in odd permutations from 123

—_

Cijk =

€123 = €231 = €312 = 1, €213 = €391 = €132 = —1
jir 5ijf i
8ijk gi/j/k’ = 6]%’ (5]]/ 5]/4:'
Okir 5ij Ok

Eijk Eitm = 051 Ok — Ojm Okt »  €ijk Eiji = 2051,  Eijk Eijke = I



Vector formulae

(AxB); = ¢ijxA;By
(Ax (BxQ)); = gjxA;(BxC)y=cijk Ajcrim Bi Cr, = €kij ram A; Bi Cpy
= (04 0jm — 0im 0j1) A; B, Cyy = Ay, B Cy, — A B C;
— (A-C)B, - (A-B)(,

A-BxC)=B-(CxA)=C-(AxB)
AxBxC)=(A-C)B-(A-B)C
(AxB)-(CxD)=(A-C)(B-D)—(A-D)(B-C)
Vector differentiation

Consider a vector A(x) depending on the scalar argument x

A
A) = Alees, Al) =A@, ea=3
derivative with respect to the argument x
dA(z) d _dA dey dA de
= %[A(x)eA(x)] = EeA+A% = EeA+A .| e es 1ley

de
the change of the unit vector — e A

x
Total time derivative of a vector A(z1, xo, x3,t) depending on Cartesian coordinates z; and
time ¢

dA  OA dry OA dry OA dvs OA  OA . O0A . OA | O0A

R R R R A A T T T

A _0A 0,
at ot o,

This can be written in vector form (covariant form) using the nabla operator V defined

below in Chapter 1.2.4
dA  0A )
E—E-i—(r-V)A (1.2)



Tensor fields under rotations

We use an “active” view of rotation:
Coordinate axes are fixed, the physical system undergoes a rotation x(,) — X’(a)

y

Figure 1.1: Active rotation of a system of two point charges

Under rotation of tensor fields (scalar,vector, ... fields) also transformation of the position
components
scalar function ®(x,) under rotation

P'(x;) = ®(xa)

components of a vector function Vi(xa) under rotation
Vi(x4) = aij Vi(xa)

(2 (63

analogously higher rank tensor functions under rotation
/ /
Ty (Xa) = Qiri @t - - Oy Tij. . (Xa)

The cross product of vectors/vector fields

A=BxC

presence of two vectors on the right hand side

cross product has some attributes of a traceless antisymmetric second-rank tensor (with 3
independent components)

treated as vector with respect to z = a;;x;

the real transformation for the cross product is

A; = det(a) Cll'jAj

Under proper rotations det(a) = 1 , the cross product transforms as a vector
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Spatial reflections or inversions

e Spatial reflection in plane
change signs of the normal components of coordinate-vectors of all particles a relative
to a plane
leave components || to plane unchanged
reflection in the (x1,x2) plane:

Xa = (malaxa%wa?;) — X/a = (xa17ma27 _$a3)

e Space inversion
reflection of all three components of every coordinate vector through the origin

Xa = (xalaxa%xa?)) — X/a = (_$a17 _xa27_xa3)

spatial reflection is a discrete transformation
corresponds to det(a) = —1

I P— .. . ] P p— ..
T = Qi Toj With a;; = —0;;

vectors change sign under spatial inversion, cross products do not change sign
= distinguish two kind of vectors under spatial inversions:
For x = (21, 29, 73) = X' = —x = (—x1, =29, —3)

V — V' =-V polar vectors

A — A’'=A axial vectors or pseudovectors

Similar classification for scalars under rotation and spatial inversion:
scalars — do not change sign
pseudoscalars — do change sign (Ex.: a- (b X c) if a, b, ¢ polar vectors)

Tensor of rank N

transformation property under inversion can be deduced directly if the tensor is built up
as products of components of polar or axial vectors

if tensor transforms with factor (—1)" — true tensor or _tensor of rank N

if tensor transforms with factor (—1)¥*! — pseudotensor of rank N

Note the special tensors:

0, 1s a true tensor of rank 2

€ijk 1s a pseudotensor of rank 3 (g;;, enters in the definition of the vector product: the
vector product of two polar vectors leads to an axial vector)
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1.2 Vector differential operators

Consider a region of 3-dimensional Euclidean space R with a scalar field ¢(x) and a vector
field A(x) (suppress the t-dependence)

the region R is regular, ¥(x), A(x) and their derivatives are continuous

— 1(x) and A(x) are continuously differentiable in R

3 differential operations

1.2.1 Gradient of a scalar field

The gradient of a scalar field 1(x), denoted by grad ¢)(x), is a vector field at position x
the component of the vector field grad ¢ in direction of an arbitrary unit vector n is defined

as (Ax = nAx)

n - grad(x) = lim LEFBAL) = O(X)

Az—0 Az

n - grad ¢ is the derivative of v in the direction n

n-grad¢:g—i

Geometric interpretation:

the equation ¢ (x) = const represents a surface

the vector grad at position x is L to that surface and points in the direction of the
greatest rate of increase of ¢

|grad ¢| is the greatest rate of change

For Cartesian coordinates:

for the choice n = e;, nAx — e;Axy, Ax — Ax; with xo, z3 fixed

A - 9
ey - grad ®(z1, g, x3) = Ahrgo Y(zy + xl,xzz;) (1, T2, T3) N a;/i
xr1 1 L

0 0 0
= grady = aj}lele&i v
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1.2.2 Divergence of a vector field

The divergence of a vector field is a scalar field that measures the magnitude of a vector’s
field source or sink at a given point x
definition

. ) 1
divA(x) = A1‘1/11_1>O AV ]{g A -nda
volume AV is bounded by the closed surface S, with area element da and unit outward
normal n at da
in the limiting procedure AV — 0 the point x is always contained inside S

If div A > (<)0, the vector field has a source (sink)
div A measures the strength of the source/sink
[lustration: for a sphere

In Cartesian coordinates:

consider a rectangular box with volume AV = Az Azy Axg starting from point (21, z9, x3)
and sum over the six surface areas in the limit of vanishing volume [the convenient positions
in integration region T; — x; according to the mean value theorem of integration]

1
div A(.Z’l, 9, 173) = Al\l/IEO A_V {Al dZCQ d$3 + AQ d$3 dl‘l + Ag dl‘l d.’[g} =
S

(A, vy (A (21 + A0y, 75,75) = Ao, T+ b g4,

li — e
A‘l/'n—lﬂ) A.I‘l AJ)Q A{L’g 0$1 +

0A; 0Ay, O0A
1, 94 O

= divA =
v 8113'1 6172 83:3
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1.2.3 Curl or rotation of a vector field

The curl is a vector field, denoted by curl A(x) = rot A(x) describing the infinitesimal
rotation of a 3-dimensional vector field ay position x (in fluid dynamics called a vortex)
the component of curl A in direction of an arbitrary unit vector n is defined as

) 1
curl A(x) -n=rot A(x) -n= Al(llrilo E?iA -dl

The direction of the open oriented surface in the limit Aa — 0 is parallel to n. The contour
C bends Aa with the normal n defined by the right-hand-screw rule in relation to the sense
of the line integral around C

fo A - dl is the line integral along the boundary of the area in question

In the limit Aa — 0 the direction of curl A(r) is given by n

For illustration choose circle with normal | to plane and the vector field A in the plane

In Cartesian coordinates:

choose n = ey and rectangle in the (z1, ) plane starting from point (z1, z2, z3) with area
Aa = Axy Azs

sum over all sides of the line integral and divide by that area

we get for the x3 component of the curl

(curl A(zq, 29, 23)); = lim

Aa—0
AfEl [Al(l'_l, Za, .’I}3) — A1<.Z‘_1, T + A[L’Q, wg)] + AZL'Q [Ag(xl -+ Al‘l, TQ, 563) — AQ(SCl,Z‘_Q, [L'3>]
Al’l A[L’Q
0As 0A
8171 81‘2

As result we get

_[0As 04, 0A;  0A4 04y  0A
= cwl A= (8962 83:3> et (8333 83:1) €2t (31171 81'2) ©s

Another form in Cartesian coordinates in form of a determinant

€ €2 €3

0 0 0

A= 2 2 2
ot 61’1 6]}2 8.’1)3
A Ay Az
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1.2.4 Nabla operator

All definitions were made independently of the choice of the coordinate system

in Cartesian coordinates we got

Y oY oY
grady = 0z, e + D5 e + Bis e;
0A; 04y, 0A,

divA = 81’1 * 61?2 + 81’3
(DA 04, 0A;  0As 04y 0A,
curl A= <8x2 B 8x3> e+ (8953 B 8[E1) ez + (8!E1 B 8I2> s

The partial derivatives suggest to write the form of the differential operators using the
vector differential operator V

0

0
V=e ox
3

8()31

+ e +e3
2

ox

grady =Vy, divA=V- A, carlA=V xA
The components of V transform as a vector under orthogonal transformations

0 0

- = ai, R
a.’L'i J 8x]—

This also explains the use of V in eq. (1.2)
We will use from now mainly the V-notation which is independent of the coordinate system
for the exact definition of V in other curvilinear orthogonal coordinates see Chapter A.1

Note the following relations
V- V¢ = div(grady) = V) = V) = Ay
V x V¢ = curl(grady) =0

V- (VxA) = div(curlA) =0
AA = grad(divA) —curl (curl A) = V(V-A) -V x (V x A)

Index notations (in Cartesian coordinates, 9; = 0/0x;)

(Vi) =0, V-Vip=0%, (Vx(VxA))=00A,— 024

if V. x A =0: A irrotational vector field
an irrotational vector is expressible as gradient of a scalar function

if V- A =0: A solenoidal vector field
an solenoidal vector is expressible as curl of a vector function
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1.3 Integral theorems

The results of a partial integration of the differential operators are called integral theorems
1, p and A are well-behaved scalar or vector functions (fields), T;; is a well behaved tensor
field of second rank

1.3.1 Divergence Theorem (Gauss’, Green’s or Ostrogradsky’s
Theorem)

V: three-dimensional volume with volume element d3x
S is a closed two-dimensional surface bounding V', with area element da and unit outward
normal n at da (da = dan), follows directly from the definition of V - A

/V-Ad?’m:]{A-nda
1% s

Variants of the divergence theorem (derivation of Green’s identities, see below Chapter 2.5)

/Vzpd?’m = fwnda

v

/VXAdgx = fnxAda
v S

0

/—Tij Pz = j{Tijnj da (in Cartesian coordinates)
Oz,

Vv 2y S

/ (@ng/J +Vep- V@/}) dr = 81/) da (Green’s 1st identity, 8—7# =n- V)
v Y on on
/ ((pVQw — zDVng) dr = j{ ( 9 _ &’0) da (Green’s 2nd identity or theorem)
v an  on

16



1.3.2 Stokes’ Theorem

The Stokes’ theorem follows directly from the definition (V x A) - n

S denotes an open surface, C' contour bending S, dl vector of infinitesimal length element
along C

normal n to S is defined by the right-hand-screw rule in relation to the sense of the line
integral around C

/S(VXA)-nda = j[CA-dl
/S nxVyde = fc dl  (variant)

The variant is obtained by multiplying the line integral with a constant vector and applying
the standard Stokes’ theorem (similar procedure for the first two variants of the divergence

theorem)
Stokes’ theorem implies: an irrotational vector field A with V x A = 0 can be always
represented via the gradient of a scalar field function A = -V

17



1.4 The Dirac d-function

1.4.1 Definitions

Consider a function d;(z) depending on a parameter [

&) = { % 12 <a <12

0 otherwise

for an arbitrary continuous test function f(z) we calculate the convolution integral with
dy(x) and after integration let go I — 0 using the mean value theorem of integration

oo zo+1/2
lim dx di(x — x0) = lim — / dx f(z) =lim f(z) = f(z0)

=0 J_ o =0 1 Sy i/ 1—0

For the convolution we use the abbreviation

o0 o

%ir% dr di(x — xg) f(z) = / dx é(x — xo) f(2)
with the d-function (limit after integration!)
0(z) = lim d;(x)
—0

One can construct other functions d;(x):
sufficient d;(z) > 0, localized in a region [ around = 0 and normalized to 1

/dedl( = /

Examples for d;(z):

1 x? 1 l sin%
VTl P\Tr ) Ty na

d(z) is not a function in the usual sense

d(z) and similar objects are called distributions

The distribution é(x) (Dirac d-function) is defined in such a way that for arbitrary contin-
uous and integrable test functions f(x) the following equation holds

/ " e 8(x — o) f(x) = F(z0)

o0

The independence of integrals on a very small size [ in a physical application (e.g. volume
integral over a test charge) is a simplification indicated by using the J-function

from the definition it follows that the usual rules of integration are valid
Consider the convolution of

I(a) = - b(x)

18



with a test function f(z) using partial integration

[ wste e f@) =~ [ drdte - ) 51@) = @)

—0o0 —0o0

= definition of distribution ¢'(x)
Step function ©(z): integral over the J-function

/ dr' §(x' — xy) = O(x — 10) :{ 0 forz <

o 1 for x > xg

the step function is an ordinary function
d(z) can be written as derivative of the step function

d

b(x) = ©'(x) = = ©(a)

Integral representation of the d-function
Use the Fourier transformation (f(x) continuous and square integrable)

ekx

1 o9

—— [ dkg(k)e
V2T / gl

de’f 71k:c

()

gl %E/

Plug in g(k) into f(z) and replace x by xg

f(QT) = % /_OO d&?of(:l?o) /_oo dk eik(if—ifo)

1 o -
= 0z —m0) = 5 / dk ¢! F@=w0)

The Fourier transformation is based on the set of sin and cosine functions forming a com-
plete set of orthogonal functions

Similar representations of the d-function we get for every such set of orthogonal functions
(see completeness conditions in Chapter 3.3)

1.4.2 Properties
e j(r—a)=0, z#a

o )(—x)=0d(x), xzd(x)=
e [6(x—a)der=1 if x =a included in integration region

o [ f(z)é(x —a)dz = f(a) for arbitrary function f(z)
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V(—z)=—=0(z), zd(x)=—0(z)
[ f(x)d'(x — a)dz = —f'(a)
e 0(ax)=20(x),a>0, 6&(?—a?) =5 [0(z—a)+d(z+a)

e for f(z) with only simple zeros at = x; in the integration region: f(z;) =0

s =X s

3-dim (in Cartesian coordinates)

d(x —x0) = d(x — x0) 6(y — o) 6(2 — 20)

vanishes everywhere except at x = x

[ ]
1 if AV contains x = x
_ 3. _ 0
/AV 0(x = xo) dx { 0 if AV does not contain x = xq
e 3-dim d-function in cylindrical and spherical coordinates

X = (pv(paz)a Xo = (pO’SDO?ZO)
1
o(x—x9) = %5(,0—00)5(%0—%)5(2—20)

x = (r,0,p), X9 = (70,00, o)
1
(5(X—X0) = 7"(2) Sineo(s(r—ro)(s(e_90)5(<P_‘P0)
1

= p d(r —ro) d(cos @ — cosby) d(p — o)

e dimension of d-function = dimension of inverse “volume”

Use d-function to describe
charge density of a discrete set of charged point particles at positions x;

charge density: charges per unit volume

p(x) = Z i 0(x — x;)
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